The Curious History of the Geminid Meteors

Credit

UPDATE: Tune in this Sunday as the good folks over at the Virtual Telescope Project feature a live webcast covering the Geminid meteor shower this Sunday on December 14th at 2:00 UT.

This weekend presents a good reason to brave the cold, as the Geminid meteor shower peaks on the morning of Sunday, December 14th. The Geminids are dependable, with a broad peak spanning several days, and would be as well known as their summer cousins the Perseids, were it not for the fact that they transpire in the dead of northern hemisphere winter.

But do not despair. While some meteor showers are so ephemeral as to be considered all but mythical in the minds of most meteor shower observers, the Geminids always deliver. We most recently caught a memorable display of the Geminids in 2012 from a dark sky locale in western North Carolina. Several meteors per minute pierced the Appalachian night, offering up one of the most memorable displays by this or any meteor shower in recent years.

The Geminids are worth courting frostbite for, that’s for sure. But there’s a curious history behind this shower and our understanding of meteor showers in general, one that demonstrates the refusal of some bodies in our solar system to “act right” and fit into neat scientific paradigms.

UK Meteor Observation Network
A composite of the 2013 Geminids. Credit: the UK Meteor Observation Network

It wasn’t all that long ago that meteor showers — let alone meteorites — were not considered to be astronomical in origin at all. Indeed, the term meteor and meteorology have the same Greek root meaning “of the sky,” suggesting ideas of an atmospheric origin. Lightning, hail, meteors, you can kind of see how they got there.

In fact, you could actually face ridicule for suggesting that meteors had an extraterrestrial source back in the day. President Thomas Jefferson was said to have done just that concerning an opinion espoused by Benjamin Silliman of a December 14th, 1807, meteorite fall in Connecticut, leading to the apocryphal and politically-tinged response attributed to the president that, “I would more easily believe that two Yankee professors would lie, than that stones would fall from heaven.”

Indeed, no sooner than The French Academy of Sciences considered the matter settled earlier in the same decade, then a famous meteorite fall occurred in Normandy on April 26th, 1803,… right on their doorstep. The universe, it seemed, was thumbing its nose at scientific enlightenment.

A fine Geminid
A fine 2004 Geminid as imaged by Frankie Lucena.

Things really heated up with the spectacular display known as the Leonid meteor storm in 1833. On that November morning, stars seemed to fall like snowflakes from the sky. You can imagine the sight, as the Earth plowed headlong into the meteor stream. The visual effect of such a storm looks like the starship Enterprise plunging ahead at warp speed with stars streaming by, as if imploring humanity to get hip to the fact that meteor showers and their radiants are indeed a reality.

Still, a key problem persisted that gave ammunition to the naysayers: no new “space rocks” were found littering the ground at sunrise after a meteor shower. We now know that this is because meteor showers hail from wispy cometary debris left along intersections of the Earth’s orbit.  Meteorite Man Geoff Notkin once mentioned to us that no meteorite fall has ever been linked to a meteor shower, though he does get lots of calls around Geminid season.

The name of the game in the 19th century soon became identifying new meteor showers. Streams evolve over time as they interact with planets (mostly Jupiter), and the 19th century played host to some epic meteor storms such as the Andromedids that have since been reduced to a trickle.

The Geminids are, however, the black sheep of the periodic meteor shower family. The shower was first noticed by US and UK observers in 1862, and by the 1870s astronomers realized that a new minor shower with a Zenithal Hourly Rate (ZHR) hovering around 15 was occurring near the middle of December from the constellation Gemini.

NASA
A possible early 2014 Geminid and the near Full Moon as seen by NASA’s All Sky Fireball Network.

The source of the Geminids, however, was to remain a mystery right up until the late 20th century.

In the late 1940s, astronomer Fred Whipple completed the Harvard Meteor Project, which utilized a photographic survey that piqued the interest of astronomers worldwide: debris in the Geminid stream appeared to have an orbital period of just 1.65 years, coupled with a high orbital inclination. Modeling suggested that the parent body was most likely a short period comet, and that the stream had undergone repeated perturbations courtesy of Earth and Jupiter.

In 1983, the culprit was found, only to result in a deeper mystery. The Infrared Astronomical Satellite (IRAS) discovered an asteroid fitting the bill crossing the constellation Draco. Backup observations from the Palomar observatory the next evening cinched the discovery, and today, we recognize the source of the Geminids as not a comet — as is the case with every other major meteor shower — but asteroid 3200 Phaethon, a 5 kilometre diameter rock in a 524 day orbit.

