It seems a lot of the space stories of this year involve spacecraft making journeys: bouncing across a comet, or making their way to Mars. Private companies also figure prominently, both in terms of successes and prominent failures.
These are Universe Today’s picks for the top space stories of the year. Disagree? Think we forgot something? Let us know in the comments.
10. End of Venus Express
This month saw the end of Venus Express’ eight-year mission at the planet, which happened after the spacecraft made a daring plunge into part of the atmosphere to learn more about its properties. The spacecraft survived the aerobraking maneuvers, but ran out of fuel after a few engine burns to raise it higher. Soon it will plunge into the atmosphere for good. But it was a productive mission overall, with discoveries ranging from a slowing rotation to mysterious “glories”.
9. Continued discoveries by Curiosity and Opportunity
Methane? Organics? Water? Mars appears to have had these substances in abundance over its history. Continued work from the Curiosity rover — passing its second Earth year on Mars — found methane fluctuating in Gale Crater, and the first confirmed discovery of organics on the Martian surface. Opportunity is almost 11 years into its mission and battling memory problems, but the rover is still on the move (passing 41 kilometers) to an area that could be full of clay.
8. Siding Spring at Mars and the level of study of the comet by other missions at Mars
We had a rare opportunity to watch a comet make a grazing pass by Mars, not close enough to pose significant danger to spacecraft, but definitely close enough to affect its atmosphere! Siding Spring caught everyone’s attention throughout the year, and did not disappoint. The numerous spacecraft at the Red Planet caught glimpses, including from the surface and from orbit. It likely created a meteor shower and could alter the Martian atmosphere forever.
7. Kepler K2
The Kepler space telescope lost the second of its four pointing devices last year, requiring a major rethink for the veteran planet hunter. The solution was a new mission called K2 that uses the pressure of the Sun to maintain the spacecraft’s direction, although it has to flip every 83 days or so to a new location to avoid the star’s glare. It’s not as precise as before, but with the mission approved we now know for sure K2 can locate exoplanets. The first confirmed one is a super-Earth.
6. MAVEN at Mars
Where did the Martian atmosphere go? Why was it so thick in the past, allowing water to flow on the surface, and so thin right now? The prevailing theory is that the Sun’s pressure on the Martian atmosphere pushed lighter isotopes (such as that of hydrogen) away from the planet, leaving heavier isotopes behind. NASA is now investigating this in more detail with MAVEN (Mars Atmosphere and Volatile Evolution), which arrived at the planet this fall.
5. India’s MOM
India made history this year as only the third entity to successfully reach the Red Planet (after the United States and Europe). While updates from the Mars Orbiter Mission have been slow in recent weeks, we know for sure that it observed Siding Spring at Mars and it has been diligently taking pictures of the Red Planet, such as this one of the Solar System’s largest volcano and a huge canyon on Mars.
4. Accidents by Virgin and Orbital
In one sobering week in October, the dangers of space travel were again made clear after incidents affected Virgin Galactic and Orbital Sciences. Virgin lost a pilot and seriously injured another when something went seriously awry during a flight test. Investigators have so far determined that the re-entry system turned on prematurely, but more details are being determined. Orbital meanwhile suffered the catastrophic loss of one of its Antares rockets, perhaps due to Soviet-era-designed engines, but the company is looking at other ways to fulfill its NASA contractual obligations to send cargo to the International Space Station.
3. SpaceX rocket landing attempts
SpaceX is attempting a daunting technological feat, which is bringing back its rocket first stages for re-use. The company is hoping that this will cut down on the costs of launch in the long term, but this technological innovation will take some time. The Falcon 9 rocket stage that made it back to the ocean in July was deemed a success, although the force of the landing broke it apart. Next, SpaceX is trying to place its rocket on an ocean platform.
2. Orion flight
NASA’s spacecraft for deep space exploration (Orion) successfully finished its first major uncrewed test this month, when it rode into orbit, made a high-speed re-entry and successfully splashed down in the ocean. But it’s going to be a while before Orion flies again, likely in 2017 or even 2018. NASA hopes to put a crew on this spacecraft type in the 2020s, potentially for trips to the Moon, an asteroid or (more distantly) Mars.
1. Rosetta
It’s been an exciting year for the Rosetta mission. First it woke up from a lengthy hibernation, then it discovered that Comet 67P/Churyumov-Gerasimenko looks a bit like a rubber duckie, and then it got up close and released the Philae lander. The soft touchdown did not go as planned, to say the least, as the spacecraft bounced for two hours and then came to rest in a spot without a lot of sunlight. While Philae hibernates and controllers hope it wakes up again in a few months, however, science results are already showing intriguing things. For example, water delivered to Earth likely came mostly from other sources than comets.
