Why Is Comet ISON Green?

Recent images of Comet ISON along with spectral data. Credit and copyright: Chris Schur.

Undoubtedly, you’ve been seeing the recent images of Comet ISON now that it is approaching its close encounter with the Sun on November 28. ISON is currently visible to space telescopes like the Hubble and amateur astronomers with larger telescopes. But you might be wondering why many images show the comet with a green-ish “teal” or blue-green color.

Amateur Astronomer Chris Schur has put together this great graphic which provides information on the spectra of what elements are present in the comet’s coma.

For the conspiracy theorists out there, the green color is actually a good omen, and lots of comets display this color. The green color is a sign the comet is getting more active as gets closer to the Sun – meaning it is now putting on a good show for astronomers, and if it can continue to hold itself together, it might become one of the brightest comets in the past several years.

“ISON’s green color comes from the gases surrounding its icy nucleus,” says SpaceWeather.com’s Tony Phillips. “Jets spewing from the comet’s core probably contain cyanogen (CN: a poisonous gas found in many comets) and diatomic carbon (C2). Both substances glow green when illuminated by sunlight in the near-vacuum of space.”

Comet ISON on October 4, 2013 as seen over Arizona, viewed with a 12.5" telescope, over an hour exposure time. Credit and copyright: Chris Schur.
Comet ISON on October 4, 2013 as seen over Arizona, viewed with a 12.5″ telescope, over an hour exposure time. Credit and copyright: Chris Schur.

Both are normally colorless gases that fluoresce a green color when excited by energetic ultraviolet light in sunlight.

And if those poisonous gasses sound dangerous, don’t worry. They are spread out in space much too thinly to touch us here on Earth. So don’t fall prey to fear mongers who are out to bilk the masses – like people did in 1910 when Comet Halley made a return to the skies and swindlers pitched their ‘gas masks’ and special ‘comet pills’ for protection. And of course, nothing happened.

But back to the color. Chris Schur provided this info along with his graphic:

Your readers may appreciate knowing why comets can appear this color. The background image is the shot I took with my 12.5″ and an ST10xme CCD camera for 20 minutes in mid-October. A pale coloration of the front of the coma is seen. To the lower left is a shot with the same instrument but with a 100 lpmm (line pair per millimeter) diffraction grating in front of the CCD chip to break out the spectra of the objects in the entire field.

Here ISON is faintly seen to the left of center, and the first order spectra a band to its right. But the real answer comes when we use the software called Rspec to analyze this band of light. The result is on the lower right. Normally reflected sunlight is rather flat and bland, and mostly that is what ISON is right now, reflected from dust. But labeled are two humps in the blue and green parts of the spectrum labeled “C2” for a carbon molecule. This blue/green emission pair is what gives ISON the color.

Chris notes that as the comet nears the Sun, astronomers and astrophotographers will be able to resolve more spectral details in the comet. “It will be exciting to watch the changes as more molecules pop out,” Chris said via email, “and possibly when it is closest to the Sun, we just may see some metal lines like iron or magnesium from MELTED vaporized rock. How exciting!”

And for those who insist there is something nefarious about Comet ISON, take a look at this FAQ from our friend Stuart Atkinson, who hosts the great site Waiting for ISON. He addresses the many conspiracy theories that are out there regarding this comet.

ISON FAQ Sept 9 jpg

Beautiful Comet ISON Timelapse and Recent Images

Comet ISON, as seen on October 21, 2013 from Marion, Ohio, USA, using a QHY9 monochrome CCD camera and TEC 140 F7, 5 inch Refractor telescope. Credit and copyright: Cliff Spohn and Terry Hancock.

This beautiful new view of Comet ISON comes from a collaborative effort between astrophotographers Cliff Spohn in Ohio and Terry Hancock in Michigan, taken on October 21, 2013. “The first time in almost two weeks that we have had a break in the clouds and rain we could not miss this rare opportunity to capture ISON using Cliff’s equipment,” said Terry via email. “Credit goes to Cliff for capturing the object while I did the calibration, stacking in CCDStack post processing in CS5 and video editing.”

You can see a timelapse video below, covering 93 minutes of imaging, again on October 21. It’s obvious ISON is still intact and it continues to bright, as it is currently about magnitude 9.

More recent images:

Update: This new one is just in from astrophotographer Damian Peach, and its a beauty! Taken on October 24.

Comet C/2012 S1 ISON captured passing fairly close to the bright barred spiral galaxy M95 in Leo on October 24, 2013. Credit and copyright: Damian Peach.
Comet C/2012 S1 ISON captured passing fairly close to the bright barred spiral galaxy M95 in Leo on October 24, 2013. Credit and copyright: Damian Peach.
Comet ISON C/2012 S1, Mars, & Regulus on 10-18-2013 Warrenton, Virginia 6:27am EST Canon Rebel Xsi & 170mm lens F6.3, ISO 400, 6 minutes 6 secs. Credit and Copyright: John Chumack.
Comet ISON C/2012 S1, Mars, & Regulus on 10-18-2013
Warrenton, Virginia 6:27am EST
Canon Rebel Xsi & 170mm lens F6.3, ISO 400,
6 minutes 6 secs. Credit and Copyright: John Chumack.