3200 Phaethon
Asteroid 3200 Phaethon (arrowed) imaged by Marco Langbroek from the Winer Observatory in Sonita, Arizona. Credit: Wikimedia Commons.

So why doesn’t this asteroid behave like one? Is 3200 Phaethon a rogue comet that has long since settled down for the quiet space rock life? Obviously, 3200 Phaethon has lots of material shedding off from its surface, as evidenced by the higher than normal ratio of fireballs seen during the Geminid meteors. 3200 Phaethon also passes 0.14 AUs from the Sun — 47% closer than Mercury — and has the closest perihelion of any known asteroid to the Sun, which bakes the asteroid periodically with every close pass.

One thing is for certain: activity linked to the Geminid meteor stream is increasing. The Geminids actually surpassed the Perseids in terms of dependability and output since the 1960s, and have produced an annual peak ZHR of well over 100 in recent years. In 2014, expect a ZHR approaching 130 per hour as seen from a good dark sky site just after midnight local on the morning of December 14th as the radiant rides high in the sky. Remember, this shower has a broad peak, and it’s worth starting your vigil on Saturday or even Friday morning. The Geminid radiant also has a steep enough declination that local activity can start before midnight… also exceptional among meteor showers. This year, the 52% illuminated Moon rises around midnight local on the morning of December 14th.

Credit: Stellarium
The Geminid radiant looking to the northeast at 11PM local. Note the radiant of the December 22nd Ursids is also nearby. Credit: Stellarium.

And there’s another reason to keep an eye on the 2014 Geminids. 3200 Phaethon passed 0.12 AU (18 million kilometers) from Earth on December 10th, 2007, which boosted displays in the years after. And just three years from now, the asteroid will pass even closer on December 10th, 2017, at just 0.07 AUs (10.3 million kilometers) from Earth…

Are we due for some enhanced activity from the Geminids in the coming years?

All good reasons to bundle up and watch for the “Tears of the Twins” this coming weekend, and wonder at the bizzaro nature of the shower’s progenitor.

 

Don’t Miss the Geminids this Weekend, Best Meteor Shower of the Year

Time lapse-photo showing geminids over Pendleton, OR. Credit: Thomas W. Earle

Wouldn’t it be nice if a meteor shower peaked on a weekend instead of 3 a.m. Monday morning? Maybe even showed good activity in the evening hours, so we could get our fill and still get to bed at a decent hour. Wait a minute – this year’s Geminids will do exactly that!

Before moonrise this Saturday night December 13th, the Geminids should put on a sweet display. The radiant of the shower lies near the bright pair of stars, Castor and Pollux. Source: Stellarium
Before moonrise this Saturday night December 13th, the Geminids should put on a sweet display. The radiant of the shower lies near the bright pair of stars, Castor and Pollux. Source: Stellarium

What’s more, since the return of this rich and reliable annual meteor shower occurs around 6 a.m. (CST) on Sunday December 14th, both Saturday and Sunday nights will be equally good for meteor watching. After the Perseids took a battering from the Moon last August, the Geminids will provide the best meteor display of 2014.  They do anyway! The shower’s been strengthening in recent years and now surpasses every major shower of the year.

The official literature touts a rate of 120 meteors per hour visible from a dark sky site, but I’ve found 60-80 per hour a more realistic expectation. Either way, what’s to complain?

The third quarter Moon rises around midnight Saturday and 1 a.m. on Monday morning. Normally, moonlight would be cause for concern, but unlike many meteor showers the Geminids put on a decent show before midnight. The radiant, the location in the sky from which the meteors will appear to stream, will be well up in the east by 9:30 p.m. local time. That’s a good 2-3 hours of meteor awesomeness before moonrise.

The author tries his best to enjoys this year's moon-drenched Perseids from the "astro recliner". Credit: Bob King
The author takes in this year’s moon-drenched Perseids in comfort.

Shower watching is a total blast because it’s so simple. Your only task is to dress warmly and get comfortable in a reclining chair aware from the unholy glare of unshielded lighting. The rest is looking up. Geminid meteors will flash anywhere in the sky, so picking a direction to watch the shower isn’t critical. I usually face east or southeast for the bonus view of Orion lumbering up from the horizon.

Bring your camera, too. I use a moderately wide angle lens (24-35mm) at f/2.8 (widest setting), set my ISO to  800 or 1600 and make 30-second exposures. The more photos you take, the better chance of capturing a meteor. You can also automate the process by hooking up a relatively inexpensive intervalometer  to your camera and have it take the pictures for you.