Now in its seventh year of compilation and the second year running on Universe Today, we’re proud to feature our list of astronomical happenings for the coming year. Print it, bookmark it, hang it on your fridge or observatory wall. Not only is this the yearly article that we jokingly refer to as the “blog post it takes us six months to write,” but we like to think of it as unique, a mix of the mandatory, the predictable and the bizarre. It’s not a 10 ten listicle, and not a full-fledged almanac, but something in between.
A rundown of astronomy for 2015: There’s lots of astronomical action to look forward to in the coming year. 2015 features the minimum number of eclipses that can occur, two lunars and two solars. The Moon also reaches its minimum standstill this coming year, as its orbit runs shallow relative to the celestial equator. The Moon will also occult all naked eye planets except Saturn in 2015, and will occult the bright star Aldebaran 13 times — once during every lunation in 2015. And speaking of Saturn, the rings of the distant planet are tilted an average of 24 degrees and opening to our line of sight in 2015 as they head towards their widest in 2018.
Finally, solar activity is trending downwards in 2015 after passing the sputtering 2014 maximum for solar cycle #24 as we now head towards a solar minimum around 2020.
Our best bets: Don’t miss these fine celestial spectacles coming to a sky near YOU next year:
– The two final total lunar eclipses in the ongoing tetrad, one on April 4th and September 28th.
– The only total solar eclipse of 2015 on March 20th, crossing the high Arctic.
– A fine dusk pairing of the bright planets Jupiter and Venus on July 1st.
– Possible wildcard outbursts from the Alpha Monocerotid and Taurid meteors, and a favorable New Moon near the peak of the August Perseids.
– Possible naked eye appearances by comet Q2 Lovejoy opening 2015 and comet US10 Catalina later in the year.
– The occultation of a naked eye star for Miami by an asteroid on September 3rd.
– A series of fine occultations by the Moon of bright star Aldebaran worldwide.
The rules: The comprehensive list that follows has been lovingly distilled down to the top 101 astronomical events for 2015 worldwide. Some, such as lunar eclipses, are visible to a wide swath of humanity, while others, such as many of the asteroid occultations or the sole total solar eclipse of 2015 happen over remote locales. We whittled the list down to a “Top 101” using the following criterion:
Meteor showers: Must have a predicted ZHR greater than 10.
Conjunctions: Must be closer than one degree.
Asteroid occultations: Must have a probability ranking better than 90 and occult a star brighter than magnitude +8.
Comets: Must reach a predicted brightness greater than magnitude +10. But remember: comets don’t always read prognostications such as this, and may over or under perform at whim… and the next big one could come by at any time!
Times quoted are geocentric unless otherwise noted, and are quoted in Universal Time in a 24- hour clock format.
These events are meant to merely whet the appetite. Expect ‘em to be expounded on fully by Universe Today as they approach. We linked to the events listed where possible, and provided a handy list of resources that we routinely consult at the end of the article.
Got it? Good… then without further fanfare, here’s the top 101 astronomical events for 2015 in chronological order:
21- Io and Ganymede both cast shadows on Jupiter from 00:04 to 00:33 UT.
21- Callisto and Europa both cast shadows on Jupiter from 13:26 to 13:59 UT.
23- Saturn reaches opposition at ~1:00 UT.
24- Asteroid 1669 Dagmar occults the +1st magnitude star Regulus at ~16:47 UT for the Arabian peninsula,
the brightest star occulted by an asteroid for 2015.
28- Ganymede and Io both cast shadows on Jupiter from 02:01 to 04:18 UT.
30- Comet 19P/Borrelly may reach binocular visibility.
June
01- The International Space Station reaches full illumination as the June solstice nears, resulting in multiple nightly passes favoring northern hemisphere observers.
04- Io and Ganymede both cast shadows on Jupiter from 4:54 to 6:13 UT.
05- Venus reaches greatest eastern (dusk) elongation for 2015, 45 degrees from the Sun at 16:00 UT.
10- Asteroid 424 Gratia occults a +6.1 magnitude star at ~15:10 UT for northwestern Australia.
13- The Perseid meteors peak from 06:30 to 09:00 UT, with a maximum predicted ZHR of 100 favoring North America.
19- Mars crosses the Beehive Cluster M44.
28- Asteroid 16 Psyche occults a +6.4 magnitude star at ~9:49 UT for Bolivia and Peru.
29- Supermoon 1 of 3 for 2015: The Moon reaches Full at 18:38 UT, 20 hours from perigee.
September
01- Neptune reaches opposition at ~3:00 UT.