From John Chumack: “I just had to try just a telephoto on Comet ISON while it was near Mars,” John said via email. This view shows Comet ISON (C/2012 S1) near Mars and Regulus, the brightest star in the constellation Leo. This image was taken on October 18, 2013 from
Warrenton, Virginia at 6:27am EST looking over Washington D.C.

Triple conjunction of Comet ISON, Mars, Regulus on October 14, 2013, as seen from Payson, Arizona, USA. Credit and copyright: Chris Schur.
Triple conjunction of Comet ISON, Mars, Regulus on October 14, 2013, as seen from Payson, Arizona, USA. Credit and copyright: Chris Schur.

This nice image comes from Chris Schur from Arizona, taken on October 14, and is also of the conjunction. “As you may recall, on this date of 10/14 the three objects were in a perfect line going from south to north in Leo,” Chris said via email. “What a spectacular sight in the 11 x 80 binoculars! While the comet was quite faint, a short 1/4 degree of tail could be seen, and the gorgeous blue and orange colors of the planets.”

Chris used a Canon Xti, ASA800 with 10 minutes total integration time, with a 80mm f/4.8 Ziess APO refractor on a Televue GEM. Taken from Payson, Arizona at 5,100 feet elevation.

Comet LINEAR Suddenly Brightens with Outburst: How to See It

Comet C/2012 X1 LINEAR as imaged by Howes, Guido & Nicolini on Monday, October 21st. (Credit: remanzacco.blogspot)

It’s swiftly becoming an “all comets, all the time” sort of observing season. The cyber-ink was barely dry on our “How to Spot Comet 2P/Encke” post this past Monday when we were alerted to another comet that is currently in the midst of a bright outburst.

That comet is C/2012 X1 LINEAR. Discovered on December 8th, 2012 by the ongoing Lincoln Near Earth Asteroid Research (LINEAR) survey based in Socorro, New Mexico, Comet X1 LINEAR was expected to peak out at about +12th magnitude in early 2014.

That all changed early this week, when amateur observers began to report a swift change in brightness for the otherwise nondescript comet. Japanese observer Hidetaka Sato reported the comet at magnitude +8.5 on October 20th, a full 5.5 magnitudes above its expected brightness of +14. Remember, the magnitude scale is logarithmic, and the lower the number, the brighter the object. Also, 5 magnitudes represent an increase in brightness of 100-fold.

Astronomers Nick Howes, Martino Nicolini and Ernesto Guido used the remote 0.5 metre iTelescope based in New Mexico on the morning of Monday, October 21st to confirm the outburst. Other amateurs and professional instruments are just now getting a look at the “new and improved” Comet X1 LINEAR low in the dawn sky. Romanian amateur observer Maximilian Teodorescu noted on yesterday’s Spaceweather that the comet was not visible through his 4.5 inch refractor, though it was easy enough to image.

Comet X1 LINEAR currently sits in the constellation Coma Berenices about mid-way between the stars Diadem, (Alpha Coma Berenices) and Beta Coma Berenices. Shining at +8.5 magnitude, the coma is about 85” across with a 10” bright central region. This gives X1 LINEAR the appearance of an unresolved +8th magnitude globular cluster. In fact, a classic globular and a star party fave known as M3 lies about 8 degrees away at the junction of the constellations Canes Venatici, Boötes and Coma Berenices. M3 shines at +7th magnitude and will make a great contrast on the hunt for the comet.

Unfortunately, the window of time to search for the comet is currently short. From latitude 30 degrees north, the comet sits only 15 degrees about the northeast horizon 30 minutes before local sunrise. The situation is a bit better for observers farther to the north, and mid-November sees the comet 20 degrees above the horizon in the dawn sky.

Comet X1 LINEAR is currently covering 40’ (2/3rds of a degree, or 1 1/3 the size of a Full Moon) a day, and will spend most of the month of November in the constellation Boötes. Keep in mind, X1 LINEAR is currently still on brightening trend “with a bullet.” Revised light curves now show it on track to reach magnitude +6 near perihelion early next year, but further brightening could still be in the cards for this one. Remember Comet 17P/Holmes a few years back? That one jumped from an uber-faint +17th magnitude to a naked eye brightness of +2.8 in less than 48 hours.

Comet X1 LINEAR will reach a perihelion of 1.6 Astronomical Units (A.U.s) from the Sun on February 21st, 2014, and pass 1.6 A.U.s from the Earth around June 28th, 2014. The comet has a high inclination of 44.4° degrees relative to the ecliptic, and is on a respectable 1872 year orbit.

