Another Stunning Image of Comet Lovejoy by Colin Legg

Comet Lovejoy by Colin Legg
Comet Lovejoy by Colin Legg

[/caption]

It’s been one more day since Colin Legg posted his previous amazing photos and videos of Comet Lovejoy. This new version is even better, especially with it reflecting off the water.

Here’s what Colin had to say about it on IceinSpace:

Had another lovely view of the comet last night wandering the shore of the Estuary. It’s quite unique down there. The Perth and Mandurah sky domes light up the northern half of the sky, while the east and south east are pitch black (except for a couple of small towns). The north glow is enough to walk by once dark adapted.

Anyway, while wandering I came across a small embayment with still water and nice reflections of the comet. Used the same settings as last night to get the attached shot.

Check out some of Colin’s videos over on Vimeo.

Timelapse of Comet Lovejoy Rising by Colin Legg

Comet Lovejoy by Colin Legg
Comet Lovejoy by Colin Legg

Comet Lovejoy (2011 W3) rising over Western Australia from Colin Legg on Vimeo.

When Comet Lovejoy was approaching the Sun, many astronomers thought that it wouldn’t survive the journey when it reached the closest point of its orbit. And so everyone was surprised when it appeared on the far side of the Sun, battered, but still intact. Again, many astronomers predicted that it would now fade away as it traveled away from the Sun.

Well, guess what, Comet Lovejoy is now visible with the unaided eye… if you live in Australia, and you’re willing to get up at the crack of dawn.

Here’s a cool timelapse video of Comet Lovejoy rising in the morning captured by Colin Legg. You can see both the comet’s dust tail as well as its secondary plasma tail. Want to see more of Colin’s videos, check out his Vimeo page.

[/caption]

A big thanks to Mike Salway at IceinSpace for bringing this picture to our attention. And to Rod Brock on Google+ for opening my eyes to Comet’s Lovejoy’s potential as a bright comet.

Surprising Comet Lovejoy Now Becoming Merry and Bright

Comet Lovejoy photographed remotely with the FRAM telescope in Argentina on Dec. 17 by a Czech team of Jakub Cerny, Jan Ebr, Martin Jelinek, Petr Kubanek, Michael Prouza and Michal Ringes. Click to original image and more on the kommet.cz website.

[/caption]

It was almost a pre-holiday miracle that Comet Lovejoy survived its close encounter with the Sun on Dec. 15, 2011. But now, the feisty comet is making a ‘merry and bright’ comeback, re-sprouting its tail and showing up brilliantly when seen with binoculars and in telescopic images from southern hemisphere skywatchers.

“It was a big surprise that after going through the solar atmosphere it re-emerged with a beautiful tail,” Karl Battams told Universe Today. Battams is with Naval Research Laboratory and has been detailing the Comet Lovejoy’s incredible journey on the Sungrazing Comets website. “And basically within a day it was as bright after the encounter as it was before.”

The beautiful image above was taken on Dec. 17, 2011, clearly showing two gorgeous tails on Comet Lovejoy. See more from the Czech team that took the image at their website, Kommet.cz.

As much as this comet has surprised everyone, no one is going out on a limb and predicting it will become visible with the naked eye. But who knows? The comet’s discoverer, Austrailian amateur astronomer Terry Lovejoy was able to image the comet in the day time! ” I am hopeful of a nice binocular comet low in the dawn around Christmas time,” Lovejoy said on the Ice in Space website.

Comet Lovejoy in the early morning hours of Dec. 20, 2011. Credit: Ian Musgrave, Adelaide, South Australia, Australia

“Southern hemisphere viewers can see it now early in the morning,” Battams said via phone this morning. “It is going to become increasingly easy for them to see as it moves away from the Sun. I’m not sure it will increase in brightness anymore, as it has leveled off a little bit now. Odds are stacked in the favor of a nice nighttime show for southern viewers, and gradually it will fade away.”

Of course, Comet Lovejoy isn’t the only comet that has survived a close encounter with the Sun; in fact, some comets have even brightened to naked eye visibility after surviving a scorching from the Sun. The “Great Comets” of 1843 and 1882, and Comet Ikeya-Seki of 1965 were all Kreutz sungrazers – like Comet Lovejoy — and they all became brilliant after their solar encounters, with extraordinarily long tails.

Normally these comets don’t survive and are completely obliterated by the Sun. But the few that do – only 2 or 3 a century — can be very bright.

I had asked Battams on Friday – just after the comet emerged from behind the Sun – his thoughts on Comet Lovejoy and if it might follow the example of those previous surviving sungrazers.