03- Asteroid 112 Iphigenia occults a +3rd magnitude star for Mexico and Miami at ~9:20 UT. This is the brightest star occulted by an asteroid in 2015 for North America.
02- Geostationary satellite and SDO eclipse season begins as we approach the September equinox.
04- Mercury reaches its greatest elongation for 2015, at 27 degrees east of the Sun at 8:00 UT in the dusk skies.
05- The Moon occults Aldebaran for northeastern North America at ~5:38 UT.
13- “Shallow point” (also known as the minor lunar standstill) occurs over the next lunation, as the Moon’s orbit reaches a shallow minimum of 18.1 degrees inclination with respect to the celestial equator… the path of the Moon now begins to widen towards 2025.
13- A partial solar eclipse occurs, centered on 6:55 UT crossing Africa and the Indian Ocean.
01- The International Space Station reaches full illumination as the December solstice nears, resulting in multiple nightly passes favoring the southern hemisphere.
04- Mercury occults the +3.3 magnitude star Theta Ophiuchi for South Africa at 16:16 UT prior to dusk.
06- The Moon occults Mars for central Africa at ~2:42 UT.
07- The Moon occults Venus in the daytime for North America at ~16:55 UT.
14- The Geminid meteor shower peaks at 18:00 UT, with a ZHR=120 favoring NE Asia.
Keeping warm? Yesterday marked the start of astronomical winter for the northern hemisphere, meaning long nights and (hopefully) clear, cold skies. But we’ve also got another reason to brave the cold this week, as Comet C/2014 Q2 Lovejoy is set to put on a show for northern hemisphere observers.
Already, Comet Q2 Lovejoy has been providing southern hemisphere observers with a fine celestial showing. Discovered by Australian comet hunter extraordinaire Terry Lovejoy on August 17th of this year as it glided across the constellation Puppis, Q2 Lovejoy has been brightening through early December ahead of expectations. We’ve already been getting some great images from Universe Today readers down south, and we can expect more in the weeks to come. This is Mr. Lovejoy’s fifth comet discovery, and many will remember how comet C/2011 W3 Lovejoy also survived a perilous perihelion passage just 140,000 kilometres from the surface of the Sun during the 2011 holiday season and went on to produce a brilliant display.
Currently shining at magnitude +5.5, Q2 Lovejoy is a fine target for binoculars or a small telescope as it crosses the southern constellation of Columba into Lepus just after Christmas Day. Sirius currently makes a good guidepost, as the comet sits about 19 degrees southeast of the brightest star in the sky. And speaking of Sirius, don’t forget to try your hand at spotting its white dwarf companion in 2015!
Q2 Lovejoy also has a high orbital inclination of 80.3 degrees relative to the ecliptic, which is good news, as it will be plunging rapidly northward as it makes its closest passage by Earth on January 7th at 70.2 million kilometres or 0.47 A.U.s distant. Note that not only will the comet pass extremely close to the globular cluster M79 (photo op!) on the night of December 29th, but will also pass within 10 degrees of the Pleiades in January before threading its way northward between the famous Double Cluster in Perseus and the Andromeda Galaxy.
Clouded out? You can catch Comet Q2 Lovejoy courtesy of Gianluca Masi and our good friends over at the Virtual Telescope Project live on January 6th and January 11th at 19:00 Universal Time/2:00 PM EST on both dates:
Expect Q2 Lovejoy to ride highest to the south around local midnight starting on January 1st, and transit the local meridian at 8-9 PM local by mid-month. Keen eyed observers have already managed to spy Q2 Lovejoy unaided from a dark sky site, and we expect this to be the general case for most observers by New Year’s Day. As of this writing, Q2 Lovejoy displays a fine coma 10’ wide with a 7 degree long, fan-shaped tail.
Here’s our handy blow-by-blow for Comet Q2 Lovejoy in the coming weeks:
December
28- Crosses into the constellation Lepus.
29- Passes less than 10’ — a third of the diameter of the Full Moon — from the 7.7 magnitude globular cluster NGC 1904 (Messier 79).
January
1- May break naked eye visibility at magnitude +6.
2- Passes into the constellation Eridanus and reaches opposition at 0.49 A.U.s from the Earth.
5- The Moon reaches Full, hampering observations.
7- May reach a peak brightness at +4th magnitude.
7- Passes closest to Earth 0.47 AU, moving at an apparent speed of almost 3 degrees a day.
9- Crosses the celestial equator into the constellation Taurus.
17- Crosses the ecliptic plane and into the constellation Aries.
20- Moon reaches New phase, marking a favorable span for observation.