Here are some notable dates for the comet through the end of 2013;

The path of Comet C/2012 X1 LINEAR from October 23 to November 28th. Click to enlarge. (Credit: Created using Starry Night Education Software).
The path of Comet C/2012 X1 LINEAR from October 23 to November 28th. Click to enlarge. (Credit: Created using Starry Night Education Software).

-November 2nd: Crosses into the constellation Boötes.

-November 6th: Passes near the +4.9th magnitude star 6 Boötis.

-November 16th: Passes near the bright star Arcturus.

-December 6th: Crosses into the constellation Serpens Caput.

-December 10th: Passes near the +5 magnitude star Tau1 Serpentis.

-December 14th: Comet X1 LINEAR sits only 8 degrees from Comet ISON.

-December 26th: Crosses into the constellation Hercules.

Note: “Passes near” on the above list denotes a pass closer than one degree, except as noted.

Now, we REALLY need the Moon to pass Last Quarter phase this coming Saturday so we can get a good look at all of these dawn comets! As of writing this, the current scorecard of binocular comets— comets with a brightness between magnitude +6 and +10 —sits at:

-2P Encke: +7.9 magnitude in Leo.

-C/2013 R1 Lovejoy: +8.7th magnitude in Canis Minor.

-C/2013 X1 LINEAR: +8.5th magnitude in Coma Berenices.

-C/2012 S1 ISON: +9.7th magnitude in Leo.

-C/2012 V2 LINEAR: +8.9th magnitude in Centaurus.

Comet X1 LINEAR on the morning of October 25th, as seen from latitude 30 degrees north 45 minutes prior to sunrise. (Created using Stellarium).
Comet X1 LINEAR on the morning of October 25th, as seen from latitude 30 degrees north 45 minutes prior to sunrise. (Created using Stellarium).

It’s also amusing to note how the method of notification for these sorts of outbursts has changed in recent years. I first heard of the outburst of X1 LINEAR on Monday evening via Twitter. Contrast this with Comet Holmes in 2007, which came to our attention via message board RSS feed. And way back in 1983, we all read about of the close passage of Comet IRAS-Araki-Alcock… weeks after it occurred!

Another curious phenomenon may also work its way through the news cycle. When Comet Holmes became a hit back in 2007, spurious reports of comets brightening became fashionable. If you were to believe everything you read on the web, it suddenly seemed like every comet was undergoing an outburst! This sort of psychological trend towards wish fulfillment may come to pass again as interest in comet outbursts mounts.

It’s also worth noting that, contrary to rumors flying around ye’ ole web, Comet X1 LINEAR is not following Comet ISON. The two are on vastly different orbits, and only roughly lie along the same line of sight as seen from our Earthly vantage point.

The orbital path of Comet X1 LINEAR. (Credit: The JPL Solar System Dynamics Small-Body Database Browser).
The orbital path of Comet C/2012 X1 LINEAR. (Credit: The JPL Solar System Dynamics Small-Body Database Browser).

And that’s it for our weekly (daily?) segment of “As the Comets Turn…” don’t forget to “fall back” one hour and plan your morning comet-hunting vigil accordingly this coming Sunday if you live in Europe-UK. North America still has until November 3rd to follow suit.

Happy comet hunting!

-Got a recent pic of Comet X1 LINEAR? be sure to post it in the Universe Today Flickr forum!

How to See This Season’s “Other” Comet: 2P/Encke

Comet 2P/Encke as imaged by Damian Peach on October 12th. (Credit: D. Peach)

2013 may well go down as “The Year of the Comet.” After over a decade punctuated by only sporadic bright comets such as 17P/Holmes, C/2011 W3 Lovejoy and C/2006 P1 McNaught, we’ve already had two naked eye comets visible this year by way of C/2012 F6 Lemmon and C/2011 L4 PanSTARRS. And of course, all eyes are on Comet C/2012 S1 ISON as it plunges towards perihelion on U.S. Thanksgiving Day, November 28th.

But there’s an “old faithful” of comets that’s currently in our solar neighborhood, and worth checking out as well. Comet 2P/Encke (pronounced EN-key) currently shines at magnitude +7.9 and is crossing from the constellation Leo Minor into Leo this week. In fact, Encke is currently 2 magnitudes— over 6 times brighter than Comet ISON —and is currently the brightest comet in our skies. Encke is expected to top out at magnitude +7 right around perihelion towards the end of November. Encke will be a fine binocular object over the next month, and once the Moon passes Last Quarter phase on October 26th we’ll once again have a good three week window for pre-dawn comet hunting. Comet Encke made its closest pass of the Earth for this orbit on October 17th at 0.48 Astronomical Units (A.U.s) distant. This month sees its closest passage to the Earth since 2003, and the comet won’t pass closer until July 11th, 2030.

The orbital path of Comet 2P/Encke. (Credit: The NASA/JPL Solar System Dynamics Small-Body Database Browser).
The orbital path of Comet 2P/Encke. (Credit: The NASA/JPL Solar System Dynamics Small-Body Database Browser).

