Fizzy Comet Hartley 2 is Throwing Snowballs

This 3-D image shows the entire nucleus of Hartley 2 with jets and an icy particle cloud. Circles have been added to highlight the location of individual particles. Image Credit: NASA/JPL-Caltech/UMD/Brown

[/caption]

As Jessica Sunshine said, Comet Hartley 2 might be the smallest of the five comets that our spacecraft have visited, but no doubt it is the most interesting, and for its size, the most active. Sunshine is the EPOXI mission deputy principal investigator, and she and her team have had the chance to analyze images from the Nov. 4 flyby of the comet. Closeup views yielded some big surprises: Hartley 2 is throwing snowballs.

“When we first saw all the specks surrounding the nucleus, our mouths dropped,” said Pete Schultz, EPOXI mission co-investigator at Brown University. “Stereo images reveal there are snowballs in front and behind the nucleus, making it look like a scene in one of those crystal snow globes.”

Estimates of the size of the largest particles ranges from a golf ball to a basketball.

Another surprise, which was noted almost immediately from the flyby images, were that the very active jets on the comet were powered by carbon dioxide. “This is the first time we’ve ever seen individual chunks of ice in the cloud around a comet or jets definitively powered by carbon dioxide gas,” said Michael A’Hearn, principal investigator for the spacecraft. “We looked for, but didn’t see, such ice particles around comet Tempel 1,” the comet that the Deep Impact spacecraft flew by in 2005.

Here are highlights from the press conference last week, along with some of the fantastic imagery of Comet Hartley 2.

Hartley 2 CO2 jet up close. Credit: NASA/JPL-Caltech/UMD/Brown
Comet Hartley 2 can be seen in glorious detail in this image from NASA's EPOXI mission. It was taken as the spacecraft flew by around 6:59 a.m. PDT (9:59 a.m. EDT), from a distance of about 700 kilometers (435 miles). The comet's nucleus, or main body, is approximately 2 kilometers (1.2 miles) long and .4 kilometers (.25 miles) at the 'neck' or most narrow portion. Jets can be seen streaming out of the nucleus. Image credit: NASA/JPL-Caltech/UMD
This image from the High-Resolution Instrument on NASA's EPOXI mission spacecraft shows part of the nucleus of comet Hartley 2. The sun is illuminating the nucleus from the right. A distinct cloud of individual particles is visible. This image was obtained on Nov. 4, 2010, the day the EPOXI mission spacecraft made its closest approach to the comet. Image Credit: NASA/JPL-Caltech/UMD
Infrared scans of comet Hartley 2 by NASA's EPOXI mission spacecraft show carbon dioxide, dust, and ice being distributed in a similar way and emanating from apparently the same locations on the nucleus. Water vapor, however, has a different distribution implying a different source region and process. Image Credit: NASA/JPL-Caltech/UMD
This zoomed-in image from the High-Resolution Instrument on NASA's EPOXI mission spacecraft shows the particles swirling in a 'snow storm' around the nucleus of comet Hartley 2. Scientists estimate the size of the largest particles ranges from a golf ball to a basketball. They have determined these are icy particles rather than dust. The particles are believed to be very porous and fluffy. Image Credit: NASA/JPL-Caltech/UMD
The motion of some icy particles in the cloud around Hartley 2, as seen by NASA's EPOXI mission spacecraft. A star moving through the background is marked with red and moves in a particular direction and with a particular speed, while the icy particles move in random directions. The icy particles are marked in green, blue and light blue. Image Credit: NASA/JPL-Caltech/UMD/Brown
This image shows the nuclei of comets Tempel 1 and Hartley 2, as imaged by NASA's Deep Impact spacecraft, which continued as an extended mission known as EPOXI. Tempel 1 is five times larger than Hartley 2. Visible jets are easily seen in images of Hartley 2, but required extensive processing to be seen in images of Tempel 1. Tempel 1 is 7.6 kilometers (4.7 miles) in the longest dimension. Hartley 2 is 2.2 km (1.4 miles) long. The Tempel 1 image was built up from more than 25 images captured by the impactor targeting sensor on July 4, 2005. The Hartley 2 image was obtained by the Medium- Resolution Imager on Nov. 4, 2010.

