First off: no, comet 67P/Churyumov-Gerasimenko is not about to explode or disintegrate. But as it steadily gets nearer to the Sun the comet’s jets are getting more and more active and they’re putting on quite a show for the orbiting Rosetta spacecraft! Click the image for a jeterrific hi-res version.
The images above were captured by Rosetta’s NavCam on Jan. 31 and Feb. 3 from a distance of about 28 km (17 miles). Each is a mosaic of four separate NavCam acquisitions and they have been adjusted and tinted in Photoshop by yours truly to further enhance the jets’ visibility. (You can view the original image mosaics and source frames here and here.)
These dramatic views are just a hint at what’s in store; 67P’s activity will only be increasing in the coming weeks and months and, this weekend, Rosetta will be swooping down for an extreme close pass over its surface!
This Saturday, Feb. 14, Rosetta will be performing a very close pass of the comet’s nucleus, soaring over the Imhotep region at an altitude of only 6 km (3.7 miles) at 12:41 UTC. This will allow the spacecraft to closely image the comet’s surface, as well as investigate the behavior of its jets and how they interact with its developing coma.
“The upcoming close flyby will allow unique scientific observations, providing us with high-resolution measurements of the surface over a range of wavelengths and giving us the opportunity to sample – taste or sniff – the very innermost parts of the comet’s atmosphere,” said Rosetta project scientist Matt Taylor.
UPDATE: Here’s an image of 67P captured by Rosetta on Feb. 6 from a distance of 124 km (77 miles) as it moved into a higher orbit in preparation of its upcoming close pass. It’s the first single-frame image of the comet since leaving bound orbits.
With the Moon rising later in the evening this weekend, astrophotographers have taken some spectacular pictures of Comet 2014 Q2 Lovejoy, which continues shine on! Enjoy a few photos here and check out more in Universe Today’s Flickr page.
Chris Schur from Payson, Arizona took the above image with a 80mm f/4.6 Zeiss APO and a ST10xme ccd camera.
Who doesn’t like to snuggle up with their Valentine on Valentine’s Day? Rosetta will practically whisper sweet nothings into 67P’s ear on February 14 when it swings just 3.7 miles (6 km) above its surface, its closest encounter yet.
Rosetta had been orbiting the comet at a distance of some 16 miles (26 km) but beginning yesterday, mission controllers used the spacecraft’s thrusters to change its orbit in preparation for the close flyby. First, Rosetta will move out to a distance of roughly 87 miles (140 km) from the comet this Saturday before swooping in for the close encounter at 6:41 a.m. CST on Feb. 14. Closest approach happens over the comet’s larger lobe, above the Imhotep region.
The close encounter will provide opportunities for Rosetta’s science instruments to photograph 67P’s surface at high resolution across a range of wavelengths as well as get a close sniff of what’s inside its innermost coma or developing atmosphere. Scientists will also be looking closely at the outflowing gas and dust to see how it evolves during transport from the comet’s interior to the coma and tail.
As Rosetta swoops by its view of the comet will continuously change. Instruments will collect data on how 67P’s dust grains reflect light across a variety of orbital perspectives – from shadowless lighting with the Sun at the orbiter’s back to slanted lighting angles – to learn more about its properties.
“After this close flyby, a new phase will begin, when Rosetta will execute sets of flybys past the comet at a range of distances, between about 15 km (9 miles) and 100 km (62 miles),” said Sylvain Lodiot, ESA’s spacecraft operations manager.
During some of the close flybys, Rosetta trajectory will be almost in step with the comet’s rotation, allowing the instruments to monitor a single point on the surface in great detail as it passes by.
Helpful animation of how ESA mission controllers are changing Rosetta’s orbit to ready the probe for the Valentine’s Day flyby.
Perihelion, when the comet arcs closest to the Sun at a distance of 115.6 million miles (186 million km), occurs on August 13. Activity should be reaching its peak around that time. Beginning one month before, the Rosetta team will identify and closely examine one of the comet’s jets in wickedly rich detail.
“We hope to target one of these regions for a fly-through, to really get a taste of the outflow of the comet,” said Matt Taylor, ESA’s Rosetta project scientist.
It only makes sense. Sunlight heats a comet and causes ice to vaporize. This leads to changes in the appearance of surface features. For instance, the Sun’s heat can gnaw away at the ice on sunward-facing cliffs, hollowing them out and eventually causing them to collapse in icy rubble. Solar heating can also warm the ice that’s beneath the surface.