As you ease back and let the night pass, you’ll see other meteors unrelated to the shower, too. Called sporadics, they trickle in at the rate of  2-5 an hour. You can always tell a Geminid from an interloper because its path traces back to the radiant. Sporadics drop down from any direction.

A Geminid fireball brighter than Venus streaks across the sky above New Mexico on Dec. 14, 2011. It was captured by an all-sky camera. Before disintegrating in the atmosphere the meteoroid was about 1/2 inch across. Credit: Marshall Space Flight Center, Meteoroid Environments Office, Bill Cooke
Captured by an all-sky camera, a Geminid fireball brighter than Venus streaks across the sky above New Mexico on Dec. 14, 2011. Before disintegrating in the atmosphere the meteoroid was about 1/2 inch across. Credit: Marshall Space Flight Center, Meteoroid Environments Office, Bill Cooke

Geminid meteors immolate in Earth’s atmosphere at a moderate speed compared to some showers – 22 miles per second (35 km/sec) – and often flare brightly. Green, red, blue, white and yellow colors have been recorded, making the shower one of the more colorful. Most interesting, the meteoroid stream appears to be sorted according to size with faint, telescopic meteors maxing out a day before the naked eye peak. Larger particles continue to produce unusually bright meteors up to a few days after maximum.

Most meteor showers are the offspring of comets. Dust liberated from vaporizing ice gets pushed back by the pressure of sunlight to form a tail and fans out over the comet’s orbital path. When Earth’s orbit intersects a ribbon of this debris, sand and gravel-sized bits of rock crash into our atmosphere at high speed and burn up in multiple flashes of meteoric light.

Phaethon sprouts a tail when close to the Sun seen in this image taken by NASA's STEREO Sun-observing spacecraft in 2012. Credit: Credit: Jewitt, Li, Agarwal /NASA/STEREO
Phaethon sprouts a tail (points southeast or to lower left) when close to the Sun in this image taken by NASA’s STEREO Sun-observing spacecraft in 2012. Credit: Credit: Jewitt, Li, Agarwal /NASA/STEREO

But the Geminids are a peculiar lot. Every year in mid-December, Earth crosses not a comet’s path but that of 3200 Phaethon (FAY-eh-thon), a 3.2 mile diameter (5.1 km)  asteroid. Phaethon’s elongated orbit brings it scorchingly close (13 million miles) to the Sun every 1.4 years. Normally a quiet, well-behaved asteroid, Phaethon brightened by a factor of two and was caught spewing jets of dust when nearest the Sun in 2009, 2010 and 2012. Apparently the intense heat solar heating either fractured the surface or heated rocks to the point of desiccation, creating enough dust to form temporary tails like a comet.

While it looks like an asteroid most of the time, Phaethon may really be a comet that’s still occasionally active. Periodic eruptions provide the fuel for the annual December show.

Most of us will head out Saturday or Sunday night and take in the shower for pure enjoyment, but if you’d like to share your observations and contribute a bit of knowledge to our understanding of the Geminids, consider reporting your meteor sightings to the International Meteor Organization. Here’s the link to get started.

And this just in … Italian astronomer Gianluca Masi will webcast the shower starting at 8 p.m. CST December 13th (2 a.m. UT Dec. 14) on his Virtual Telescope Project site.

Did Philae Land In That Comet Crater? One Month Later, The Search Continues

A mosaic of Comet 67P/Churyumov-Gerasimenko taken Dec. 2 with the Rosetta spacecraft. The shadowed area is a crater in which Philae is expected to be. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Don’t forget about Philae! The comet lander made a touchdown a month ago this week on its target, marking the first time we’ve ever made a soft landing on such a body. Celebrations were quickly mixed with confusion, however, as controllers realized the spacecraft drifted quite a ways off target. In fact, we still don’t know exactly where it is.

The parent Rosetta spacecraft is working well in orbit and still transmitting images of the comet while Philae hibernates in a shady spot below. This latest image here shows a clear view of where the European Space Agency thinks the lander arrived — somewhere in the rim of that shadowy crater you see up front.

“The internal walls are seen in quite some detail. It is thought that Philae’s final touchdown site might be located close to the rim of this depression, but further high-resolution imaging is still being obtained and analyzed to confirm this,” the agency wrote in a statement concerning the image of Comet 67P/Churyumov-Gerasimenko.