This will be Comet Encke’s 62nd observed perihelion passage since its discovery by Pierre Méchain in 1786. Encke has the shortest orbit of any known periodic comet, at just 3.3 years. About every 33 years we get a favorable close pass of the comet, as last occurred in 1997, and will next occur in 2030.

But this year’s apparition of Comet Encke is especially favorable for northern hemisphere observers. This is due to its relatively high orbital inclination angle of 11.8 degrees and its passage through the morning skies from north of both the ecliptic and the celestial equator. Encke is about half an A.U. ahead of us in our orbit this month, crossing roughly perpendicular to our line of sight.

Note that Encke is also running nearly parallel to Comet ISON from our vantage point as they both make the plunge through the constellation Virgo into next month. Mark your calendars: both ISON and Encke will fit into a telescopic wide field of view around November 24th in the early dawn. Photo-op!

Here are some key dates to help you in your morning quest for Comet Encke over the next month:

-October 22nd: Crosses into the constellation Leo.

-October 24th: Passes near the +5.3 magnitude star 92 Leonis.

-October 25th: Passes near the +4.5 magnitude star 93 Leonis.

-October 27th: Passes briefly into the constellation Coma Berenices.

-October 29th: Passes near the +11th magnitude galaxy M98, and crosses into the constellation Virgo.

-October 30th: Passes near the +10th magnitude galaxy pair of M84 & M86.

2P Encke from 20 Oct to 20 Nov (Created using Starry Night Education Software).
The celestial path of Comet 2P/Encke from October 20th to 20 November 20th. Note that ISON is very near Encke on the final date. Click on the image to enlarge. (Created using Starry Night Education Software).

-November 2nd: Passes between the two +5th magnitude stars of 31 and 32 Virginis.

-November 3rd: A hybrid solar eclipse occurs across the Atlantic and central Africa. It may just be possible to spot comet Encke with binoculars during the brief moments of totality.

-November 4th: Passes near the +3.4 magnitude star Auva (Delta Virginis).

-November 7th: Crosses from north to south over the celestial equator.

-November 11th:  Passes near the +5.7th star 80 Virginis.

-November 17th: The Moon reaches Full, and enters into the morning sky.

-November 18th: Passes 0.02 A.U. (just under 3 million kilometers, or 7.8 Earth-Moon distances) from the planet Mercury. A good chance for NASA’s Messenger spacecraft to perhaps snap a pic of the comet?

-November 19th: Passes 1.5 degrees from Mercury and crosses into the constellation Libra.

-November 20th: Crosses to the south of the ecliptic plane.

-November 21st: Reaches perihelion, at 0.33 AU from the Sun.

-November 24th: Comet Encke passes just 1.25 degrees from Comet ISON. Both will have a western elongation of 15 degrees from the Sun.

-November 26th: Passes near the +4.5 magnitude star Iota Librae and the +6th magnitude star 25 Librae.

-December 1st: Crosses into the constellation Scorpius.

-December 5th: Enters into view of SOHO’s LASCO C3 camera.

Note: “Passes near” on the above list indicates a passage of Comet Encke less than one angular degree (about twice the size of a Full Moon) from an interesting object, except where noted otherwise.

Binoculars are your best bet for catching sight of Comet 2P/Encke. For middle northern latitude observers, Comet Encke reaches an elevation above 20 degrees from the horizon about two hours before local sunrise. Keep in mind, Europe and the U.K. “fall back” an hour to Standard Time this coming weekend on October 27th, and most of North America follows suit on November 3rd, pushing the morning comet vigil back an hour as well.

Two other comets are both currently brighter than ISON and also merit searching for: Comet C/2013 R1 Lovejoy, at +8.7th magnitude in Canis Minor, and Comet C/2012 X1 LINEAR, currently also in Coma Berenices and undergoing a minor outburst at magnitude +8.5.

Be sure to check these celestial wonders out as we prepare for the “Main Event” of Comet ISON in November 2013!

Hubble’s Latest View Shows Comet ISON Still Intact, Fairly Average

Hubble's view of Comet ISON on Oct. 9, 2013. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

We’ve been showing images of Comet ISON from amateur astronomers around the world, but now that NASA is back from the government shutdown, here’s more proof that the comet is still intact and has not disintegrated … despite some predictions to the contrary. This image was taken on October 9.

NASA explains:

In this NASA Hubble Space Telescope image taken on October 9, the comet’s solid nucleus is unresolved because it is so small. If the nucleus broke apart then Hubble would have likely seen evidence for multiple fragments.

Moreover, the coma or head surrounding the comet’s nucleus is symmetric and smooth. This would probably not be the case if clusters of smaller fragments were flying along. What’s more, a polar jet of dust first seen in Hubble images taken in April is no longer visible and may have turned off.