22- Passes within one degree of the 3.6 magnitude star 41 Arietis.
25- Crosses into the constellation Triangulum.
30- Reaches perihelion at 1.29 A.U.
30- Crosses into the constellation Andromeda.
February
3- The Moon reaches Full phase, hampering observations.
4- Passes less than one degree from the 2.1 magnitude star Gamma Andromedae (Almach).
18- The Moon reaches New, marking a favorable span of time for observations.
20- Passes less than a degree from the +4th magnitude star Phi Persei and into the constellation Perseus.
March
1- May drop below naked eye visibility.
2- Crosses into the constellation Cassiopeia.
5- The Moon reaches Full phase, hampering observations.
11- Passes less than one degree from the +5 magnitude Owl Cluster.
16- Passes less than one degree from the 2.6 magnitude star Delta Cassiopeiae (Ruchbah).
20- The Moon reaches New, marking a favorable time for observation.
24- Crosses the galactic equator.
April
1- May drop below binocular visibility.
From there, Comet Q2 Lovejoy drops back below +10th magnitude and passes just a degree from the north celestial pole in late May as it heads back out of the inner solar system. Q2 Lovejoy was on a 13,500 year orbit inbound, and its passage through the inner solar system shortened its orbit by about 5,000 years. Just think, about 13 millennia ago, Mesolithic man was busy domesticating early farm animals. Did they, by chance, look up and catch sight of Comet Q2 Lovejoy? And who will be here to ponder its return passage eight millennia hence?
Comet hunting is fun and easy… we prefer to sweep the target area with our trusty Canon 15×45 image stabilized binoculars, though a common pair of 7x 50’s — often favored by hunters and bird watchers — will do just fine. The passage by +7.7 magnitude globular cluster M79 this week will provide a fine contrast in “fuzz balls…” Remember, in comets as in nebulae, the quoted magnitude is often dispersed over a broad surface area, making the objects fainter than a pinpoint star of the same brightness.
And Comet Q2 Lovejoy is the first of several binocular comets to look forward to in 2015. Right now, we’ve got our money on comets C/2014 Q1 PanSTARRS, 19P/Borrelly, C/2013 US10 Catalina, and C/2013 X1 PanSTARRS as possible contenders in 2015. And don’t miss +9th magnitude Comet 15P/Finlay, currently in outburst and playing tag with the planet Mars low in the dusk sky.
Watch this space (bad pun intended) this coming Friday for the low down on all things astronomical in 2015!
-Got pics of Comet Q2 Lovejoy? Send ’em in to Universe Today.
Remember how breathless we felt when the Philae lander actually made it to the surface of its target comet a few weeks ago? Sure, the maneuvers didn’t go as planned, but the images the spacecraft obtained in its brief spurts of activity on the surface are still being shared and discussed eagerly by scientists (amid a controversial image release policy, to be sure.)
Well, the truck delivery for Philae — the Rosetta spacecraft, still doing maneuvers above — is going to do something special in February. The machine is going to scoot down real close to the comet, just before heating from the Sun could make it dangerous to do so due to gas and dust emissions.
The plan is to bring Rosetta to an astounding four miles (six kilometers) above Comet 67P/Churyumov–Gerasimenko, so close that the images sent back to Earth will have a resolution of just a few inches per pixel. Scientists hope to learn more about how reflective the comet is and also to better understand how gas is emitted as 67P draws close to the Sun.
“As the comet becomes more and more active, it will not be possible to get so close to the comet. So this opportunity is very unique,” stated Matt Taylor, the Rosetta project scientist from the European Space Research and Technology Center, in a NASA press release.
Rosetta’s closest view of the comet previous to this was a six-mile (10 kilometer) mapping orbit that it did for a short time before moving to release the Philae lander. After that, its orbit was expected to range between 20 km and 50 km (12.4 miles and 18.6 miles) through the end of this month.
Philae, meanwhile, made it down to the surface and did manage to send pictures back during its approximately 60 hours of activity, before shutting down due to a lack of sunlight hitting its solar panels. Philae is now wedged in a shady spot on the comet, but it’s possible more sunlight could fall in that area when the comet nears its closest approach to the Sun in 2015, between the orbits of Earth and Mars.
The European Space Agency is saying that about 20% of the mission’s science is expected to flow from Philae (at most), and 80% from Rosetta. Early results from both spacecraft present some intriguing properties about the comet. Based on the ratio of isotopes (types) of hydrogen on the comet, it’s more likely that it was asteroids that delivered water to Earth. Also, Philae was unable to dig very far into the surface, implying that underneath the dust must be something like a thick layer of ice.
