Space Catapult Startup SpinLaunch has Come Out of Stealth Mode. Space catapults? Yes Please

SpinLaunch's company hangar. Credit: SpinLaunch

Of all challenges presented by space exploration – and to be fair, there are many! – one of the greatest is the cost. When it comes right down to it, launching disposable rockets from Earth and getting them to the point where they can achieve escape velocity and reach space is expensive. In addition, these rockets need to be big, powerful and hold a lot of fuel to lift spacecraft or cargo.

For this reason, so many efforts in the past few decades have been focused on reducing the cost of individual launches. There are many ways to make launch vehicles cheaper, ranging from reusable rockets to reusable spacecraft (i.e., the Space Shuttle). But to Jonathan Yaney, the founder of SpinLaunch, a real cost-cutting solution is to propel smaller payloads into orbit using a space catapult instead.

The concept of a space catapult is simple and has been explored at length since the dawn of the Space Age. Also known as a mass driver or coilgun, the concept relies on a set of powerful electromagnetic rails to accelerate spacecraft or payloads to escape velocity and launch them horizontally. Since the 1960s, NASA has been exploring the concept as an alternative to conducting rocket launches.

The Magnetic Levitation (MagLev) System is being evaluated at NASA’s Marshall Space Flight Center. Credit: NASA

In addition, NASA has continued developing this technology through the Marshall Space Flight Center and the Kennedy Space Center. Here, engineers have been working on ways to launch spacecraft horizontally using scramjets on an electrified track or gas-powered sled. A good example of this is the Magnetic Levitation (MagLev) System which uses the same technology as a maglev train to accelerate a small space plane into orbit.

Another variation on the concept involves a centrifuge, where the spacecraft or cargo is accelerated on a circular track until it reaches escape velocity (and then launches). This concept was proposed by Dr. Derek Tidman – a physicist who specialized in electrothermal and electromagnetic acceleration – in the 1990s. Known as the Slingatron, this version of the space catapult is currently being researched by HyperV Technologies.

However, these ideas were never adopted because vast improvements in electromagnetic induction technology were needed to achieve the speed necessary to put heavy payloads into space. But thanks to advancements in high-speed maglev trains, recent attempts to create Hyperloop pods and tracks, and the growth of the commercial aerospace market, the time may be ripe to revisit this concept.

Such is the hope of Jonathan Yaney, an aerospace enthusiast with a long history of co-founding startups. As he describes himself, Yaney is a “serial entrepreneur” who has spent the past 15 years founding companies in the fields of consulting, IT, construction, and aerospace. Now, he has established SpinLaunch for the sake of launching satellites into space.

SpinLaunch’s company logo. Credit: SpinLaunch

And while Yaney has been known for being rather recluse, TechCrunch recently secured an exclusive interview and gained access to the company hangar. According to multiple sources they cite, Yaney and the company he founded are launching a crowdfunding campaign to raise the $30 million in Series A funding to develop the catapult technology. In the course of the interview, Yaney expressed his vision for space exploration as follows:

“Since the dawn of space exploration, rockets have been the only way to access space. Yet in 70 years, the technology has only made small incremental advances. To truly commercialize and industrialize space, we need 10x tech improvement.”

According to a source cited by TechCrunch, SpinLaunch’s design would involve a centrifuge that accelerates payloads to speeds of up to 4,828 km/h (3,000 mph). Additionally, the cargo could be equipped with supplemental rockets to escape Earth’s atmosphere. By replacing rocket boosters with a kinetic launch system, SpinLaunch’s concept would rely on principles similar to those explored by NASA.

But as he went on to explain, the method his company is exploring is different. “SpinLaunch employs a rotational acceleration method, harnessing angular momentum to gradually accelerate the vehicle to hypersonic speeds,” he said. “This approach employs a dramatically lower cost architecture with much lower power.” Utilizing this technology, Yaney estimates that the costs of individual launches could be reduced to $500,000 – essentially, by a factor of 10 to 200.

A lunar base, as imagined by NASA in the 1970s. Credit: NASA

According to Bloomberg Financial, not much more is known about the company or its founder beyond a brief description. However, according to SEC documents cited by TechCrunch, Yaney managed to raise $1 million in equity in 2014 and $2.9 million in 2015. The same documents indicate that he was $2.2 million in debt by mid-2017 and another $2 million in debt by late 2017.