When it becomes a vapor, pressure can build up, cracking the ice above and releasing sprays of gas and dust as jets. New images compared to old suggest the comet’s surface is changing as it approaches the Sun.
Recent photos taken by the Rosetta spacecraft reveal possible changes on the surface of 67P/Churyumov-Gerasimenko that are fascinating to see and contemplate. In a recent entry of the Rosetta blog, the writer makes mention of horseshoe-shaped features in the smooth neck region of the comet called “Hapi”. An earlier image from Jan. 8 may show subtle changes in the region compared to a more recent image from Jan. 22. We’ll get to those in a minute, but there may be examples of more vivid changes.
I did some digging around and found what appears to be variations in terrain between photos of the same Hapi region on Dec. 9 and Jan.8. Just as the other writer took care to mention, viewing angle and lighting are not identical in the images. That has to be taken into account when deciding whether a change in a feature is real or due to change in lighting or perspective.
But take a look at those cracks in the December image that appear to be missing in January’s. The change, if real, is dramatic. If they did disappear, how? Are they buried in dust released by jets that later drifted back down to the surface?
Now back to those horseshoe features. Again, the viewing angles are somewhat different, but I can’t see any notable changes in the scene. Perhaps you can. While comets are expected to change, it’s exciting when it seems to be happening right before your eyes.
There’s darkness out there in the cold corners of the solar system.
And we’re not talking about a Lovecraftian darkness, the kind that would summon Cthulhu himself. We’re talking of celestial bodies that are, well. So black, they make a Spinal Tap album cover blinding by comparison.
We recently came across the above true color comparison of Comet 67/P Churyumov-Gerasimenko adjusted for true reflectivity contrasted with other bodies in the solar system. 67/P is definitely in the “none more black” (to quote Nigel Tufnel) category as compared to, well, nearly everything.
Welcome to the wonderful world of albedo. Bob King wrote a great article last year discussing the albedo of Comet 67/P. The true albedo (or lack thereof) of 67/P as revealed by Rosetta’s NAVCAM continues to astound us. Are all comets this black close up? After all, we’re talking about those same brilliant celestial wonders that can sometimes be seen in the daytime, and are the crimson harbingers of regal change in The Game of Thrones, right?
There was also a great discussion of the dark realms of 67/P in a recent SETI Talk:
As with many things in the universe, it’s all a matter of perspective. If you live in the U.S. Northeast and are busy like we were earlier today digging yourself out from Snowmageddon 2015, then you were enjoying a planetary surface with a high albedo much more akin to Enceladus pictured above. Except, of course, you’d be shoveling methane and carbon dioxide-laced snow on the Saturnian moon… Ice, snow and cloud cover can make a world shinny white and highly reflective. Earthshine on the dark limb of the crescent Moon can even vary markedly depending on the amount of cloud and snow cover on the Earth that’s currently rotated moonward.
To confound this, apparent magnitude over an extended object is diffused over its surface area, making the coma of a comet or a nebula appear fainter than it actually is. Engineers preparing for planetary encounters must account for changes in light conditions, or their cameras may just record… nothing.
For example, out by Pluto, Charon, and friends, the Sun is only 1/1600th as bright as seen here on sunny Earth. NASA’s New Horizons spacecraft will have to adjust for the low light levels accordingly during its historic flyby this July. On the plus side, Pluto seems to have a respectable albedo of 50% to 65%, and may well turn out to look like Neptune’s large moon, Triton.
And albedo has a role in heat absorption and reflection as well, in a phenomenon known as global dimming. The ivory snows of Enceladus have an albedo of over 95%, while gloomy Comet 67/P has an albedo of about 5%, less than that of flat black paint. A common practice here in Aroostook County Maine is to take fireplace ashes and scatter them across an icy driveway. What you’re doing is simply lowering the surface albedo and increasing the absorption of solar energy to help break up the snow and ice on a sunny day.
Ever manage to see Venus in the daytime? We like to point out the Cytherean world in the daytime sky to folks whenever possible, often using the nearby Moon as a guide. Most folks are amazed at how easy this daytime feat of visual athletics actually is, owing to the fact that the cloud tops of Venus actually have a higher albedo of 90%, versus the Moon’s murky 8 to 12%.
Apollo 12 command module pilot Richard Gordon remarked that astronauts Al Bean and Pete Conrad looked like they’d been “playing in a coal bin” on returning from the surface of the Moon. And in case you’re wondering, Apollo astronauts reported that moondust smelled like ‘burnt gunpowder’ once they’d unsuited.