A recent Rosetta blog post on the European Space Agency says that the team expects to take a break for the holidays from posting — unless, of course, they manage to track down the Philae lander in pictures. The location of the spacecraft is still unknown, but it’s believed that Rosetta’s high-resolution camera may be able to catch the lander or its glint — coupled with clues Philae’s experiments gave to its location.
Short-period comet 15P/Finlay, which had been plunking along at a dim magnitude +11, has suddenly brightened in the past couple days to +8.7, bright enough to see in 10×50 or larger binoculars. Czech comet observer Jakub Cerny and his team photographed the comet on December 16th and discovered the sudden surge. Wonderful news!
While comets generally brighten as they approach the Sun and fade as they depart, any one of them can undergo a sudden outburst in brightness. You can find Finlay right now low in the southwestern sky at nightfall near the planet Mars. While outbursts are common, astronomers still aren’t certain what causes them. It’s thought that sub-surface ices, warmed by the comet’s approach to the Sun, expand until the pressure becomes so great they shatter the ice above, sending large fragments flying and exposing fresh new ice. Sunlight gets to work vaporizing both the newly exposed vents and aerial shrapnel. Large quantities of dust trapped in the ice are released and glow brightly in the Sun’s light, causing the comet to quickly brighten.
Some comets flare up dramatically. Take 29P/Schwassmann-Wachmann. Normally a dim bulb at 17th magnitude, once or twice a year it flares to magnitude 12 and occasionally 10!
Whatever the reason, outbursts can last from days to weeks. It’s anybody’s guess how long 15P/Finlay will remain a relatively easy target for comet hungry skywatchers. While not high in the sky, especially from the northern U.S., it can be seen during early evening hours if you plan well.
Comet Finlay was discovered by William Henry Finlay from South Africa on September 26, 1886. It reaches perihelion or closest approach to the Sun on December 27th and was expected to brighten to magnitude +10 when nearest Earth in mid-January at 130 million miles (209 million km). Various encounters with Jupiter since discovery have increased its original period of 4.3 years to the current 6.5 years and shrunk its perihelion distance from 101 million to 90 million miles.
Looking at the map above it’s amazing how closely the comet’s path parallels that of Mars this month. Unlike Comet Siding Spring’s encounter with that planet last October, Finlay’s proximity is line of sight only. Still, it’s nice to have a fairly bright planet nearby to point the way to our target. Mars and Finlay’s paths intersect on December 23rd, when the duo will be in close conjunction only about 10? apart (1/3 the diameter of the Full Moon) for observers in the Americas. They’ll continue to remain almost as close on Christmas Eve. Along with Comet Q2 Lovejoy, this holiday season is turning out to be a joyous occasion for celestial fuzzballs!
In scientific style, researchers are slowly narrowing down where the Philae lander arrived on Comet 67P/Churyumov-Gerasimenko. Earlier today (Dec. 17) at the American Geophysical Union meeting, more pictures from the European spacecraft were released showing its landing site and also what the terrain looked like underneath Philae as it bounced to its destination. The pictures were also placed on NASA’s website.
The lander is sleeping in a shady spot on the comet’s surface after the dramatic touchdown — actually, three touchdowns — on Nov. 12, when it flew for more than two hours across the surface and bounced as high as two miles (3.2 kilometers). This was partly because harpoons expected to secure it to the surface failed to deploy, and also because the comet crust was icier than expected, according to Gizmodo.
You can see in the diagram above Philae’s predicament; it’s wedged in a spot that doesn’t get a lot of sunlight, at least for now. That could change as 67P draws closer to the Sun in the late winter or early spring, but nobody yet knows for sure. And yes, the search for the landing site still continues in earnest, but the challenge now is the orbiting Rosetta spacecraft only has so much bandwidth to send back images, according to Wired. As more high-resolution OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) pictures arrive, scientists hope to figure out where it went.
Two pictures from Philae highlighted in today’s release are below. Will the lander take more? Scientists certainly hope so, but even if that doesn’t happen, the lander was only expected to return 20% of the science results in any case. Rosetta is still active and will stick with the comet through mid-2015, when 67P gets closest to the Sun.
Astronomy is all about thinking big, both in time and space.
The Earth turns on its axis, the Moon passes through its phases, and the planets come into opposition and solar conjunction on a routine basis.