This color composite image was assembled using two filters. The comet’s coma appears cyan, a greenish-blue color due to gas, while the tail is reddish due to dust streaming off the nucleus. The tail forms as dust particles are pushed away from the nucleus by the pressure of sunlight. The comet was inside Mars’ orbit and 177 million miles (284 million km) from Earth when photographed.

So, its not disintegrating, its not a three-piece body, its not a UFO… instead Comet ISON is turning out to be a rather average, ordinary comet. How has this comet sparked predictions that have gone from “bright as the full moon” to “disintegrating as we speak,” asked Josh Sokol from the Hubble ISON blog? “Simply put, ISON peaked early. When it was first discovered, way out past Jupiter, ISON was really bright,” Sokol wrote. “Extrapolated, those first data points made ISON look like it would shine even more as it got closer — and when it didn’t, the coverage seesawed back toward calling ISON a total bust.”

But ISON is still en route to the Sun. It will pass closest to the Sun on November 28, and if it remains intact after that close pass, it will make its closest approach to Earth on December 26, at a distance of 39.9 million miles (64 million km).

NASA is having a live Hangout with Hubble comet scientists to discuss the new image and latest research findings about ISON today (Oct. 17) at 4 p.m. EDT (20:00 UTC).

Update: here’s the replay:

Also, check out the Comet ISON Toolkit from NASA

Sources: HubbleSite, Hubble ISON blog

Latest Images of Comet ISON Show it is ‘Doing Just Fine’

Comet ISON on October 8, 2013 as seen through the Schulman 0.8 Telescope atop Mount Lemmon at the University of Arizona SkyCenter. Credit: Adam Block/UA SkyCenter.

As we reported yesterday, the latest data on Comet ISON indicates there is some encouraging news as far as the Comet surviving perihelion, its closest approach to the Sun. While some are all doom and gloom about the potential for Comet ISON putting on a good show, these latest images indicate that as of now, this comet is alive and doing well!

“We really do not know what comet ISON is going to do when it gets near the Sun,” wrote astronomer Karl Battams of the Comet ISON Observing Campaign website. “But what we can say for certain, right now, is that comet ISON is doing just fine! It continues to behave like a fairly typical, if somewhat smaller-than-average, Oort Cloud comet. It has given no indication that it has fragmented and while such an event can never be ruled out, we see no evidence or hint that the comet is in any imminent danger of doing so. Any reports to the contrary are just speculation.”

You can read more from Battams about the current status of ISON, but just take a look at some of these gorgeous latest images from a variety of astrophotographers:

Comet ISON on October 9, 2013, an 18-minute exposure from 10:22 - 10:43 U.T.. Credit and copyright: John Chumack.
Comet ISON on October 9, 2013, an 18-minute exposure from 10:22 – 10:43 U.T.. Credit and copyright: John Chumack.
Comet ISON (top) passing above Mars  This is a stack of 5 x 5 minute exposures. Credit and copyright: Alan Dyer/Amazing Sky Photography
Comet ISON (top) passing above Mars This is a stack of 5 x 5 minute exposures. Credit and copyright: Alan Dyer/Amazing Sky Photography
Comet ISON on October 7, 2013, imaged with a robotic iTelescope facility. Credit and copyright: Peter Lake.
Comet ISON on October 7, 2013, imaged with a robotic iTelescope facility. Credit and copyright: Peter Lake.
A 20-exposure stack of images from the 2-meter Liverpool Telescope. Credit and copyright: Ernesto Guido, Nick Howes and Martino Nicollini/Remanzacco Observatory.
A 20-exposure stack of images from the 2-meter Liverpool Telescope. Credit and copyright: Ernesto Guido, Nick Howes and Martino Nicollini/Remanzacco Observatory.
Comet ISON on October 4, 2013 as seen over Arizona, viewed with a 12.5" telescope, over an    hour exposure time. Credit and copyright: Chris Schur.
Comet ISON on October 4, 2013 as seen over Arizona, viewed with a 12.5″ telescope, over an hour exposure time. Credit and copyright: Chris Schur.

Keep checking Universe Today’s Flickr page for more additions and the latest shots from around the world. You can also keep tabs on Comet ISON from SpaceWeather.com’s Comet ISON Realtime Gallery. Better yet, try and see it for yourself! As of now, you’ll need to find someone with a fairly good telescope, so check out your local amateur astronomy club or observatory and find out when they are planning on viewing ISON. And if the comet can hold itself together, we’re all holding out hope that it will be visible with the naked eye after is passes by the Sun in late November. Here’s our detailed viewing guide from now until perihelion.

New Data: Will Comet ISON Survive its Close Perihelion Passage?

An analysis of the dust coma of comet ISON showing the evaporation of ice particles. (Credit: NASA/ESA J.-Y. Li (Planetary Science Institute and the Hubble ISON Imaging Science Team).

It’s the question on every astronomer’s mind this season, both backyard and professional: will Comet C/2012 S1 ISON survive perihelion?