“All bets are off as far as I’m concerned,” he wrote via email. “We thought this was a relatively small one — maybe a hundred or two meters in diameter. Clearly it can’t be. I did not expect it to survive perihelion as anything more than a diffuse blob that would rapidly dissipate. Instead it is pretty much as bright as it was before, just with less of a tail now.”

So keep a lookout for the holiday comet of 2011, the merry and bright Comet Lovejoy!

New NASA Probe – The Comet Harpoon

This is an artist's concept of a comet harpoon embedded in a comet. The harpoon tip has been rendered semi-transparent so the sample collection chamber inside can be seen. Credit: NASA/Chris Meaney/Walt Feimer

[/caption]

It’s not easy to sample a comet. These outer solar system travelers speed around the inner solar system at 241,000 km/h (150,000 mph) – twisting and turning while spewing chunks of ice, dust and debris. To consider landing on one becomes a logistical nightmare, but how about shooting at it? Why not send a mission to rendezvous with these frozen, inhospitable rocks and insert a probe? A method like this could even mean a sample could be taken where a landing would be impossible!

Thanks to the work of scientists at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, a new comet “harpoon” is being designed to make comet sample returns not only more efficient, but more detailed.


Roughly the size of a clothes closet, this syringe-like probe stands roughly two meters tall and will be inserted with a cross-bow like arrangement that will contact the surface of the comet. Positioned to fire vertically downward, this bow arrangement consists of a pair of truck leaf springs and 1/2 inch steel cable.. an arrangement which could fire up to a mile if pointed in the wrong direction! When it impacts, an electric winch will draw the bow back into position and eject the harpoon with 1,000 pounds of force at 100 feet per second.

So what would it be like to witness the harpooning of the cosmic whale? An explosive adventure, to be sure. Donald Wegel of NASA Goddard, lead engineer on the project, has been experimenting with the ballista and the core sample box in various impact environments. According to the press release, the resultant impact is something of a combination of rifle report and cannon blast.

This is a photo of the ballista testbed preparing to fire a prototype harpoon into a bucket of material that simulates a comet. Credit: NASA/Rob Andreoli

“We had to bolt it to the floor, because the recoil made the whole testbed jump after every shot,” said Wegel. “We’re not sure what we’ll encounter on the comet – the surface could be soft and fluffy, mostly made up of dust, or it could be ice mixed with pebbles, or even solid rock. Most likely, there will be areas with different compositions, so we need to design a harpoon that’s capable of penetrating a reasonable range of materials. The immediate goal though, is to correlate how much energy is required to penetrate different depths in different materials. What harpoon tip geometries penetrate specific materials best? How does the harpoon mass and cross section affect penetration? The ballista allows us to safely collect this data and use it to size the cannon that will be used on the actual mission.”

Studying comet core samples will provide researchers with important information on the original solar nebula and help us to further understand how life may have originated. “One of the most inspiring reasons to go through the trouble and expense of collecting a comet sample is to get a look at the ‘primordial ooze’ – biomolecules in comets that may have assisted the origin of life,” says Wegel. Comet sample return missions – such as the one from Wild 2 – have shown us that that amino acids exist in these inhospitable places, yet may have helped stimulate life here on Earth.

However, there’s more to the story than just searching out reasons for life… the biggest being the preservation of life itself. As we know, there’s always a possibility that a comet could impact Earth and create an extinction level event. By understanding comet composition, we can get a better grip on what we might need to do should a cataclysmic scenario rear its ugly head. For example, we’d know if a certain type of comet might tend to fragment – or another explode. “So the second major reason to sample comets is to characterize the impact threat,” according to Wegel. “We need to understand how they’re made so we can come up with the best way to deflect them should any have their sights on us.”

“Bringing back a comet sample will also let us analyze it with advanced instruments that won’t fit on a spacecraft or haven’t been invented yet,” adds Dr. Joseph Nuth, a comet expert at NASA Goddard and lead scientist on the project.

If we were to be in a movie, perhaps we might consider getting a comet sample through a method like drilling – but lack of gravity on these small, moving worlds isn’t going to allow that to happen. “A spacecraft wouldn’t actually land on a comet; it would have to attach itself somehow, probably with some kind of harpoon. So we figured if you have to use a harpoon anyway, you might as well get it to collect your sample,” says Nuth.