Dances With Comets – C/2010 V1 Ikeya Murakami

For those of you working on your Comet Hunter’s certificates – or for those who just love these travelers from the Oort Cloud – there’s a new partner in the morning sky. Say hello to C/2010 V1 Ikeya Murakami! If you’re familiar with how a comet looks and already know the steps, then let the easiness lure you out. However, if you’ve never danced with a comet before, then come inside and we’ll teach you the steps…

Our first teacher is John Chumack of Galactic Images who sent us the lead picture for this article. Not all comets jump right out of the sky at you, and some require you wait for just the precise moment in time to catch it. As John says, “I had a very short window to grab it. I could not take more shots due to Dawn rising fast! But I did get very nice details… and it is sporting a little red tail, and a great bow shock!” As you can read, even just a few moments are worth it and the clue here is that Comet Ikeya Murakami isn’t in the easiest of places for most observers. How about if we find out exactly where to look?

Follow the green brick road! This morning comet Ikeya Murakami would have been a same field object with Saturn and it’s headed toward Venus. How easy can it get? Simply aim your binoculars at Saturn and slowly follow the trajectory towards Venus. By November 30 Ikeya Murakami will be about 2 degrees north of the stunningly bright planet and also a same field object in most binoculars.

So, what would the comet be like to watch for awhile? First off, remember that what you will see in binoculars and a small telescope will resemble a small, unresolved globular cluster. It will be a faint fuzzy with a faint tail. More aperture will help, but the approaching Sun is the real culprit here. Comet C/2010 V1 Ikeya Murakami won’t be terribly bright, but you might catch other interesting things while you watch, too. Just ask the one and only Joe Brimacombe!

If you don’t catch C/2010 V1 Ikeya Murakami on the first try – don’t be disappointed… And try again! (the “Aqua” Man would.) But don’t wait too long because the Moon is going to be along soon, making morning skies even brighter. If you do catch it, be sure to share your impressions with us…

Cuz’ there ain’t nothin’ like a little dance before dawn.

Hartley 2 in Motion: Stunning Morph Animation of Flyby Images

The folks from UnmannedSpaceflight.com have done it again. Daniel Machácek created this wonderful animation from just the five initial images of Hartley 2 that were released by the Deep Impact team immediately following its flyby on November 4, 2010, using Sqirlz Morph software. Time in the animation is five times faster than the actual speed of the flyby. Hartley 2 really does look like a flying bowling pin, except this one is 2km (1.25 miles) long and about .2 km in diameter. Thanks to Daniel for sharing his animation.

First Close Images of Hartley 2: It’s a Peanut with Jets

Comet Hartley as seen by the EPOXI spacecraft at closest approach. Credit: NASA

[/caption]

NASA’s Deep Impact spacecraft came within 700 kilometers (435 miles) of Comet Hartley 2 at 10:01 a.m. EDT (1401 GMT) today, imaging with several cameras. Here are the first pictures released of the closest approach.

The scientific team watched along with viewers online and on NASA TV as the images were returned to Earth, about an hour after the spacecraft made its closest approach. First impressions? It is a peanut with jets.

“This is a type of moment that scientists live for,” said JPL’s Don Yeomans, “to get new results in such a dramatic fashion. The images are clear, taken as spacecraft was approaching, then as it swung past and moved away.”

The Sun is off to right, and visible is the icy surface of the comet throwing dust and gas towards the Sun.


Another view of Comet Hartley 2 during EXPOXI close approach. Credit: NASA

More images will be coming down from the spacecraft and Yeomans said the scientists will be examining Hartley 2, looking for the origination spots of the jets. “Are the jets coming from the surface, or is it coming from well beneath where heat of Sun reaches into the comet? We’ll be looking for how many jets, or if possibly the whole comet outgassing. There is a single obvious jet coming off towards the Sun, but also you can see one at the 7 o’clock position, which was evident in previous images, too.”

Image of Hartley 2 as the EXPOXI spacecraft moved away from comet. Credit:NASA

The spacecraft uses several high-resolution instruments, and one camera can image the entire comet with a resolution of about seven meters (about 23 feet) per pixel. The spacecraft also acquired 199 medium-resolution images.

From previous images taken by EPOXI from a distance and radar images taken from the ground, scientists knew Hartley 2 was a bi-lobate comet, which means peanut- or pickle-shaped. But they didn’t know if it was a solid surface or a contact binary, where two smaller cometesimals were stuck together.

But, Yeomans said, these images show the comet is of a solid, one-piece construction.