Luckily, the Hawaii state senate introduced a bill last month that proposed issuing $25 million in bonds to assist SpinLaunch with constructing its space catapult. Hawaii also hopes to gain construction contracts for the launch system as part of its commitment to making space accessible. As it states in the bill:

“[T]he department of budget and finance, with the approval of the governor, is authorized to issue special purpose revenue bonds in a total amount not to exceed $25,000,000, in one or more series, for the purpose of assisting SpinLaunch Inc., a Delaware corporation, in financing the costs relating to the planning, design, construction, equipping, acquisition of land, including easements or other interests therein, and other tangible assets for an electrically powered, kinetic launch system to transport small satellites into low Earth orbit.”

In the meantime, Yaney is looking to the public and several big venture capital firms to raise the revenue he needs to make his vision a reality. Of course, beyond the issue of financing, several technical barriers still need to be addressed before a space catapult could be realized. The most obvious of these is how to overcome the air resistance produced by Earth’s dense atmosphere.

However, Yaney was optimistic in his interview with TechCrunch, claiming that his company is investigating these and other challenges:

“During the last three years, the core technology has been developed, prototyped, tested and most of the tech risk retired. The remaining challenges are in the construction and associated areas that all very large hardware development and construction projects face.”

There’s no indication of when such a system might be complete, but that’s to be expected at this point. However, with the support of the Hawaiian government and some additional capital, his company is likely to secure its Series A funding and begin moving to the next phase of development. Much like the Hyperloop, this concept may prove to be one of those ideas that keep advancing because of the people who are willing to make it happen!

And be sure to check out this video about SpinLaunch’s crowdfunding campaign, courtesy of Scott Manley:

Further Reading: TechCrunch

Perhaps the Best Part of Electron’s Successful Launch was its Payload: the Humanity Star

Peter Beck, founder of Rocket Lab, is shown with the Humanity Star. Credit: Rocket Lab

This past weekend, the New Zealand-based aerospace company Rocket Lab reached another milestone. On Sunday, January 21st, the company conducted the second launch – the first having taken place this past summer – of its Electron booster. This two-stage, lightweight rocket is central to the company’s vision of reducing the costs of individual launches by sending light payloads to orbit with regular frequency.

This mission was also important because it was the first time that the company sent payloads into orbit. In addition to several commercial payloads, the launch also sent a secret payload into orbit at the behest of the company’s founder (Peter Beck). It is known as the “Humanity Star“, a disco-like geodesic sphere that measures 1 meter (3.3 ft) in diameter and will form a bright spot in the sky that will be visible to people on Earth.

The Humanity Star is central to Beck’s vision of how space travel can improve the lives of people here on Earth. In addition to presenting extensive opportunities for scientific research, there is also the way it fosters a sense of unity between people and nations. This is certainly a defining feature of the modern space age, where cooperation has replaced competition as the main driving force.

The Electron rocket prepping for its second launch last weekend. Credit: Rocket Lab

As Beck explained to ArsTechnica in an interview before the launch:

“The whole point of the program is to get everybody looking up at the star, but also past the star into the Universe, and reflect about the fact that we’re one species, on one planet. This is not necessarily part of the Rocket Lab program; it’s more of a personal program. It’s certainly consistent with our goal of trying to democratize space.”

Like the Electron rocket, the Humanity Sphere is made of carbon fiber materials and it’s surface consists of 65 highly-reflective panels. Once it reaches an orbit of 300 by 500 km (186 by 310 mi), it will spend the next nine months there reflecting the light of the Sun back to Earth. Whether or not it will be visible to the naked eye remains to be seen, but Rocket Lab is confident it will be.

According to Beck, the sphere will be more visible than a Iridium flare, which are easily spotted from the surface. These flares occur when the solar panels or antennae of an Iridium satellite reflect sunlight in orbit. “Most people will be familiar with the Iridium flares, and this has got much, much more surface area than an Iridium flare,” Beck said. “In theory, it will be easy to find.”

The payload will last for about nine months in orbit. Credit: Rocket Lab

Beck got the idea for the project from talking to people about where they live. In his experience, people tend to think of their locality or nationality when they think of home. Whereas many people he had spoken to were aware that they lived on planet Earth, they were oblivious to where the Earth resided in the Solar System or the Universe at large. In this respect, the Humanity Sphere is meant to encourage people to look and think beyond.

As he states on the website the company created for the Humanity Sphere:

“For millennia, humans have focused on their terrestrial lives and issues. Seldom do we as a species stop, look to the stars and realize our position in the universe as an achingly tiny speck of dust in the grandness of it all.