This is based on data collected from Philae in a brief science surge on the surface. Recently, information based on measured magnetic fields showed the spacecraft likely hit an object — perhaps a crater rim — as it drifted for two hours on the surface, unsecured by the harpoons that were supposed to fire to hold it in place.

The distortion at bottom of this mosaic of Comet 67P/Churyumov-Gerasimenko occured as imagers made image joining adjustments for the comet's rotation and the movements of the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
The distortion at bottom of this Dec. 1, 2014 mosaic of Comet 67P/Churyumov-Gerasimenko occured as imagers made image joining adjustments for the comet’s rotation and the movements of the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Searches for the lander are ongoing, but it’s hard to pick it out on such a boulder-strewn landscape. Yet the agency is doing its mightiest, and has made some progress on the problem since the landing took place. Rosetta caught several glimpses of the lander during its journey across the surface. And they have data from an experiment that communicated between Rosetta and Philae which could help pinpoint the location.

Rosetta science results have been quiet in the past week, although ESA has released several images of the comet. This comes as the agency has been criticized for its data release policy regarding the mission. It’s a vigorous debate, with there being examples of more open missions (such as Curiosity) and more closed missions (such as the Hubble Space Telescope) to compare Rosetta’s releases with.

As these activities continue, however, Rosetta will remain transmitting information from 67P through at least part of 2015, watching the comet increase in activity as both draw closer to the Sun. Jets and gas are visible already in some of the recent images of the comet, which you can see below.

Comet 67P/Churyumov-Gerasimenko viewed by the Rosetta spacecraft on Nov. 30, 2014 showing off layered material in the "neck" of the comet. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Comet 67P/Churyumov-Gerasimenko viewed by the Rosetta spacecraft on Nov. 30, 2014 showing off layered material in the “neck” of the comet. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Erupting gas and dust is just visible in the "neck" region of Comet 67P/Churyumov-Gerasimenko in this montage taken Nov. 26, 2014 by the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Erupting gas and dust is just visible in the “neck” region of Comet 67P/Churyumov-Gerasimenko in this montage taken Nov. 26, 2014 by the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Gas and dust stream from Comet 67P/Churyumov–Gerasimenko in this mosaic from the Rosetta spacecraft taken Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Gas and dust stream from Comet 67P/Churyumov–Gerasimenko in this mosaic from the Rosetta spacecraft taken Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

C/2014 Q2 Lovejoy – A Binocular Comet in Time for Christmas

Like a Christmas ornament dangling from string, Comet Lovejoy Q2 is headed north and coming into good view for northern hemisphere observers in the next two weeks. This photo was taken on November 26th. Credit: Rolando Ligustri

Hmmm. Something with a long white beard is making an appearance in northern skies this week. Could it be Santa Claus? No, a bit early for the jolly guy yet, but comet watchers will soon find a special present under the tree this season.  Get ready to unwrap Comet Lovejoy Q2, now bright enough to spot in a pair of 10×50 binoculars.

Comet Lovejoy Q2 starts out low in the southern sky below Canis Major this week but quickly zooms northward. Visibility improves with each passing night. Source: Chris Marriott's SkyMap software
Comet Lovejoy Q2 starts out low in the southern sky in Puppis this week (6° max. altitude on Dec. 9) but quickly zooms north and west with each passing night. On the night of December 28-29, the comet will pass 1/3° from the bright globular cluster M79 in Lepus. This map shows the sky and comet’s position facing south from 42° north latitude around 1:30 a.m. CST. Source: Chris Marriott’s SkyMap software

Following a rocket-like trajectory into the northern sky, this visitor from deep space is no longer reserved for southern skywatchers alone. If you live in the central U.S., Lovejoy Q2 pokes its head from Puppis in the early morning hours this week. Glowing at magnitude +7.0-7.5, it’s a faint, fuzzy cotton ball in binoculars from a dark sky and visible in telescopes as small as 3-inches (7.5 cm). With the Moon past full and phasing out of the picture, comet viewing will continue to improve in the coming nights. What fun to watch Lovejoy gradually accelerate from its present turtle-like amble to agile cheetah as it leaps from Lepus to Taurus at the rate of 3° a day later this month. Why the hurry? The comet is approaching Earth and will pass nearest our planet on January 7th at a distance of 43.6 million miles (70.2 million km). Perihelion follows some three weeks later on January 30th.