EPOXI Principal Investigator Mike A’Hearn agreed. “Every time we go to a comet they are full of big surprises,” he said. “The comets we’ve seen up close all seem to work the same way, but they look very different so there must be some fundamental differences in the ways they work. It could be they came from different parts of the early solar system or that they evolved very differently. Finding out how the solar system formed is really what we want out of this.”

The discoverer of Hartley 2, Malcolm Hartley, was on hand at JPL for the closest approach. He found the comet 26 years ago as a smudge on photographic plates taken at the Siding Spring Observatory in Australia. “I was doing quality control of photographic plates and I noticed faint object with a telltale glow like a comet,” said Hartley, who still works at the same observatory. “It has been very interesting to be here, and it has been interesting for the science team and quite a challenge for the engineers. There’s going to be enough data downloaded to keep researchers busy for several years.”

See the EPOXI website for more images, and more will be coming down from the spacecraft over the next few days.

To see a “quick and dirty” animation of the flyby images, see this link provided by Doug Ellision of Unmanned Spaceflight.com (and JPL).

Hartley 2 Spawns Meteor Shower

Universe Image Gallery

[/caption]

The comet of the year for 2010 seems to be Hartley 2. Although this comet is receding from Earth now (its closest approach was in the latter half of October) and growing fainter, it seems to have left us with one last hurrah: The spawning a brief meteor shower.


Although other comets, such as 2009 R1 (McNaught) and 2P/Encke have passed earlier this year, none has presented an especially tempting target for amateur astronomers (both McNaught and Encke were too close to the Sun during perihelion to be easily observed). Additionally, Hartley is the target of a flyby of the Deep Impact probe bringing it further attention.

Meanwhile, observationally, the comet has been somewhat difficult to observe. I went out on October 17th to hunt for it with a 4″ telescope, but despite my best efforts, couldn’t find it. Although the comet was predicted to reach 5th magnitude, the growing nucleus has apparently become so diffuse, reaching over 1° in the sky, that it’s hard to spot. Undeterred, I attempted again this past weekend with my 8″ SCT. Again, my attempts were frustrated. Even a 15 second exposure with my camera barely brought out more than a smudge.

Yet that night we observed several bright meteors radiating from near Cassiopeia which is where Hartley had been a few weeks prior. We checked to ensure there weren’t any other annual meteor showers from that region. Sure enough, there weren’t, and we wondered if there might be a connection between Hartley’s passing and the meteors we witnessed.

Sure enough, just such a shower was a predicted possibility. Whether or not the shower would occur would depend on just how much dust Hartley had given off in the past and how diffuse the cloud had grown (on this pass and others) since its closest approach to Earth was still 12 million km. Although the meteors my friends and I witnessed were notable (around 2nd to 3rd magnitude) they came from the wrong direction. Meteors spawning from Hartley should have a radiant in Cygnus, the swan. But while ours may not have caught these “Hartley-ids”, others have been witnessing a far grander show in the past few nights that seem to come from the right direction.

In Seascape California, Helga Cabral caught a bright fireball. “I saw a bright white ball and tail, arcing towards the ocean. It was quite beautiful and it looked like it was headed out to sea and so picture perfect it could have been a movie!” A similar fireball was reported the same night near Boston, Massachusetts by Teresa Witham. The predicted peak of this shower occurs tonight so if you have a chance and clear skies, go out and look. As with most showers, there may be some stragglers just before and after so you may be able to catch some for the next few nights if conditions tonight aren’t favorable.

Meteors from Hartley 2 will have a relatively low velocity upon entering our atmosphere since the comet is traveling roughly in the same direction. As such, the expected velocity as it hits our planet is a mere 7 miles a second. The result of this is that they will likely travel slowly across the sky, taking perhaps as much as a few seconds. In contrast, the Leonid showers coming later this month have a relative velocity of 45 miles per second, which causes the meteors to streak across the entire sky in less than a second. The lower velocity for the Hartley-ids will also mean they won’t undergo as much frictional heating and will likely glow fainter shades of reds and yellows.

Watch Live Coverage of EPOXI’s Hartley 2 Encounter on Nov. 4

Comet 103P/Hartley 2 Animation, created by images taken by Patrick Wiggins, NASA/JPL Solar System Ambassador to Utah. Used by permission.