Of course, on the other end of the spectrum, there are some events which traverse such colossal spans of time that the mere mortal life span of measly homo sapiens such as ourselves can never expect to cover them. Many comets have periods measured in centuries, or thousands of years. The axis of the Earth wobbles like a top, completing one turn every 26,000 years in what’s known as the Precession of the Equinoxes. Our solar system completes one revolution about the galactic center every quarter billion years…
Feeling puny yet? Sure, astronomy is also about humility. But among these stupendous cycles, there are some astronomical events that you just might be able to live through. One such instance is the orbits of double stars. And as 2015 approaches, we challenge you to see of the most famous white dwarf of them all, as it reaches a favorable viewing position over the next few years: Sirius B.
Sirius itself is easy to find, as it’s the brightest star in Earth’s sky shining at magnitude -1.42. In fact, you can spot Sirius in the daytime sky if you know exactly where to look.
But it is one of the ultimate in cosmic ironies that the most conspicuous of stars in our sky also hosts such an elusive companion. The discovery of Sirius B awaited the invention of optics capable of resolving it next to its dazzling host. Alvan Clark Jr. and Sr. first spied the enigmatic companion on January 31st, 1862 while testing their newly constructed 18.5 inch refractor, which was the largest at the time. The discovery was soon verified from the Harvard College Observatory, adding Sirius A and B to the growing list of multiple stars.
And what a strange companion it turned out to be. Today, we know that Sirius B is a white dwarf, the cooling dense ember of a main sequence star at the end of its life. We call the matter in such a star degenerate, not as a commentary on its moral stature, but the state the electrons and the closely packed nuclei within under extreme pressure. Our Sun will share the same ultimate fate as Sirius B, about six billion years from now.
The challenge, should you choose to accept it, is to spot Sirius B in the glare of its host. The contrast in brightness between the pair is daunting: shining at magnitude +11, the B companion is more than 63,000 times fainter than -1.46 magnitude Sirius A.
A feat of visual athletics, indeed. Still, Sirius B breaks 10” in separation from its primary in 2015, as it heads towards apastron — its most distant point from its primary, at just over 11” in separation — in 2019. Sirius B varies from 8.2 and 31.5 AUs from its primary. Sirius B is on a 50.1 year orbit, meaning the time to cross this one off of your life list is over the upcoming decade. Perhaps making an animation showing the motion of Sirius B from 2015-2025 would present a supreme challenge as well.
Sirius culminates at local midnight right around New Year’s Eve, shining at its highest to the south as the “ball drops” ushering in 2015. Of course, this is only a fortuitous circumstance that is possible in our current epoch, and precession and the proper motions of both Sirius and Sol will make this less so millennia hence.
Newsflash: there’s a very special visual treat in the offing next week, as comet C/2014 Q2 Lovejoy is currently hovering around +6th magnitude and passes 19 degrees south of Sirius on Christmas Day… more to come!
Magnification and good seeing are your friends in the hunt for Sirius B. Two factors describe the position of a secondary star in a binary pair: its position angle in degrees, and separation in arc seconds. When it comes to stars that are a tough split, I find its better to estimate the position angle first before looking it up. A close match can often confirm the observation. Does a friend see the same thing at the eyepiece? A good star to “warm up” on is the +6.8 magnitude companion to Rigel in the foot of Orion, with a separation of 9”.
Nudging Sirius just out of view might allow the B companion to become apparent. Another nifty star-spliting tool is what’s known as an occulting bar eyepiece. Making an occultation bar eyepiece is easy: we’ve used everything from a small strip of foil to a piece of guitar string (heavy E gauge works nicely) for the central bar. An occulting bar eyepiece is also handy for hunting down the moons of Mars near opposition.
Sirius B also works its way into cultural myths and lore, not the least of which are the curious tales of the Dogon people of Mali. At the outset, it seems that these ancient people have knowledge of a small dense hidden companion star to Sirius, knowledge that requires modern technology to reproduce. Carl Sagan noted, however, that cultural contamination may have resulted in the late 19th century discovery of Sirius B making its way into the Dogon pantheon. The science of anthropology is rife with anecdotes that have been carefully fed to credulous anthropologists only to be reported later as fact, all in the name of a good story.
All amazing things to ponder as you begin your 2015 quest for Sirius B, a bashful but fascinating star.
Images from space don’t get more dramatic than this. Image processing wizard Stuart Atkinson zoomed in on one of the most intriguing views yet of Comet 67P/Churyumov-Gerasimenko, highlighting the contrasts of dark and light, smooth and rugged, soft contours and frighteningly vertical cliffs.
The orginal image, below, is a four-image mosaic made from images snapped by Rosetta’s navigation camera, taken from a distance of 20.1 km from the center of Comet 67P/Churyumov-Gerasimenko on 10 December. The image resolution is 1.71 m/pixel and the individual 1024 x 1024 frames measure 1.75 km across. The mosaic is slightly cropped and measures 2.9 x 2.6 km.