Now, new studies released today at the American Astronomical Society’s 45th Annual Division for Planetary Sciences meeting being held this week in Denver suggests that ISON may have the “right stuff” to make it through its close perihelion passage near the Sun. This is good news, as Comet ISON is expected to be the most active and put on its best showing post-perihelion… if it survives.

Researchers Matthew Knight of the Lowell Observatory and Research Scientist Jian-Yang Li of the Planetary Science Institute both presented a compelling portrait of the characteristics and unique opportunities presented by the approach of comet ISON to the inner solar system.

Jian-Yang Li studied ISON earlier this year using Hubble before it passed behind the Sun from our Earthly vantage point. Li and researchers were able to infer the position and existence of a jet coming from the nucleus of the comet, which most likely marks the position of one of its rotational poles.

“We measured the rotational pole of the nucleus,” Li noted in a press release from the Planetary Science Institute. The pole indicates that only one side of the comet is being heating by the Sun on its way in until approximately one week before it reaches its closest point to the Sun.”

Could we be in for a “surge” of activity from ISON coming from around November 20th on?

Comet ISON as imaged from Aguadilla, (sp) Puerto Rico recently on october 6th. (Credit: Efrain Morales Rivera).
Comet ISON as imaged from Aguadilla, Puerto Rico recently on October 6th. (Credit: Efrain Morales Rivera).

Li also noted that the reddish color of the coma of ISON suggests an already active comet sublimating water ice grains as they move away from the nucleus. He also noted that time has been allocated to observe ISON using Hubble this week.

Next up, researcher Mathew Knight presented some encouraging news for ISON when it comes to surviving perihelion.

The findings were a result of numerical simulations carried out by Kevin Walsh and Knight, combined with a historical analysis of previous sun-grazing comets. Both suggest that comet nuclei smaller than 200 metres in diameter, with an average density or lower (for comets, that is) typically do not survive a close passage to the Sun.

Both researchers place the size of ISON’s nucleus in the range of 0.5 to 2 kilometres, comfortably above the 0.2 kilometre “shred limit” for its relative perihelion distance. ISON is not a technically Kreutz group sungrazer, though studies of the over 2,000 known Kreutz comets historically observed provide an interesting guideline for what might be in store for ISON. Four Kreutz comets, including C/2011 W3 Lovejoy and Comet C/1887 B1 partially survived perihelion to become “headless wonders,” while five, including Comet C/1965 S1 Ikeya-Seki — which ISON is often compared to — survived perihelion passage to become one of the great comets of the 20th century.

ISON will pass inside the Roche limit of the Sun, which is a distance of 2.4 million kilometres (for fluid bodies) and will be subject to temperatures approaching 5,000 degrees Fahrenheit on closest approach.

ISON is a first time visitor to the inner solar system. Discovered on September 21st, 2012 by Russian researchers Artyom Novichonok and Vitaly Nevsky participating in the International Scientific Optical Network, ISON will pass less than 1.2 million kilometres above the surface of the Sun on November 28th, 2013.

One interesting but little discussed factor highlighted in today’s press release was the retrograde versus prograde rotation of the cometary nucleus. A fast, prograde spin of an elongated nucleus may spell doom for ISON, as tidal forces will rip it apart. A retrograde rotator, however, is very likely to survive the encounter.

Thus far, there are no solid indications that ISON is indeed a retrograde rotator, although there are tantalizing hints that beg for further observations.

Li notes that it’s tough to infer a bias for comets like ISON to be retrograde over prograde rotators, as we’ve only got five historical comets to go by similar to ISON, and the breakdown is thus about 50/50 for and against.

ISON’s possible survival would validate both studies and their methods and give us more refined predictions for future comets.

“We’ve never discovered a sungrazer this far out,” Knight told Universe Today. “The rotation of ISON depends on the pole position (from Li’s study) and in theory, if we could get enough images, a proper morphology (for ISON) would emerge.”

Comet ISON imaged on October 5th from Long Beach, California. (Credit: Thad Szabo @AstroThad).
Comet ISON imaged on October 5th from Long Beach, California. (Credit: Thad Szabo @AstroThad).

The implications of this analysis is certainly good news for observers. If ISON survives perihelion, we would then have a brilliant dawn Christmas comet unfurling its tail off to the northeast in early December.

Of course, these findings are contrary to early cries of its demise, including the paper out of the Institute of Physics that has been circulating touting “The Impending Demise of ISON”. Read Universe Today editor Nancy Atkinson’s excellent synopsis on that, it’s a tale that just won’t seem to die.

And we’ve also done our skeptic’s duty of thoroughly debunking the mounting ISON lunacy, including its status as the harbinger for the “end of the world of the week,” as well as its inability to fulfill prophecy. But if we get a surge in ISON next month as researchers suggest, we fully expect the accompanying hype to crest as well.

The most recent observations put ISON at about +10th magnitude as it currently crosses the constellation Leo, near Mars and Regulus in the morning sky. We recently did an observing post tracking its plunge to perihelion in late November, and we’ve been diligently hunting for ISON with binoculars every morning pre-dawn.