Watch live coverage of the EPOXI mission’s close flyby of Comet Hartley 2. Live coverage begins on November 4, 2010 at 9:30 a.m. EDT (6:30 a.m. PDT) from mission control at the Jet Propulsion Laboratory. You can watch NASA TV’s Media Channel online at this link, (and make sure you click on the “Media Channel” tab on the right side of the “tv” screen). You can also watch on JPL’s UStream channel online. Coverage includes closest approach, an educational segment, and the return of close-approach images. Emily Lakdawalla of the Planetary Society Blog has posted a very detailed timeline of the encounter.
Continue reading “Watch Live Coverage of EPOXI’s Hartley 2 Encounter on Nov. 4”

A Comet that Gives Twice?

A green and red Orionid meteor striking the sky below Milky Way and to the right of Venus. Zodiacal light is also seen at the image The trail appears slightly curved due to edge distortion in the lens. Taken by Mila Zinkova
A green and red Orionid meteor striking the sky below Milky Way and to the right of Venus. Zodiacal light is also seen at the image The trail appears slightly curved due to edge distortion in the lens. Taken by Mila Zinkova

[/caption]

While historically, meteor showers were portents of ill omens, we know today that they are the remnants of ejecta from comets entering our atmosphere. Many showers have had their parent comets identified. But a new study is suggesting that two meteor showers, the December Monocerotids and the November Orionids, may share the same parent.


The possibility of a single comet providing multiple showers isn’t too difficult to imagine. Since comets orbit the Sun in elliptical paths there are two potential points the path can intersect Earth’s orbit: Once on the way in and once on the way out. The trouble is that comets don’t tend to orbit directly in the ecliptic plane (defined by the plane on which the Earth orbits the Sun). Thus, comets only puncture through this plane at points known as “nodes”. As a body passes from the upper half to the lower (where upper and lower are the halves defined by Earth’s north and south poles respectively) this point of intersection of the orbit with the ecliptic plane is known as the descending node. When it heads back up, this is the ascending node. If both nodes happen to lie near enough to Earth’s orbital path, the potential for two meteor showers exists. Another possibility is that orbital evolution cause the nodes to change their position and, over time, crossed Earth’s orbit at two different points.

In principle, identifying a parent comet for two showers is much simpler with the first method. In that instance, the comet still orbits in the same path (or near enough) to be conclusively identified as the progenitor. If such an instance were to arise due to orbital evolution, the case must be much more indirect since interactions with planets, even at fairly large distances, can induce large uncertainties in the orbital history.

The December Monocerotids have been associated with a comet known as C/1917 F1 Mellish. Unfortunately for the researchers, the current orbital characteristics of the comet did not feature nodes in Earth’s orbit and did not match the November Orionids. Thus, to establish a connection between the two meteor streams, the team of astronomers from Comenius University in Slovakia, looked at the characteristics of the showers. In order to track these characteristics, the team utilized a publicly available database of meteor recordings from SonotaCo which uses webcams to capture video of meteors and then compute the orbital characteristics of the debris. However, the two showers did share suspiciously similar distributions of sizes (and thus brightnesses) of meteors as well as the velocity and less so, but still notable, the eccentricity.

This led the team to suspect that the node had evolved across Earth’s orbit sweeping by once in the past to create the stream of debris that forms the November shower, and more recently, crossed our orbit to create the December shower. If this hypothesis were correct, the team expected to also find subtle differences hinting that the November shower was older. Sure enough, the November Orionids show a larger dispersion of velocities than that of the December shower.

In the future, the team plans to revise the orbital characteristics of the parent comet. While they were able to show that the precession of the orbit would allow for the situation described, it was only one of a number of possible solutions. Thus, refining the knowledge of the orbit, perhaps from archival photographic plates, would allow the team to better constrain the path and determine the orbital history sufficiently to reinforce or refute their scenario.

Comet Hartley 2 Scouted by WISE, Hubble for Upcoming Encounter

This image of Hartley 2 - Deep Impact's next cometary target - was taken on Sept. 25th by the Hubble Space Telescope. Image Credit: NASA, ESA, H. Weaver (The Johns Hopkins University/Applied Physics Lab)

[/caption]

In a little less than a month, NASA’s Deep Impact spacecraft (its current mission is called EPOXI) will fly by the comet Hartley 2 to image the comet’s nucleus and take other measurements. In preparation for this event, both the Wide-field Infrared Survey Explorer (WISE) and the Hubble Space Telescope have imaged the comet, scouting out the destination for Deep Impact.

On November 4th of this year, Deep Impact will come within 435 miles (700 km) of the comet Hartley 2, close enough to take images of the comet’s nucleus.