Where did all of our water come from? What might seem like a simple question has challenged and intrigued planetary scientists for decades. So results just released by Rosetta mission scientists have been much anticipated and the observations of the Rosetta spacecraft instruments are telling us to look elsewhere. The water of comet 67P/Churyumov-Gerasimenko does not resemble Earth’s water.
Because the Earth was extremely hot early in its formation, scientists believe that Earth’s original water should have boiled away like that from a boiling kettle. Prevailing theories have considered two sources for a later delivery of water to the surface of the Earth once conditions had cooled. One is comets and the other is asteroids. Surely some water arrived from both sources, but the question has been which one is the predominant source.
There are two areas of our Solar System in which comets formed about 4.6 billion years ago. One is the Oort cloud far beyond Pluto. Everything points to Comet 67P’s origins being the other birthplace of comets – the Kuiper Belt in the region of Neptune and Pluto. The Rosetta results are ruling out Kuiper Belt comets as a source of Earth’s water. Previous observations of Oort cloud comets, such as Hyakutake and Hale-Bopp, have shown that they also do not have Earth-like water. So planetary scientists must reconsider their models with weight being given to the other possible source – asteroids.
The question of the source of Earth’s water has been tackled by Earth-based instruments and several probes which rendezvous with comets. In 1986, the first flyby of a comet – Comet 1P/Halley, an Oort cloud comet – revealed that its water was not like the water on Earth. How the water from these comets –Halley’s and now 67P – differs from Earth’s is in the ratio of the two types of hydrogen atoms that make up the water molecule.
Measurements by spectrometers revealed how much Deuterium – a heavier form of the Hydrogen atom – existed in relation to the most common type of Hydrogen in these comets. This ratio, designated as D/H, is about 1 in 6000 in Earth’s ocean water. For the vast majority of comets, remote or in-situ measurements have found a ratio that is higher which does not support the assertion that comets delivered water to the early Earth surface, at least not much of it.
Most recently, Hershel space telescope observations of comet Hartley 2 (103P/Hartley) caused a stir in the debate of the source of Earth’s water. The spectral measurements of the comet’s light revealed a D/H ratio just like Earth’s water. But now the Hershel observation has become more of an exception because of Rosetta’s latest measurements.
The new measurements of 67P were made by the ROSINA Double Focusing Mass Spectrometer (DFMS) on board Rosetta. Unlike remote observations using light which are less accurate, Rosetta was able to accurately measure the quantities of Deuterium and common Hydrogen surrounding the comet. Scientists could then simply determine a ratio. The results are reported in the paper “67P/Churyumov-Gerasimenko, a Jupiter Family Comet with a high D/H ratio” by K. Altwegg, et al., published in the 10 December 2014 issue of Science.
The ROSINA instrument observations determined a ratio of 5.3 ± 0.7 × 10-4, which is approximately 3 times the ratio of D/H for Earth’s water. These results do not exclude comets as a source of terrestrial water but they do redirect scientists to consider asteroids as the predominant source. While asteroids have much lower water content compared with comets, asteroids, and their smaller versions, meteoroids, are more numerous than comets. Every meteor/falling star that we see burning up in our atmosphere delivers a myriad of compounds, including water, to Earth. Early on, the onslaught of meteoroids and asteroids impacting Earth was far greater. Consequently, the small quantities of water added delivered by each could add up to what now lies in the oceans, lakes, streams, and even our bodies.
UPDATE: Tune in this Sunday as the good folks over at the Virtual Telescope Project feature a live webcast covering the Geminid meteor shower this Sunday on December 14th at 2:00 UT.
This weekend presents a good reason to brave the cold, as the Geminid meteor shower peaks on the morning of Sunday, December 14th. The Geminids are dependable, with a broad peak spanning several days, and would be as well known as their summer cousins the Perseids, were it not for the fact that they transpire in the dead of northern hemisphere winter.
But do not despair. While some meteor showers are so ephemeral as to be considered all but mythical in the minds of most meteor shower observers, the Geminids always deliver. We most recently caught a memorable display of the Geminids in 2012 from a dark sky locale in western North Carolina. Several meteors per minute pierced the Appalachian night, offering up one of the most memorable displays by this or any meteor shower in recent years.
The Geminids are worth courting frostbite for, that’s for sure. But there’s a curious history behind this shower and our understanding of meteor showers in general, one that demonstrates the refusal of some bodies in our solar system to “act right” and fit into neat scientific paradigms.
It wasn’t all that long ago that meteor showers — let alone meteorites — were not considered to be astronomical in origin at all. Indeed, the term meteor and meteorology have the same Greek root meaning “of the sky,” suggesting ideas of an atmospheric origin. Lightning, hail, meteors, you can kind of see how they got there.