Magnitude, global dimming and planetary albedo may even play a role in SETI as well, as we begin to image Earthlike exoplanets… will our first detection of ET be the glow of their cities on the nightside of their homeworld? Does light pollution pervade the cosmos?
And a grey cosmos awaits interstellar explorers as well. Forget Captain Kirk chasing Khan through a splashy, multi-hued nebula: most are of the light grey to faded green varieties close up. Through a telescope, most nebulae are devoid of color. It’s only when a long time exposure is completed that colors too faint to see with the naked eye emerge.
All strange thoughts to consider as we scout out the dark corners of the solar system. Will the Philae lander reawaken as perihelion for Comet 67/P approaches on August 13th, 2015? Will astronauts someday have to navigate over the dark surface of a comet?
I can’t help but think as I look at the duck-like structure of 67/P that one day, those two great lobes will probably separate in a grand outburst of activity. Heck, Comet 17P/Holmes is undergoing just such an outburst now — one of the best it has generated since 2007 — though it’s still below +10th magnitude. How I’d love to get a look at Comet 17P/Holmes up close, and see just what’s going on!
Be it atoms, stars or snowflakes from the latest nor’easter pounding the New England seaboard, anything worth studying involves movement. And as skies and snowbound roads clear, this Wednesday and Thursday evening will give us a reason to brave the January cold, as the waxing gibbous Moon pierces the Hyades star cluster to graze past the bright star Aldebaran.
During Thursday night’s passage, the Moon will be 78% illuminated. In a sort ‘cosmos mimics controversy’ irony, the gibbous Moon is doing its best to mimic a sky bound ‘deflategate’ football just in time for Superbowl XLIX this weekend.
But the January 29th event also marks the first occultation of Aldebaran for 2015.
Fun fact: At magnitude +0.8, Aldebaran is the only star brighter than +1st magnitude north of the celestial equator that the Moon can currently occult. Regulus, the runner up, shines at magnitude +1.4. Two other second magnitude stars — Antares and Spica — lie along the Moon’s path on occasion, and up until the 2nd century BC, it was possible for the Moon to occult Pollux in the constellation Gemini as well.
There are 13 occultations of Aldebaran in 2015, and the Moon occults the star 49 times overall until the last event in the current cycle on September 3rd, 2018. Aldebaran is also occulted by the Moon more often in the current 2010-2020 decade than any other bright star. You can even spy Aldebaran near the daytime Moon with binoculars, as we did back in 1996 from North Pole, Alaska.
Of course, the January 29th event is an occultation only for the high Arctic, with only a scattering of villages and distant early warning stations along the northern Nunavut coast welcoming the sequence of 2015 occultations of the bright star.
The rest of us will see a close photogenic pass, as the Moon makes an end run through the Hyades star cluster every 27.3 day sidereal lunar month in 2015. The Moon will thus occult several members of the Hyades on each pass. Our best bet for North America is the occultation of Aldebaran on November 26th, though the Moon will be just 13 hours past Full.
Why doesn’t the path of the Moon just stay put with respect to the sky? Because the orbit of our Moon is fixed at an inclination of 5.1 degrees not with respect to our equator, but to the plane of the ecliptic. This means that the Moon’s orbit is in motion as well, and can wander anywhere from declination 28.6 degrees north to south as it cycles from a shallow to steep path every 18.6 years. We’re actually in a shallow year in 2015 (known as a minor lunar standstill) after which the apparent path of the Moon through the sky begins to widen again until April 2025.
An occultation is celestial motion that you can see in real time as a star or planet is photobomb’d by the onrushing Moon like a January snowplow… but those background stars are in motion as well.
The Hyades themselves — along with our own solar system — are moving around the galactic center. The nearest open cluster to us at 153 light years distant, the Hyades provided a unique object of study for 19th century astronomers. Astronomer Lewis Boss of the Dudley observatory spent several decades studying the proper motion — the apparent motion that a star seems to be moving across the sky from our solar system-bound perspective, measured in arc seconds — of the Hyades, and found the entire group was converging on a point in the constellation Orion near 6 hours 7’ right ascension and +7 degrees declination.
Of course, this motion is relative and demonstrates a changing perspective, as the Hyades recedes from our solar system like a defensive line rushing to sack a quarterback.
OK, enough with the sports similes. The Hyades are so close that the actual Hyades Stream — often referred to as the Hyades Moving Group — is actually strewn across the constellations Orion, Taurus and Aries and more.