The name of the mission is EPOXI, which is a combination of the names for the two separate missions the spacecraft has been most recently tasked with: the extrasolar planet observations, called Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI). The spacecraft itself is still referred to as Deep Impact, though, despite the changes and extensions of its mission.

NASA’s Deep Impact mission to slam a copper weight into comet Tempel 1 was a wonderful success, sending back data that greatly improved our understanding of the composition of comets. After the encounter, though, there was still a lot of life left in the spacecraft, so it was tasked with another cometary confrontation: take images of the comet Hartley 2.

Deep Impact is an example of NASA using a single spacecraft to perform multiple, disparate missions. In addition to impacting and imaging Tempel 1 and performing a flyby of Hartley 2, the spacecraft took observations of 5 different stars outside of our Solar System during the period between January and August of 2008 (8 were scheduled, but some observations were missed due to technical difficulties).

It looked at stars with known exoplanets to observe transits of those planets in front of the star, giving astronomers a better idea of the orbital period, albedo – or reflectivity – and size of the planets.

Click here for a list of the various stars and transits it observed, as listed on the mission page.

Deep Impact also took data on both the Earth and Mars as they passed in front of our own Sun, to help characterize what exoplanets with a similar size and composition the Earth and Mars would look like passing in front of a star.

NASA's WISE infrared observatory took this image of Hartley 2, showing the extent of its tail, on May 10th, 2010. Image Credit: NASA/JPL-Caltech/UCLA

As of September 29th, Deep Impact was about 23 million miles (37 million km) away from Hartley 2. It is approaching at roughly 607,000 miles a day (976,000 km), so that puts it at about 18 million miles (29 million km) away from the comet today. As it approaches, Deep Impact will speed up, to over 620,000 miles (1,000,000 km) per day.

The path of Comet Hartley 2. Image courtesy Sky & Telescope.

You won’t have to depend on NASA’s observatories and the spacecraft to see a view of Hartley 2, though – you should be able to see it with the naked eye or binoculars near the constellation Perseus throughout the month of October. On October 20th, it will make its closest approach to Earth at a distance of 11 million miles (17.7 million km). The comet is officially designated 103P Hartley, and for viewing information you can go to Heavens Above.

As always, check this space regularly for updates on the upcoming flyby.

Sources: JPL here, here and here, Hubblesite, Heavens Above

Trojans May Yet Rain Down

It would be an interesting survey to catalog the initial reactions readers have to “Trojans”. Do you think first of wooden horses, or do asteroids spring to mind? Given the context of this website, I’d hope it’s the latter. If so, you’re thinking along the right lines. But how much do you really know about astronomical Trojans?

While most frequently used to discuss the set of objects in Jupiter’s orbital path that lie 60º ahead and behind the planet, orbiting the L4 and L5 Lagrange points, the term can be expanded to include any family of objects orbiting these points of relative stability around any other object. While Jupiter’s Trojan family is known to include over 3,000 objects, other solar system objects have been discovered with families of their own. Even one of Saturn’s moons, Tethys, has objects in its Lagrange points (although in this case, the objects are full moons in their own right: Calypso and Telesto).

In the past decade Neptunian Trojans have been discovered. By the end of this summer, six have been confirmed. Yet despite this small sample, these objects have some unexpected properties and may outnumber the number of asteroids in the main belt by an order of magnitude. However, they aren’t permanent and a paper published in the July issue of the International Journal of Astrobiology suggests that these reservoirs may produce many of the short period comets we see and “contribute a significant fraction of the impact hazard to the Earth.”

The origin of short period comets is an unusual one. While the sources of near Earth asteroids and long period comets have been well established, short period comets parent locations have been harder to pin down. Many have orbits with aphelions in the outer solar system, well past Neptune. This led to the independent prediction of a source of bodies in the far reaches by Edgeworth (1943) and Kuiper (1951). Yet others have aphelions well within the solar system. While some of this could be attributed to loss of energy from close passes to planets, it did not sufficiently account for the full number and astronomers began searching for other sources.

In 2006, J. Horner and N. Evans demonstrated the potential for objects from the outer solar system to be captured by the Jovian planets. In that paper, Horner and Evans considered the longevity of the stability of such captures for Jupiter Trojans. The two found that these objects were stable for billions of years but could eventually leak out. This would provide a storing of potential comets to help account for some of the oddities.