“Humanity is finite, and we won’t be here forever. Yet in the face of this almost inconceivable insignificance, humanity is capable of great and kind things when we recognize we are one species, responsible for the care of each other, and our planet, together. The Humanity Star is to remind us of this.

“No matter where you are in the world, rich or in poverty, in conflict or at peace, everyone will be able to see the bright, blinking Humanity Star orbiting Earth in the night sky. My hope is that everyone looking up at the Humanity Star will look past it to the expanse of the universe, feel a connection to our place in it and think a little differently about their lives, actions and what is important.

“Wait for when the Humanity Star is overhead and take your loved ones outside to look up and reflect. You may just feel a connection to the more than seven billion other people on this planet we share this ride with.”

The Electron rocket launching on Sunday afternoon, 2:42pm, New Zealand time. Credit: Rocket Lab

The Humanity Star can also be tracked via the website. As of the penning of this article, it is moving south of the equator and should be visible to those living along the west coast of South America. So if you live in Colombia, Peru or Chile, look to the western skies and see if you can’t spot this moving star. After passing south over Antarctica, it will reemerge in the night skies over Central Asia.

Without a doubt, the Humanity Sphere is an inspired creation, and one which is in good company. Who can forget the “Blue Marble” picture snapped by the Apollo 17 astronauts, or Voyager 1‘s “pale blue dot” photo? And even for those who are too young to have witnessed it, the images of Neil Armstrong and Buzz Aldrin setting foot on the Moon still serve to remind us of how far we’ve come, and how much still awaits us out there.

Further Reading: ArsTechnica

Finally! SpaceX’s Falcon Heavy Does its Static Fire Test. Actual Flight Should Be “In A Week Or So”

The Falcon Heavy Rocket being fired up at launch site LC-39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. Image: SpaceX
The Falcon Heavy Rocket being fired up at launch site LC-39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. Image: SpaceX

The long-awaited Static Fire of SpaceX’s Falcon Heavy rocket has been declared a success by SpaceX founder Elon Musk. After this successful test, the first launch of the Falcon Heavy is imminent, with Musk saying in a Tweet, “Falcon Heavy hold-down firing this morning was good. Generated quite a thunderhead of steam. Launching in a week or so.”

This is a significant milestone for the Falcon Heavy, considering that SpaceX initially thought the Heavy’s first flight would be in 2013. The first launch for the Falcon Heavy has always seemed to be tantalizingly out of reach. If space enthusiasts could’ve willed the thing into space, it would’ve launched years ago. But that’s not how it goes.

The Falcon Heavy generated an enormous amount of steam when it fired all 27 of its engines. Image: SpaceX
The Falcon Heavy generated an enormous amount of steam when it fired all 27 of its engines. Image: SpaceX

Developing rockets like the Falcon Heavy is not a simple matter. Even Musk himself admitted this when he said in July, “At first it sounds real easy: you just stick two first stages on as strap-on boosters. But then everything changes. All the loads change; aerodynamics totally change. You’ve tripled the vibration and acoustics.” So it’s not really a surprise that the Falcon Heavy’s development has seen multiple delays.

After first being announced in 2011, the rocket’s first flight was set for 2013. That date came and went, then in 2015 rocket failures postponed the flight. Failures postponed SpaceX again in 2016. New target dates were set for late 2016, then early 2017, then late 2017. But with this successful test, long-suffering space fans can finally breathe a sigh of relief, and their collective sigh will last about as long as the static fire: only a few seconds.

The Falcon Heavy has a total of 27 individual rocket engines, and all 27 of them were fired in this test, though the Heavy never left the launch pad. For those who don’t know, the Falcon Heavy is based on SpaceX’s successful Falcon 9 rocket, a nine-engine machine that made SpaceX the first commercial space company to visit the International Space Station, when the Falcon 9 delivered SpaceX’s Dragon capsule to the ISS in 2012. Since then, the Falcon has a track record of delivering cargo to the ISS and launching satellites into orbit.

The Heavy is like a Falcon 9 with two more 9-engine boosters strapped on. It will be the most powerful rocket in operation, by a large margin. (It won’t be the most powerful rocket in history though. That title still belongs to the Saturn V rocket, last launched in 1973.)