This is a demonstration of the sample collection chamber. Credit: NASA/Rob Andreoli

At the present, the design team is currently hard at work studying the harpoon’s reactions to different mediums – and what needs to be done to sample and collect what they might encounter. This isn’t easy considering they are working with a basic unknown.

“You can’t do this by crunching numbers in a computer, because nobody has done it before — the data doesn’t exist yet,” says Nuth. “We need to get data from experiments like this before we can build a computer model. We’re working on answers to the most basic questions, like how much powder charge do you need so your harpoon doesn’t bounce off or go all the way through the comet. We want to prove the harpoon can penetrate deep enough, collect a sample, decouple from the tip, and retract the sample collection device.”

Nothing will be left to chance, however. By creating multiple tips, collection devices and planning for different firing techniques and needs, the team is sure to make the most of their research dollars and the spacecraft that will be available to them. To further assist in their planning, they will also be able to use data from the current Rosetta mission and its lander, Philae, which will hook up with “67P/Churyumov-Gerasimenko” in 2014.

“The Rosetta harpoon is an ingenious design, but it does not collect a sample,” says Wegel. “We will piggyback on their work and take it a step further to include a sample-collecting cartridge. It’s important to understand the complex internal friction encountered by a hollow, core-sampling harpoon.” Even more information will be added from recent NASA mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security — Regolith Explorer), which is an asteroid sample return mission. It will all add up to some very unique findings and one thing we do know is…

“Admiral? Thar’ be whales here…”

Best Look Yet of Comet Lovejoy’s Slingshot Around the Sun

There have been some great images and video of Comet Lovejoy’s close encounter with the Sun, but this video put together by Scott Wiessinger from Goddard Spaceflight Center combines and zooms in on the best views from the Solar Dynamics Observatory (SDO), which adjusted its cameras in order to watch the trajectory.

The first part of the video from SDO, (taken in 171 Angstrom wavelength, which is typically shown in yellow) was filmed on Dec 15, 2011 showing Comet Lovejoy moving in toward the Sun, with its tail “wiggling” from its interaction with the solar wind. The second part of the clip shows the comet exiting from behind the right side of the Sun, after an hour of travel through its closest approach.

No time travel with this slingshot around the Sun, but it is amazing to be able to follow this comet’s journey so closely!

Feisty Comet Lovejoy Survives Close Encounter with the Sun

An image received on Dec. 16th from the Solar and Heliospheric Observatory confirm that Comet Lovejoy survived perihelion and is now receding from the Sun. Credit: NASA, notations by Karl Battams.

It’s the morning after for the sungrazing Comet Lovejoy, and this feisty comet has scientists shaking their heads in disbelief. “I don’t know where to begin,” wrote Karl Battams, from the Naval Research Laboratory, who curates the Sun-grazing comets webpage. “What an extraordinary 24hrs! I suppose the first thing to say is this: I was wrong. Wrong, wrong, wrong. And I have never been so happy to be wrong!”

Many experts were predicting Comet Lovejoy would not survive perihelion, where it came within about 120,000 km from the Sun. But some extraordinary videos by NASA’s Solar Dynamics Observatory showed the comet entering and then surprisingly exiting the Sun’s atmosphere. Battams said he envisioned that if the comet survived at all, what would be left would be just a very diffuse component that would endure maybe a few hours after its close encounter with the Sun. But somehow it survived, even after enduring the several million-degree solar corona for nearly an hour. However, Comet Lovejoy appears to have lost its tail, as you can see in the image below.

[/caption]

The comet is now in the view of other spacecraft, which will continue monitoring the object. It will likely grow a “new” tail as outgassing of dust, gas and debris will continue. It is not known yet how much of Comet Lovejoy’s core remains — which was 200 meters in diameter earlier this week — or how long it will continue to stay together after its close brush with the Sun.

But we’ll keep you posted!

See more videos of Lovejoy’s survival below:

Watch as Comet Lovejoy Takes a Death-Dive Into the Sun

A comet discovered on Dec. 2, 2011 is now on a near collision course with the Sun, and likely won’t survive such a close encounter. The best part is that you can follow along and watch as it happens! Comet C/2011 W3 Lovejoy will pass behind the sun at around 24:00 UTC (7 pm EST) on Thursday, Dec. 15, 2011 and probably won’t be seen again. In the video above, processed images from the STEREO A spacecraft shows Comet Lovejoy blazing towards the Sun, with the comet’s tail wiggling as it interacts with the solar wind.

The Solar Dynamics Observatory website has a special page where they will be uploading the latest images of the comet as it meets its fiery fate. As Comet Lovejoy moves toward perihelion, the SDO team will point SDO a little to the left of the Sun to try and see the tail of the comet with their instruments. This website will allow you to see those images as quickly as they can download them from the spacecraft.