Some stars, such as 20 Arietis in the adjacent constellation Aries and Iota Horologii in the southern hemisphere may actually members as well. There’s always a bit of ongoing controversy when it comes to actual moving group membership, which is usually pegged by determining proper motion, coupled with the age and metallicity of prospective stars. Growing up in the Milky Way galaxy, our Sun was once a member of some unnamed ancient open cluster that has since long dispersed, like the Hyades are in the process of doing now.
The Hyades contains hundreds of stars and ironically, Aldebaran is not a member of the cluster, but is merely 65 light years away from us in the foreground. The V-shaped asterism of the Hyades gives the Head of Taurus the Bull its distinctive shape. The Hyades are named after the rain nymph daughters of Atlas from Greek mythology, whose half daughters the Pleiades also adorn the nearby sky.
And as an added bonus, don’t miss comet C/2014 Q2 Lovejoy crossing the constellation Triangulum, also nearby. Q2 Lovejoy reaches perihelion this week on January 30th, and although it’s completing with the evening Moon, it’s still holding out at a respectable magnitude +4.5.
All reasons to get out these chilly January evenings and ponder a hurried universe continually in motion, both fast and slow.
We’ve subsisted for months on morsels of information coming from ESA’s mission to Comet 67P/Churyumov-Gerasimenko. Now, a series of scientific papers in journal Science offers a much more complete, if preliminary, look at Rosetta’s comet. And what a wonderful and complex world it is.
Each of the papers describes a different aspect of the comet from the size and density of dust particles jetting from the nucleus, organic materials found on its surface and the diverse geology of its bizarre landscapes. Surprises include finding no firm evidence yet of ice on the comet’s nucleus. There’s no question water and other ices compose much of 67P’s 10 billion ton mass, but much of it’s buried under a thick layer of dust.
Despite its solid appearance, 67P is highly porous with a density similar to wood or cork and orbited by a cloud of approximately 100,000 “grains” of material larger than 2 inches (5 cm) across stranded there after the comet’s previous perihelion passage. Thousands of tiny comet-lets! Continue reading “Latest Research Reveals a Bizarre and Vibrant Rosetta’s Comet”
Not all comets break up as they vent and age, but for Rosetta’s comet 67P, the Rubber Duckie comet, a crack in the neck raises concerns. Some comets may just fizzle and uniformly expel their volatiles throughout their surfaces. They may become like puffballs, shrink some but remain intact.
Comet 67P is the other extreme. The expulsion of volatile material has led to a shape and a point of no return; it is destined to break in two. Songwriter Neil Sedaka exclaimed, “Breaking Up is Hard to Do,” but for comets this may be the norm. The fissure is part of the analysis in a new set of science papers published this week.
The images show a fissure spanning a few hundred meters across the neck of the two lobe comet. The fissure is just one of the many incredible features on Comet 67P and is reported in research articles released in the January 22, 2015, edition of the journal Science.
What it means is not certain, but Rosetta team scientists have stated that flexing of the comet might be causing the fissure. As the comet approaches the Sun, the solar radiation is raising the temperature of the surface material. Like all materials, the comet’s will expand and contract with temperature. And diurnal (daily) changes in the tidal forces from the Sun is a factor, too.
An image sequence from the Navcam of the Rosetta spacecraft (right) is shown beside a simulation. Further work on the interaction of comets with solar radiation will include computer models that utilize Rosetta data to reveal how comet nuclei evolve over time – over many orbits of the Sun- and break up. Peanut, rubber-duck, potatoes or just round-shaped comet nuclei likely result from combinations of rotation, changes in rotation, spin rate, composition and internal structure, as a nucleus interacts with the Sun over many orbits. (Credits: ESA/Rosetta, Illustration – J.Schmidt)
The crack, or fissure, could spell the beginning of the end for comet 67P/Churyumov–Gerasimenko. It is located in the neck area, in the region named Hapi, between the two lobes that make 67P appear so much like a Rubber Duck from a distance. The fissure could represent a focal point of many properties and forces at work, such as the rotation rate and axis – basically head over heels of the comet. The fissure lies in the most active area at present, and possibly the most active area overall. Though the Hapi region appears to receive nearly constant sunlight, at this time, Rosetta measurements (below) show otherwise – receiving 15% less sunlight than elsewhere.
Sunlight and heating are major factors and the neck likely experiences the greatest mechanical stresses – internal torques – from heating or tidal forces from the sun as it rotates and approaches perihelion. Rosetta scientists are still not certain whether 67P is two bodies in contact – a contact binary – or a shape that formed from material expelled about the neck area leading to its narrowing.