Image triplet taken by Terry Lovejoy on which he discovered the comet. The comet moves slightly counterclockwise around the larger fuzzy spot. Credit: Terry Lovejoy
Terry Lovejoy discovered the comet in this triplet of images taken on August 17th. The comet moves slightly counterclockwise around the larger fuzzy spot during the sequence. Credit: Terry Lovejoy

The new object is Australian amateur Terry Lovejoy’s 5th comet discovery. He captured images of the faint, 15th magnitude wisp on August 17th with a Celestron C-8 fitted with a CCD camera at his roll-off roof observatory in Brisbane, Australia. Comet Lovejoy Q2 has a period of about 11,500 years with an orbit steeply inclined to the plane of the Solar System (80.3°), the reason for its sharp northern climb. As December gives way to January the comet crosses from below to above the plane of the planets.

Another awesome shot of Comet Lovejoy Q2 taken on November 26, 2014. Gases in the coma fluoresce green in the Sun's ultraviolet light. Credit: Damian Peach
Another awesome shot of Comet Lovejoy Q2 taken on November 26, 2014. Gases in the coma including carbon and cyanogen fluoresce green in the Sun’s ultraviolet light. The comet’s moderately condensed coma currently measures about 8 arc minutes across or 1/4 the size of the full Moon. Credit: Damian Peach

Comet Lovejoy is expected to brighten to perhaps 5th magnitude as it approaches Earth, making it faintly visible with the naked eye from a dark sky site. Now that’s what I call a great way to start the new year!

To help you find it, use the top map to get oriented; the detailed charts (below) show stars to magnitude +8.0. Click each to enlarge and then print out a copy for use at night. Bonus! Comet Lovejoy will pass only 10 arc minutes (1/3°) south of the 8th magnitude globular cluster M79 on December 28-29 – a great opportunity for astrophotographers and observers alike. Both comet and cluster will pose side by side in the same binocular and telescopic field of view. In early January I’ll post fresh maps to help you track the comet all through next month, too.

Detailed map showing the comet tomorrow morning through December 27th in the early morning hours (CST). Stars shown to magnitude +8.0. Source: Chris Marriott's SkyMap software
Detailed map showing the comet tomorrow December 9th through December 27th in the early morning hours (CST). Stars shown to magnitude +8.0. Source: Chris Marriott’s SkyMap software
Because Comet Lovejoy rapidly moves into the evening sky by mid-late December, its position on this detailed map is shown at 10 p.m. (CST) nightly. Credit:
Because Comet Lovejoy moves rapidly into the evening sky by mid-late December, its position on this detailed map is shown for 10 p.m. (CST) nightly. Credit: Chris Marriott’s SkyMap software

Philae’s Wild Comet Landing: Crater Grazing, Spinning And Landing In Parts Unknown

Philae landed nearly vertically on its side with one leg up in outer space. Here we see it in relation to the panoramic photos taken with the CIVA cameras. Credit: ESA

No, scientists haven’t found Philae yet. But as they churn through the scientific data on the comet lander, more information is emerging about the crazy landing last month that included three touchdowns and an incredible two hours of drifting before Philae came to rest in a relatively shady spot on the surface.

Among the latest: the tumbling spacecraft “collided with a surface feature” shortly after its first landing, perhaps grazing a crater rim with one of its legs. This information comes from an instrument called ROMAP (Rosetta Lander Magnetometer and Plasma Monitor) that monitors magnetic fields. The instrument is now being used to track down the spacecraft.

ROMAP’s usual role is to look at the comet’s magnetic field as it interacts with the solar wind, but the challenge is the orbiter (Rosetta) and lander both create tiny ones of their own due to the magnetic circuitry. Usually this data is removed to see what the comet’s environment is like. But during the landing, ROMAP was used to track Philae’s descent.

Four images of Comet 67P/Churyumov–Gerasimenko taken on Nov. 30, 2014 by the orbiting Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Four images of Comet 67P/Churyumov–Gerasimenko taken on Nov. 30, 2014 by the orbiting Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Philae was supposed to fire harpoons to secure itself to the surface when it touched down at 3:34 p.m. UTC (10:34 a.m. EST) Nov. 12, but the mechanism failed. ROMAP’s data then shows the spin rate increasing, with the lander turning at one rotation every 13 seconds.

The grazing collision happened at 4:20 pm. UTC (11:20 a.m. EST), making the rotation decrease to once every 24 seconds. Then the final two touchdowns happened around 5:25 p.m. UTC (12:25 p.m. EST) and 5:31 p.m. UTC (12:31 p.m. EST). Controllers hope they can figure out exactly where Philae arrived once they look at data from ROMAP, CONSERT and other instruments on the lander.