In fact, you could actually face ridicule for suggesting that meteors had an extraterrestrial source back in the day. President Thomas Jefferson was said to have done just that concerning an opinion espoused by Benjamin Silliman of a December 14th, 1807, meteorite fall in Connecticut, leading to the apocryphal and politically-tinged response attributed to the president that, “I would more easily believe that two Yankee professors would lie, than that stones would fall from heaven.”
Indeed, no sooner than The French Academy of Sciences considered the matter settled earlier in the same decade, then a famous meteorite fall occurred in Normandy on April 26th, 1803,… right on their doorstep. The universe, it seemed, was thumbing its nose at scientific enlightenment.
Things really heated up with the spectacular display known as the Leonid meteor storm in 1833. On that November morning, stars seemed to fall like snowflakes from the sky. You can imagine the sight, as the Earth plowed headlong into the meteor stream. The visual effect of such a storm looks like the starship Enterprise plunging ahead at warp speed with stars streaming by, as if imploring humanity to get hip to the fact that meteor showers and their radiants are indeed a reality.
Still, a key problem persisted that gave ammunition to the naysayers: no new “space rocks” were found littering the ground at sunrise after a meteor shower. We now know that this is because meteor showers hail from wispy cometary debris left along intersections of the Earth’s orbit. Meteorite Man Geoff Notkin once mentioned to us that no meteorite fall has ever been linked to a meteor shower, though he does get lots of calls around Geminid season.
The name of the game in the 19th century soon became identifying new meteor showers. Streams evolve over time as they interact with planets (mostly Jupiter), and the 19th century played host to some epic meteor storms such as the Andromedids that have since been reduced to a trickle.
The Geminids are, however, the black sheep of the periodic meteor shower family. The shower was first noticed by US and UK observers in 1862, and by the 1870s astronomers realized that a new minor shower with a Zenithal Hourly Rate (ZHR) hovering around 15 was occurring near the middle of December from the constellation Gemini.
The source of the Geminids, however, was to remain a mystery right up until the late 20th century.
In the late 1940s, astronomer Fred Whipple completed the Harvard Meteor Project, which utilized a photographic survey that piqued the interest of astronomers worldwide: debris in the Geminid stream appeared to have an orbital period of just 1.65 years, coupled with a high orbital inclination. Modeling suggested that the parent body was most likely a short period comet, and that the stream had undergone repeated perturbations courtesy of Earth and Jupiter.
In 1983, the culprit was found, only to result in a deeper mystery. The Infrared Astronomical Satellite (IRAS) discovered an asteroid fitting the bill crossing the constellation Draco. Backup observations from the Palomar observatory the next evening cinched the discovery, and today, we recognize the source of the Geminids as not a comet — as is the case with every other major meteor shower — but asteroid 3200 Phaethon, a 5 kilometre diameter rock in a 524 day orbit.
So why doesn’t this asteroid behave like one? Is 3200 Phaethon a rogue comet that has long since settled down for the quiet space rock life? Obviously, 3200 Phaethon has lots of material shedding off from its surface, as evidenced by the higher than normal ratio of fireballs seen during the Geminid meteors. 3200 Phaethon also passes 0.14 AUs from the Sun — 47% closer than Mercury — and has the closest perihelion of any known asteroid to the Sun, which bakes the asteroid periodically with every close pass.
One thing is for certain: activity linked to the Geminid meteor stream is increasing. The Geminids actually surpassed the Perseids in terms of dependability and output since the 1960s, and have produced an annual peak ZHR of well over 100 in recent years. In 2014, expect a ZHR approaching 130 per hour as seen from a good dark sky site just after midnight local on the morning of December 14th as the radiant rides high in the sky. Remember, this shower has a broad peak, and it’s worth starting your vigil on Saturday or even Friday morning. The Geminid radiant also has a steep enough declination that local activity can start before midnight… also exceptional among meteor showers. This year, the 52% illuminated Moon rises around midnight local on the morning of December 14th.
And there’s another reason to keep an eye on the 2014 Geminids. 3200 Phaethon passed 0.12 AU (18 million kilometers) from Earth on December 10th, 2007, which boosted displays in the years after. And just three years from now, the asteroid will pass even closer on December 10th, 2017, at just 0.07 AUs (10.3 million kilometers) from Earth…
Are we due for some enhanced activity from the Geminids in the coming years?
All good reasons to bundle up and watch for the “Tears of the Twins” this coming weekend, and wonder at the bizzaro nature of the shower’s progenitor.