The Philae lander’s MUPUS thermal sensor measured a temperature of –153°C (–243°F) at the landing site, while VIRTIS, an instrument on the primary spacecraft Rosetta, has measured -70°C (-94°F) at present. These temperatures will rise as perihelion is reached on August 13, 2015, at a distance of 1.2432 A.U. (24% further from the Sun than Earth). At present – January 23rd – 67P is 2.486 A.U. from the Sun (2 1/2 times farther from the Sun than Earth). While not a close approach to the Sun for a comet, the Solar radiation intensity will increase by 4 times between the present (January 2014) and perihelion in August.
Stresses due to temperature changes from diurnal variations, the changing Sun angle during perihelion approach, from loss of material, and finally from changes in the tidal forces on a daily basis (12.4043 hours) may lead to changes in the fissure causing it to possibly widen or increase in length. Rosetta will continue escorting the comet and delivering images of the whole surface that will give Rosetta scientists the observations and measurements to determine 67P/Churyumov–Gerasimenko’s condition now and its fate in the longer term.
Stay tuned for a forthcoming article from UT’s writer Bob King about numerous Rosetta mission scientific findings published this week in the journal Science.
I want to alert you to a rather unusual event occurring this evening.
Many of you already know about the triple shadow transit of Jupiter’s moons Io, Europa and Callisto. That’s scheduled for late tonight.
Earlier, around nightfall, the crescent moon will lie 1° or less to the south-southwest of comet 15P/Finlay. No doubt lunar glare will hamper the view some, but what a fun opportunity to use the moon to find a comet.
Finlay underwent a flare in brightness last week when it became easily visible in binoculars.
Though a crescent moon isn’t what you’d call a glare bomb, I can’t predict for certain whether you’ll still see the comet in binoculars tonight or need a small telescope instead. Most likely a scope. Finlay has faded some since its outburst and now glows around magnitude +8.5.
You can try with a 10×50 or larger glass, and if you don’t succeed, whip out your telescope; a 4.5-inch or larger instrument should handle the job.
Just point it at the moon at star-hop a little to the north-northeast using the map until you see a fuzzy spot with a brighter center. That’s your comet. The tail won’t be visible unless you’re using more firepower, something closer to 10-inches.
By the way, the father south you live, the closer the moon approaches Finlay. From the far southern U.S. they’ll be just 1/2° apart. Keep going south and parts of Central and South America will actually see the earth-lit edge of moon approach and then occult the comet from view!
UPDATE: Although light clouds marred the view I had difficulty finding the comet this evening in my 10-inch scope. It’s possible it’s further faded or my conditions weren’t optimal or both. No luck BTW in binoculars.
A particularly dramatic view of comet 67P/C-G due to the angle of solar illumination, this is a mosaic made from four images acquired by Rosetta’s NavCam on January 16, 2015, from a distance of 28.4 km (17.6 miles). The assembled image shows the larger “bottom” lobe of 67P, with a flat region called Imhotep along the left side and, on the lower right, the transition area stretching up to the comet’s smaller “head” lobe. Outgassing jets can be seen as faint streaks at the upper right, and ejected dust grains show up as bright specks above its surface.
Also in this view is one of 67P’s larger boulders, a somewhat pyramid-shaped rock dubbed “Cheops.” Can you spot it?
There it is!
One in a cluster of boulders on 67P’s “underside,” Cheops is about 45 meters wide and 25 meters high (148 x 82 feet).
When it was first observed in Rosetta images Cheops and the nearby cluster reminded scientists of the pyramids at Giza in Egypt, and so it was named for the largest of those pyramids, the Great Pyramid, a tomb for the pharaoh Cheops (the Hellenized name for Khufu) built around 2,550 BCE. (See another view of the Cheops cluster here.)
Scientists are still working to determine the nature of 67P’s boulders. It’s not yet known what they are made of or how they came to be where they are observed today. Did they fall into their current positions? Or were they exposed upwards from below as a result of the comet’s activity? And why do they have alternating rough and smooth areas on their surfaces?
“It almost looks as if loose dust covering the surface of the comet has settled in the boulder’s cracks. But, of course, it is much too early to be sure,” said OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany.
As comet 67P approaches perihelion over the course of the next six months we will get to see firsthand via Rosetta what sorts of changes occur to its surface features, including office-building-sized boulders like Cheops.
Also, for a quick look at some of 67P’s “vital stats” click here. (Added 1/22)