Philae is now hibernating because there isn’t enough sunlight in its landing spot to recharge its battery through the solar panels. Rosetta, meanwhile, continues orbiting 67P and sending back pictures of the comet as it draws closer to the Sun, including the image you see further up in this blog post, released today (Dec. 2) a few days after it was taken in space.

Source: European Space Agency

Rosetta Comet Sounds Make ‘Across The Universe’ Song Oh So Spooky

Four image montage of comet 67P/C-G, using images taken on 2 September. Credits: ESA/Rosetta/NAVCAM

It’s not quite across the universe from us, but Rosetta’s comet is a fair distance away — outside the orbit of Mars and drawing slightly closer to the Sun by the day. Recently, the team behind the probe released a “song” the comet produced, as picked up by the Rosetta Plasma Consortium instruments on the spacecraft. Now a YouTube artist has decided to take that a step further and play the sounds as background to a famous Beatles tune.

“When I first heard that the ESA had not only landed on but recorded audio from a comet, I knew I had to make something out of it,” wrote Andrew Huang, the creator of the video, on YouTube. “This is my reworking of the Beatles’ awesome cosmic ballad “Across the Universe” which, apart from my singing, was created entirely with sounds from the Rosetta space probe’s recording of Comet 67P/Churyumov–Gerasimenko.”

It’s a spooky rendition that makes you think of the dots you see in the sky as actual worlds or stars, producing energy and sounds and other phenomena that make them unique. Huang also created a video showing how he designed the song. What other Sirens will call to us from the cosmos?

(h/t io9, The Mary Sue)

 

 

Where The Heck Did Philae Land? Rosetta Team Narrows The Cometary Search

A 3-D image of Comet 67P/Churyumov–Gerasimenko taken from the Philae lander as it descended. The picture is a combination of two images from the Rosetta Lander Imaging System (ROLIS) taken about an hour before landing at 10:34 a.m. EST (3:34 p.m. UTC) on Nov. 12, 2014. Credit: ESA/Rosetta/Philae/ROLIS/DLR

The first soft comet landing Nov. 12 showed us how space missions can quickly drift to the unexpected. Philae’s harpoons to secure it failed to fire, and the spacecraft drifted for an incredible two hours across Comet 67P/Churyumov–Gerasimenko before coming to rest … somewhere. But where? And can the orbiting Rosetta spacecraft find it?

That’s been the obsession of the European Space Agency for the past couple of weeks. Controllers have pictures from Philae during its descent and brief science operations on the surface. They’ve managed to capture the little lander in incredible photographs from Rosetta. But the key to finding Philae will likely come from a different experiment altogether.

The experiment is called the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) and is a piece of work between both lander and orbiter. Rosetta sent radio signals to Philae on the surface to get a better sense of what the insides of 67P are made of. But it turns out it can also be used to pinpoint the lander.

ESA recently released a landing zone of where, based on CONSERT data, it believes the lander came to rest. The next step will be to get the Rosetta spacecraft to examine the area in high-definition.

An estimation of Philae's landing site on Comet 67P/Churyumov–Gerasimenko, based on data from the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) experiment. Credit: ESA/Rosetta/Philae/CONSERT
An estimation of Philae’s landing site on Comet 67P/Churyumov–Gerasimenko, based on data from the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) experiment. Credit: ESA/Rosetta/Philae/CONSERT

“By making measurements of the distance between Rosetta and Philae during the periods of direct visibility between orbiter and lander, as well as measurements made through the core, the team have been able to narrow down the search to the strip presented in the image shown above,” ESA stated. “The determination of the landing zone is dependent on the underlying comet shape model used, which is why there are two candidate regions marked.”

Finding Philae is not only a goal to fulfill curiosity, but also to learn more about the comet itself. The team needs to know where the lander is sitting before they can fully analyze the CONSERT data, they said. So the search continues for the hibernating lander, which right now is in a shady spot and unable to transmit status updates since it can’t get enough sunlight to recharge. (This could change as 67P gets closer to the Sun, but nobody knows for sure.)

Rosetta, meanwhile, is in perfect health and continues to transmit incredible pictures of the comet, such as this one below released a couple of days ago. The montage you see includes the zone where Philae was supposed to have touched down, but it will take higher-resolution images from the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) to get a better look.