We’re glad to have some positive science to report on for ISON. Things are looking up for a fine show come early December!

-Read the PSI press release on  JianYang Li’s findings as well as the original paper on ISON’s survival prospects by Matthew Knight.

This is Comet ISON Seen From Mars

HiRISE image of comet ISON from Mars orbit (NASA/JPL/University of Arizona)

It’s not much to look at, but there it is: the incoming comet ISON (aka C/2012 S1) as seen by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. An enlarged version of one of four just-released images, this represents a 256-by-256-pixel patch of sky imaged by HiRISE on Sunday, September 29. ISON is the fuzzy blob at center, 8.5 million miles (13.8 million km) away.

See all four images below:

HiRISE images of ISON on Sept. 29, 2013 (NASA/JPL/University of Arizona)
HiRISE images of ISON on Sept. 29, 2013 (NASA/JPL/University of Arizona)

HiRISE researchers Alan Delamere and Alfred McEwen explained in a news release:

Based on preliminary analysis of the data, the comet appears to be at the low end of the range of brightness predictions for the observation. As a result, the image isn’t visually pleasing but low coma activity is best for constraining the size of the nucleus. This image has a scale of approximately 8 miles (13.3 km) per pixel, larger than the comet, but the size of the nucleus can be estimated based on the typical brightness of other comet nuclei. The comet, like Mars, is currently 241 million kilometers from the Sun. As the comet gets closer to the sun, its brightness will increase to Earth-based observers and the comet may also become intrinsically brighter as the stronger sunlight volatilizes the comet’s ices.

More images of ISON from HiRISE are expected as the comet came even closer to Mars, approaching within 6.7 million miles (10.8 million km), but the illumination from those angles may not be as good.

NOTE: These are preliminary single (non-stacked) images, and still contain noise and background stars – hence the fuzziness. Plus HiRISE was not really designed for sky imaging! (Thanks to HiRISE team member Kristin Block for the info.)

So even though it’s at the “low end” of brightness predictions in these HiRISE images, ISON certainly hasn’t “fizzled” like some reports claimed earlier this year (although just how bright it will get in our skies remains to be seen.)

Comet ISON will make its closest pass of the Sun (perihelion) on November 28, 2013, coming within 724,000 miles (1.16 million km) before heading back out into the Solar System… if it survives the encounter, that is. Read more about how to view ISON here and here.

Source: University of Arizona HiRISE article by Alan Delamere and Alfred McEwen

_______________

Worried about ISON’s first (and possibly last) visit to the inner Solar System? Don’t be. Recent rumors of comet-caused catastrophe are greatly exaggerated… read more on David Dickinson’s article Debunking Comet ISON Conspiracy Theories (No, ISON is Not Nibiru).

Comet ISON and Mars Imaged Together During Close Approach

Comet ISON near to its close approach to Mars, imaged together from the 2 meter Liverpool Telescope. Credit: Remanzacco Observatory/Ernesto Guido, Nick Howes, and Martino Nicolini/NSO Liverpool Telescope.

Comet ISON made its closest approach to Mars yesterday (October 1, 2013) at a distance of 10.5 million km (6.5 million miles). While we await to find out if attempts to image the comet by spacecraft on the surface (update: those images are in — see them here) and in orbit of Mars were successful, astronomers from Earth were able to capture the two planetary bodies together.

You can see the two planetary bodies together in one image below from Ari Koutsouradis in Maryland, but the Remanzacco Observatory team obtained images of Comet ISON as it passed by Mars using the 2 meter Liverpool Telescope. This main image above consists of a stack of 20 exposures, 11 seconds each.

Ernesto Guido, Nick Howes and new team member Martino Nicolini produced this image, showing a “well developed coma and tail measuring at least 3 arc minutes,” the trio wrote on their website.

This image of Mars (lower right) and Comet ISON (upper left) was taken about 5:00 AM EDT in Westminster Maryland using a Nikon D5000 and a Stellarvue 80ED telescope. It's composed of 44 30-second exposures at ISO1600, stacked using DeepSkyStacker. Credit and copyright: Ari Koutsouradis.
This image of Mars (lower right) and Comet ISON (upper left) was taken about 5:00 AM EDT in Westminster Maryland using a Nikon D5000 and a Stellarvue 80ED telescope. It’s composed of 44 30-second exposures at ISO1600, stacked using DeepSkyStacker. Credit and copyright: Ari Koutsouradis.

This image, directly above, taken early this morning by Ari Koutsouradis in Maryland, shows both Mars and the comet in one image, although it highlights the relative distance between the two. Koutsouradis said via Flickr that the comet was not visible with an eyepiece on the scope, but the image stack did manage to bring it out.

During the observations by the Remanzacco team, they wanted to look to see if they could discern additional jet structures on the comet, which had been reported by other observers. Howes told Universe Today, however, the are still looking at their observations to analyze this.