Science live and in action!

Astronomers and various spacecraft have been keeping an eye on Comet Lovejoy the past few days as this Kreutz-group comet headed towards the Sun. Just today (Thursday) the images from the SOHO spacecraft showed the comet sprouting a bulbous head. This is occurring because the comet is getting so bright, it is overwhelming the detectors on the SOHO satellite. “The photons are ‘bleeding’ out to form that cross-like pattern,” said Dan Pendick on the Geeked On Goddard website.

Pendick also quoted solar scientist Jack Ireland from Goddard, who noted that at times two tails can be seen on the comet. “The thick white tail is primarily dust breaking away from the comet nucleus,” Ireland said, as the Sun’s radiation and solar wind that knocks material off the comet nucleus. But to the left is a tail of charged particles (ions) being deflected to the side by the magnetic field carried by the solar wind.

At its closest approach, Comet Lovejoy will pass just 120,000 km above the solar surface. At that distance, the icy comet is not expected to survive the Sun’s fierce heat. But the comet could actually disintegrate at any moment. Kreutz comets have a tendency to evaporate as they approach, or pass close to the Sun.

If the comet does stay the course and stay visible until it goes around the Sun, we likely won’t be able to see its demise because its closest approach will take place on the far side of the Sun.

But this is a great chance to watch this event as it is about to happen.

“We have here an exceptionally rare opportunity to observe the complete vaporization of a relatively large comet, and we have approximately 18 instruments on five different satellites that are trying to do just that,” wrote Karl Battams, from the Naval Research Laboratory, who curates the Sun-grazing comets webpage, and has been documenting Lovejoy’s journey.

Amateur astronomers have been trying to capture this event as well, with everyone wondering how bright the comet will get. For updates from amateur astronomers, check out the Yahoo Groups comet observers forum.

Comet C/2011 W3 Lovejoy was actually discovered by an amateur, Australian astronomer Terry Lovejoy (hence the comet’s name.) This is the first Kreutz comet found from a ground-based observer since 1970, and it was spotted with a modest 8″ telescope too! You can read Lovejoy’s tale of his discovery here.

On average, new Kreutz-group comets are discovered every few days by spacecraft like SOHO, but from the ground they are much rarer to see and harder to discover.

“This is the first ground-based discovery of a Kreutz-group comet in 40 years, so we really can’t be sure just how bright it will get,” said Battams. “However, I do think that it will be the brightest Kreutz-group comet SOHO has ever seen.”

Comet Lovejoy’s spectacular progress can also be monitored via the web at SOHO’s LASCO instrument page.

For the SDO special webpage, images from SDO take about 30 minutes to move from the spacecraft until they are available on the website. The SOD team plans to off-point the spacecraft at 23:30 UTC (6:30 pm ET) and return to normal solar observing at 12/16 00:30 UTC (7:30 pm ET). Images should start arriving by 24:00 UTC (7 pm EST.)

Coming Attraction: Geminid Meteor Shower 2011

Credit: Wally Pacholka

[/caption]
It’s the finale of this year’s meteor showers: The Geminids will start appearing on Dec. 7 and should reach peak activity around the 13th and 14th. This shower could put on a display of up to 100+ meteors (shooting stars) per hour under good viewing conditions.

However, conditions this year are not ideal with the presence of a waning gibbous Moon (which will be up from mid-evening until morning). But seeing meteors every few minutes is quite possible. Geminid meteors are often slow and bright with persistent coloured trails which can linger for a while after the meteor has burned up.

There is something unusual about the Geminid meteor shower, as normally meteor showers are caused by the Earth ploughing through the debris streams created by comets and their tails. But the object that created the specific stream of debris associated with the Geminids is not a dusty icy comet, but a rocky asteroid called Phaethon 3200.

Phaethon 3200 belongs to a group of asteroids whose orbit cross the Earth’s. It turns out to be an unusual member of that group: Not only does it pass closer to the Sun than the others but it also has a different colour, suggesting a different composition to most asteroids.

Credit: Adrian West

One of the curious things about the Geminid particles is that they are more solid than meteoroids known to come from comets. This is good for meteor watchers; giving us brighter meteors.

Observations by astronomers over decades have shown that meteor rates have increased as we reach denser parts of the stream.

It is not known exactly when the asteroid was deflected into its current orbit, but if it was originally a comet it would have taken a long time for all the ices to have been lost. However, it is possible that it may have been a stony asteroid with pockets of ice.