Source: European Space Agency (here and here)

A montage of four images of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
A montage of four images of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

 

With Philae Delivered, Rosetta Will Play ‘Comet Escort’ Through 2015

The Rosetta spacecraft takes a selfie Oct. 7 with its target, 67P/Churyumov–Gerasimenko, from an altitude of about 9.9 miles (16 kilometers). Credit: ESA/Rosetta/Philae/CIVA

With the Philae mission down on the comet and preliminary science results coming from its brief science surge on the surface, little has been said about the delivery vehicle. But while Philae is in hibernation, the Rosetta spacecraft remains quietly in orbit around Comet 67P/Churyumov–Gerasimenko for what will prove to be a dramatic 2015.

Should the orbiter remain healthy, it will be the first to be a “comet escort” — to watch a comet changing from up close as the celestial body draws closer to the Sun. And to stay out of the debris field, Rosetta will have some fancy footwork to perform in the next few months, says the European Space Agency (ESA).

“Burns” with the comet are planned on Saturday (Nov. 22) and Wednesday (Nov. 26) to bring it up about 30 kilometers (19 miles) above, and then it will scoot down closer to about 20 kilometers (12.5 miles) on Dec. 3. Rosetta will remain in this orbit for a while to look at the comet’s nucleus, as well as to measure plasma, dust and gas that is expected to increase as the comet gets closer to the Sun.

Rosetta will stay as close to 67P as possible, but if activity heats up to an unacceptable risk, it will jump to a “high-activity” trajectory that will keep it away from the worst of the debris. And it’s also going to keep an ear out for Philae, just in case more sunlight on the comet ends up recharging the hibernating lander’s battery. “Early next year, Rosetta will be switched into a mode that allows it to listen periodically for beacon signals from the surface.,” ESA wrote.

There has been some discussion about the magnitude of Philae’s success given that it did land on the comet as planned, but the harpoons (which had travelled a decade in space at that point) did not fire on to the surface as planned. This meant that the lander drifted for about two hours before settling far from its prime landing spot, mostly outside of the sunlight it needs to recharge its batteries.

But in a science marathon, researchers got as much as they could out of the instruments and have already released preliminary results, such as how the sound of Philae’s landing revealed the comet’s interior structure, and the discovery of organic materials on the surface.

Source: European Space Agency

Thud! Sound Of Philae’s Comet Landing Shows Signs Of Possible Ice

Our last panorama from Philae? This image was taken with the CIVA camera; at center Philae has been added to show its orientation on the surface. Credit: ESA

And we have touchdown! This is what the feet of the Philae lander experienced as the spacecraft touched down on its cometary destination last week. You can hear the brief sound from the Cometary Acoustic Surface Sounding Experiment (CASSE) above. What’s even cooler is the scientific data that short noise reveals.

CASSE is embedded in the three legs of Philae and recorded the first of three landings for the spacecraft, which bounced for about two hours before coming to rest somewhere on Comet 67P/Churyumov–Gerasimenko (where is still being determined).

About that first touchdown: “The Philae lander came into contact with a soft layer several centimetres thick. Then, just milliseconds later, the feet encountered a hard, perhaps icy layer on 67P/Churyumov-Gerasimenko,” stated German Space Agency (DLR) researcher Klaus Seidensticker. He is the lead for the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME), which includes CASSE.

CASSE also recorded information from the lander’s feet from Philae’s final resting spot, and transmitted information about the MUlti PUrpose Sensor (MUPUS) as the latter instrument drilled into the surface. Other instruments on SESAME found no dust particles nearby the lander (which scientists say means the landing site is quiescent) and also sensed water ice beneath the lander.

Philae is now in hibernation as its final resting spot does not include a lot of sunlight to recharge the solar panels, but the researchers are hoping that more energy might be available as 67P draws closer to the Sun in 2015. The orbiting Rosetta spacecraft is continuing to collect data on the comet.

Source: DLR

Philae Lander Early Science Results: Ice, Organic Molecules and Half a Foot of Dust

Philae's MUPUS probe took temperature measurements and hammered into the surface at the landing site to discover the lander alighted on some very hard ice. Credit: ESA

An uncontrolled, chaotic landing.  Stuck in the shadow of a cliff without energy-giving sunlight.  Philae and team persevered.  With just 60 hours of battery power, the lander drilled, hammered and gathered science data on the surface of comet 67P/Churyumov-Gerasimenko before going into hibernation. Here’s what we know. 