However, the Jupiter population is dynamically “cold” and does not contain a large distribution of velocities that would lead to more rapid shedding. Similarly, Saturn’s Trojan family was not found to be excited and was estimated to have a half life of ~2.5 billion years. One of the oddities of the Neptunian Trojans is that those few discovered thus far have tended to have high inclinations. This indicates that this family may be more dynamically excited, or “hotter” than that of other families, leading to a faster rate of shedding. Even with this realization, the full picture may not yet be clear given that searches for Trojans concentrate on the ecliptic and would likely miss additional members at higher inclinations, thus biasing surveys towards lower inclinations.

To assess the dangers of this excited population, Horner teamed with Patryk Lykawka to simulate the Neptunian Trojan system. From it, they estimated the family had a half life of ~550 million years. Objects leaving this population would then undergo several possible fates. In many cases, they resembled the Centaur class of objects with low eccentricities and with perihelion near Jupiter and aphelion near Neptune. Others picked up energy from other gas giants and were ejected from the solar system, and yet others became short period comets with aphelions near Jupiter.

Given the ability for this the Neptunian Trojans to eject members frequently, the two examined how many of the of short period comets we see may be from these reservoirs. Given the unknown nature of how large these stores are, the authors estimated that they could contribute as little as 3%. But if the populations are as large as some estimates have indicated, they would be sufficient to supply the entire collection of short period comets. Undoubtedly, the truth lies somewhere in between, but should it lie towards the upper end, the Neptunian Trojans could supply us with a new comet every 100 years on average.

Fully Functional Pan-STARRS is now Panning for Stars, Asteroids and Comets

Pan-STARRS PS1 Observatory. Image courtesy of Rob Ratkowski Photography and the Haleakala Amateur Astronomers.

[/caption]

There’s a new eye on the skies on the lookout for ‘killer’ asteroids and comets. The first Pan-STARRS (Panoramic Survey Telescope & Rapid Response System) telescope, PS1, is fully operational, ready to map large portions of the sky nightly. It will be sleuthing not just for potential incoming space rocks, but also supernovae and other variable objects.

“Pan-STARRS is an all-purpose machine,” said Harvard astronomer Edo Berger. “Having a dedicated telescope repeatedly surveying large areas opens up a lot of new opportunities.”

“PS1 has been taking science-quality data for six months, but now we are doing it dusk-to-dawn every night,” says Dr. Nick Kaiser, the principal investigator of the Pan-STARRS project.

Pan-STARRS PS1 Observatory just before sunrise on Haleakala, Maui. Credit: Harvard-Smithsonian Center for Astrophyiscs

Pan-STARRS will map one-sixth of the sky every month and basically be on the lookout for any objects that move over time. Frequent follow-up observations will allow astronomers to track those objects and calculate their orbits, identifying any potential threats to Earth. PS1 also will spot many small, faint bodies in the outer solar system that hid from previous surveys.

“PS1 will discover an unprecedented variety of Centaurs [minor planets between Jupiter and Neptune], trans-Neptunian objects, and comets. The system has the capability to detect planet-size bodies on the outer fringes of our solar system,” said Smithsonian astronomer Matthew Holman.

Pan-STARRS features the world’s largest digital camera — a 1,400-megapixel (1.4 gigapixel) monster. With it, astronomers can photograph an area of the sky as large as 36 full moons in a single exposure. In comparison, a picture from the Hubble Space Telescope’s WFC3 camera spans an area only one-hundredth the size of the full moon (albeit at very high resolution).

This sensitive digital camera was rated as one of the “20 marvels of modern engineering” by Gizmo Watch in 2008. Inventor Dr. John Tonry (IfA) said, “We played as close to the bleeding edge of technology as you can without getting cut!”

Each image, if printed out as a 300-dpi photograph, would cover half a basketball court, and PS1 takes an image every 30 seconds. The amount of data PS1 produces every night would fill 1,000 DVDs.

Another view of Pan STARRS PS1 Observatory. Image courtesy of Rob Ratkowski Photography and the Haleakala Amateur Astronomers.

“As soon as Pan-STARRS turned on, we felt like we were drinking from a fire hose!” said Berger. He added that they are finding several hundred transient objects a month, which would have taken a couple of years with previous facilities.

Located atop the dormant volcano Haleakala (that’s Holy Haleakala to you, Bad Astronomer) Pan-STARRS exploits the unique combination of superb observing sites and technical and scientific expertise available in Hawaii.

Source: CfA