“There was some debate as to the existence of additional jet structures on the comet,” Howes said via email. “Our data analysis seems to show that some reports of this were possibly spurious, however, our one process does seem to show a possible small jet, which a 2m class instrument would be able to detect. Our analysis is undergoing additional review and peer checking with our collaborators in the USA. The scientific analysis of this comet and its inner coma is ongoing, and being monitored closely.”

Update: Later in the day on October 2nd, The Remanzacco team obtained analysis from their U.S collaboration partners. Using their data from the 2m Liverpool telescope, and after processing by Dr. Nalin Samarasinha of the Planetary Science Institute, they have conclusively confirmed a sunward facing feature on Comet ISON. A dust feature was detected by Nalin and Howes’ team in previous ISON observations —see one of our previous articles for more details — though they are not sure if this and the new jet feature are connected.

Using Samarasinha’s own modeling and processing algorithms, the PSI team validated the processing performed by the Remanzacco team which showed a small, but discernible forward-facing feature on the comet. Dr. Samarasinha, a world leading cometary scientist, believes this to be a real feature and not the result of processing artifacts, given the very good signal-to-noise of the data.

“As we said earlier, we suspected one of the processing routines we used showed a real feature, but wanted to be 100% sure with a peer review and further analysis,” said Guido, “and the PSI team has independently shown this.

Here is Dr. Samarasinha’s image processing, using his own division by azimuthal average process to the left, and the Remanzacco team’s MCM (median coma model) process image to the right. The pixel scale is 0.3″/pixel:

Additional analysis and processing shows a forward, Sun-facing feature on Comet ISON. Credit: Dr. Nalin Samarasinha of the Planetary Science Institute.
Additional analysis and processing shows a forward, Sun-facing feature on Comet ISON. Credit: Dr. Nalin Samarasinha of the Planetary Science Institute.

Howes added that their team will continue to monitor ISON as it approaches perihelion (closest approach to the Sun) on November 28.

“Our team has an ongoing programme of observations with a range of telescopes around the world,” he said, “including the iTelescope Network, the LT on La Palma and also with schools on the Faulkes Telescope, in support of two U.S observatory teams. The LT and iTelescope network is currently well placed to take these early observations as the comet approaches perihelion.”

If the comet survives its close pass by the Sun, it will pass closest to Earth on December 26, about 64 million km (40 million miles) away.

Meanwhile, even though NASA had to curtail many of its activities due to the government shutdown, many missions such as the Mars Reconnaissance Orbiter and the Mars Science Laboratory rover Curiosity were still up and running because they are run out of the Jet Propulsion Lab, which runs as a contractor to NASA, and are not government facilities. (JPL is privately run by the California Institute of Technology (Caltech), and the Applied Physics Lab, which operates the MESSENGER and New Horizons missions, is run by Johns Hopkins University, also a contractor to NASA. They’ll be able to operate as long as the money they have received from NASA previously holds out. (So, keep your fingers crossed for a short government shutdown.)

Therefore, imaging attempts by MRO and MSL of Comet ISON from Mars went ahead as scheduled, and we should be hearing how those attempts fared as soon as the images can be received back on Earth and processed. The word from the HiRISE camera team via Twitter is that they were able to image the comet. Stay tuned!

Three different views of Comet ISON's inner coma. Credit: Remanzacco Observatory/Ernest Guido, Nick Howes and Martino Nicolini.
Three different views of Comet ISON’s inner coma. Credit: Remanzacco Observatory/Ernest Guido, Nick Howes and Martino Nicolini.

Here’s an enlargement of additional observations by the Remanzacco team, showing the inner coma of Comet ISON. Their explanation:

In the image (above) you can see 3 different elaborations of the ISON inner coma. The first panel on the left is a Larson-Sekanina filter. In the middle panel elaboration with the MCM filter creates an artificial coma, based on the photometry of the original image, and subtract the original image itself in order to highlight the internal zones of different brightness that are very close to the inner core and that would normally be hidden from the diffuse glow of the comet. While the last panel on the right is the elaboration with filter RWM – 1/r theoretical coma subtraction.

Astrophoto: Comet LINEAR Meets a Spiral Galaxy

The current brightest comet in the skies, Comet C/2012 V2 LINEAR, appears to pass by the bright spiral galaxy NGC 2997 in Antlia on September 29, 2013. Credit and copyright: Damian Peach.

Just in from the pretty pictures department: Award-winning Astrophotographer Damian Peach from the UK took this gorgeous image this morning of Comet C/2012 V2 LINEAR passing by bright spiral galaxy NGC 2997. While the cosmic duo looks like they are right next to each other, Damian notes that in reality, the comet is 17 light minutes away from Earth while NGC 2997 is 38 million light years away.

The specs: 0.11m F5.6 with STL-11k. LRGB. L: 5x3mins. RGB: 1x2mins.

Check out more of Damian’s fantastic collection of images at his website or Facebook page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.