Despite appearances, the comet’s hard as ice. The team responsible for the MUPUS (Multi-Purpose Sensors for Surface and Sub-Surface Science) instrument hammered a probe as hard as they could into 67P’s skin but only dug in a few millimeters:

Close-up of the first touchdown site before Philae landed (left) and after clearly shows the impressions of its three footpads in the comet’s dusty soil. Times are CST. Philae’s 3.3 feet (1-m) across. Credit: ESA
Close-up of the first touchdown site before Philae landed (left) and after clearly shows the impressions of its three footpads in the comet’s dusty soil. At the final landing site, it’s believed that Times are CST. Philae’s 3.3 feet (1-m) across. Credit: ESA

“Although the power of the hammer was gradually increased, we were not able to go deep into the surface,” said Tilman Spohn from the DLR Institute of Planetary Research, who leads the research team. “If we compare the data with laboratory measurements, we think that the probe encountered a hard surface with strength comparable to that of solid ice,” he added. This shouldn’t be surprising, since ice is the main constituent of comets, but much of 67P/C-G appears blanketed in dust, leading some to believe the surface was softer and fluffier than what Philae found.

This finding was confirmed by the SESAME experiment (Surface Electrical, Seismic and Acoustic Monitoring Experiment) where the strength of the dust-covered ice directly under the lander was “surprisingly high” according to Klaus Seidensticker from the DLR Institute. Two other SESAME instruments measured low vaporization activity and a great deal of water ice under the lander.

As far as taking the comet’s temperature, the MUPUS thermal mapper worked during the descent and on all three touchdowns. At the final site, MUPUS recorded a temperature of –243°F (–153°C) near the floor of the lander’s balcony before the instrument was deployed. The sensors cooled by a further 10°C over a period of about a half hour:

The location of Philae's first touchdown on the surface of Comet 67P/C-G. Although covered in dust in many areas, Philae found strong evidence for firm ice beneath. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The location of Philae’s first touchdown on the surface of Comet 67P/C-G. Although covered in dust in many areas, Philae found strong evidence for firm ice beneath the comet’s surface. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“We think this is either due to radiative transfer of heat to the cold nearby wall seen in the CIVA images or because the probe had been pushed into a cold dust pile,” says Jörg Knollenberg, instrument scientist for MUPUS at DLR. After looking at both the temperature and hammer probe data, the Philae team’s preliminary take is that the upper layers of the comet’s surface are covered in dust 4-8 inches (10-20 cm), overlaying firm ice or ice and dust mixtures.

The ROLIS camera (ROsetta Lander Imaging System) took detailed photos during the first descent to the Agilkia landing site. Later, when Philae made its final touchdown, ROLIS snapped images of the surface at close range. These photos, which have yet to be published, were taken from a different point of view than the set of panorama photos already received from the CIVA camera system.

During Philae’s active time, Rosetta used the CONSERT (COmet Nucleus Sounding Experiment by Radio wave Transmission) instrument to beam a radio signal to the lander while they were on opposite sides of the comet’s nucleus. Philae then transmitted a second signal through the comet back to Rosetta. This was to be repeated 7,500 times for each orbit of Rosetta to build up a 3D image of 67P/C-G’s interior, an otherworldly “CAT scan” as it were.  These measurements were being made even as Philae lapsed into hibernation. Deeper down the ice becomes more porous as revealed by measurements made by the orbiter.

Rosetta’s Philae lander includes a carefully selected set of instruments and is being prepared for a November 11th dispatch to analyze a comet’s surface. Credit: ESA, Composite – T.Reyes
Rosetta’s Philae lander includes a carefully selected set of instruments to analyze a comet’s surface. Credit: ESA, Composite – T.Reyes

The last of the 10 instruments on board the Philae lander to be activated was the SD2 (Sampling, Drilling and Distribution subsystem), designed to provide soil samples for the COSAC and PTOLEMY instruments. Scientists are certain the drill was activated and that all the steps to move a sample to the appropriate oven for baking were performed, but the data right now show no actual delivery according to a tweet this morning from Eric Hand, reporter at Science Magazine. COSAC worked as planned however and was able to “sniff” the comet’s rarified atmosphere to detect the first organic molecules. Research is underway to determine if the compounds are simple ones like methanol and ammonia or more complex ones like the amino acids.

Stephan Ulamec, Philae Lander manager, is confident that we’ll resume contact with Philae next spring when the Sun’s angle in the comet’s sky will have shifted to better illuminate the lander’s solar panels. The team managed to rotate the lander during the night of November 14-15, so that the largest solar panel is now aligned towards the Sun. One advantage of the shady site is that Philae isn’t as likely to overheat as 67P approaches the Sun en route to perihelion next year. Still, temperatures on the surface have to warm up before the battery can be recharged, and that won’t happen until next summer.

Let’s hang in there. This phoenix may rise from the cold dust again.

Sources: 1, 2