We are unsure of the origins and appearance of Phaethon 3200, but its orbit has left us with a unique legacy every December, with little steaks of light known as the Geminid meteor shower.

You will only need your eyes to watch the meteor shower, you do not need telescopes binoculars etc, but you will need to be patient and comfortable. See this handy guide on how to observe meteors

During a meteor shower, meteors originate from a point in the sky called the radiant and this gives rise to the showers name e.g. The Geminids radiant is in Gemini, Perseids radiant is in Perseus etc.

Don’t be mislead by thinking you have to look in a particular part of or direction of the sky, as meteors will appear anywhere and will do so at random. You will notice that if you trace back their path or trajectory it will bring you to the meteor showers radiant. The exception to this rule is when you see a sporadic or rogue meteor.

Tell your friends, tell your familly and tell everyone to look up and join in with the Geminid meteorwatch on the 12th to the 14th December 2011. Use the #meteorwatch hashtag on twitter and visit meteorwatch.org for tips and guides on how to see and enjoy the Geminids and other meteor showers.

Credit: Wally Pacholka

Latest Images of Comet Elenin: Not Much to See

Screenshot of a video of images from the GRAS telescopes in Mayhill Station, New Mexico on Oct. 21, 2011, showing what might be a diffuse blob of material, all that's left of Comet Elenin. Credit: Ernesto Guido, Giovanni Sostero and Nick Howes.

[/caption]

A series of images of Comet Elenin taken on October 21, 2011 might show an “extremely faint and diffuse blob of light,” according to Ernesto Guido, Giovanni Sostero and Nick Howes, who used two remote telescopes in New Mexico to image again the field of view where Comet Elenin should be. Their first observing session with a 10” reflector showed no obvious moving object in the telescope’s field of view, while the second session a 0.1 meter refractor showed a hint of something moving in the background when images taken 2 hours apart were “blinked,” but interference from moonlight hasn’t been ruled out.

The trio of astronomers encourage other observers to confirm or refute this view with additional observations/images. “We suggest the use of wide-field, fast focal ratio scopes, possibly under very good sky conditions,” they said.

You can see more at the Remanzacco Observatory website, including a video of the “blinking.”

Faulkes Team Images Trojan Jupiter Comet

Jupiter Comet

Based on an observation posted on the Near Earth Object confirmation page from an image taken by A. D. Grauer using the mount Lemmon observatory, Faulkes telescope team members Nick Howes, Giovanni Sostero and Ernesto Guido along with University of Glamorgan student Antos Kasprzyk and amateur astronomer Iain Melville, imaged what is potentially some of the first direct evidence for a Trojan Jupiter Comet

Comet P/2010 TO20 (LINEAR-GRAUER) was immediately recognised by the team from looking at the orbit to be a highly unusual object, but it was only when the images came through from the faulkes observations that the true nature of the object became clear

The observations showed a distinct cometary appearance, with a sharp central condensation, compact coma and a wide, fan-shaped tail.

This is no ordinary comet, and supports the theory and initial spectral observation work by a team using the keck telescope in Hawaii. Closer analysis of their object (part of a binary known as the Patroclus pair) showed that it was made of water ice and a thin layer of dust, but at the time of writing, no direct images of a Jupiter Trojan showing evidence of a coma and tail had been taken.

The Faulkes teams above image, combined with the original observations by Grauer clearly show a cometary object, thus confirming the Keck team’s hypothesis.

According to the CBET released today “After two nights of observations of Grauer’s comet had been received at the Minor Planet Center.
Spahr realized that this object was identical with an object discovered a year ago by the LINEAR project (discovery observation tabulated below; cf. MPS 351583) that appeared to be a Jupiter Trojan minor planet.”

The observations have now proved it is not a minor planet, but a comet.

This discovery could provide new clues about the evolution of the Solar System, suggesting that the Gas Giants formed closer to the Sun and as they moved further away, they caused massive perturbations with Kuiper Belt objects, trapping some in their own orbits.

Nick Howes on the Faulkes team said “When we first saw the preliminary orbit, we knew it was a quite remarkable object” Howes also added “To have a University Student also involved is terrific for the degree program at Glamorgan and also for the Faulkes project. We’d like to extend our congratulations to Al Grauer” for his detection of this groundbreaking new comet” and we’re immensely proud to be part of the CBET released by the IAU confirming its nature

References:
Space Is Ace
Spacedaily.com
Remanzacco Observatory