SpaceX Falcon 9 blasts off with KoreaSat-5A comsat from Launch Complex 39A at the Kennedy Space Center, FL, on 30 Oct 2017. The Falcon 9 has one core of 9 Merlin engines. Credit: Jeff Seibert

The Falcon Heavy will create 5 million pounds of thrust at lift-off, and will be able to carry about 140,000 lbs, which is about three times what the Falcon can carry. The Falcon’s engine core is reusable, and returns itself to Earth after detaching from the second stage. The Falcon Heavy will do the same, with all three cores returning to Earth for reuse. The two outer cores will return to the launch pad at Cape Canaveral, and the center core will land on a drone ship in the Atlantic. This is part of the genius behind the SpaceX designs: reusable components keep the cost down.

An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX
An artist’s illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX

We aren’t exactly sure when the first launch of the Falcon Heavy will be, and its first launch may be a very short flight. It’s possible that it may only get a few feet off the launch pad. At a conference in July, Musk said, “I hope it makes it far enough beyond the pad so that it does not cause pad damage. I would consider even that a win, to be honest.”

We know a few things about the eventual first launch and flight of the Falcon. There won’t be any scientific or commercial payload on-board. Rather, Musk intends to put his own personal Tesla roadster on-board as payload. If successful, it will be the first car to go on a trip around the Sun. (I call Shotgun!) It’s kind of silly to use a rocket to send a car around the Sun, but it will generate publicity. Not only for SpaceX, but for Tesla too.

If the launch is successful, the Falcon Heavy will be open for business. SpaceX already has some customers lined up for the Falcon Heavy, with a Saudi Arabian communications satellite first in line. After that, its second commercial mission will place several satellites in orbit. The US Air Force will be watching these launches closely, with an eye to using the Falcon Heavy for their own purposes.

But the real strength of the Falcon Heavy is not blasting cars on frivolous trips around the Sun, or placing communications satellites in orbit. Its destination is deep space.

Originally, SpaceX planned to use the Falcon Heavy to send people to Mars in a Dragon capsule. They’ve cancelled that idea, but the Heavy still has the capability to send rovers or other cargo to Mars and beyond. Who knows what uses it will be put to, once it has a track record of success.

We’re all eager to see the successful launch of the Falcon heavy, but while we wait for it, we can enjoy this animation from SpaceX.

Asteroid Mining is Getting Closer to Reality. Planetary Resources Arkyd-6 Satellite Just Launched

The launch of the PSLV-C40 rocket from the First Launch Pad at the Satish Dhawan Space Centre. Credit: ISRO

In 2009, Arkyd Aeronautics was formed with the intention of becoming the first commercial deep-space exploration program. In 2012, the company was renamed Planetary Resources, and began exploring the ambitious idea of asteroid prospecting and mining. By harnessing Near-Earth Objects (NEOs) for their water and minerals, the company hopes to substantially reduce the costs of space exploration.

A key step in this vision is the deployment of the Arkyd 6, a CubeSat that will begin testing key technologies that will go into asteroid prospecting. Last week (on Friday, January 12th), the Arkyd-6 was one of 31 satellites that were launched into orbit aboard an Indian-built PSLV rocket. The CubeSat has since been deployed into orbit and is already delivering telemetry data to its team of operators on the ground.

The launch was not only a milestone for the asteroid prospecting company, but for commercial aerospace in general. For the purposes of creating the Arkyd 6, the company modified commercial-available technology to be used in space. This includes the mid-wave infrared (MWIR) sensor the spacecraft will use to detect water on Earth, as well as its avionics, power systems, communications, attitude determination and control systems.

The Arkyd-6 deploying from the PSLV rocket that carried it into orbit. Credit: ISRO

This process is central to the new era of commercial aerospace, where the ability to adapt readily-available technology will allow companies to have control over every stage of the development process, as well as significantly reducing costs. As Chris Lewicki, the President and CEO Planetary Resources, said in a recent company statement:

“The success of the Arykd-6 will validate and inform the design and engineering philosophies we have embraced since the beginning of this innovative project. We will continue to employ these methods through the development of the Arkyd-301 and beyond as we progress toward our Space Resource Exploration Mission.”

The company hopes to mount the Space Resource Exploration Mission by 2020, which will involve multiple spacecraft being deployed as part of a single rocket launch. These will be carried beyond Earth’s orbit and will use low-thrust ion propulsion systems to travel to asteroids that have been prospected by Arkyd-301. Once there, they will collect data and collect samples for analysis.

During the course of the Arkyd-6’s flight, 17 elements will be tested in total, the most important of which is the MWIR imager. This instrument will be the first commercial infrared imager to be used in space and relies on custom optics to collect pixel-level data. With this high-level of precision, the imager will conduct hydration studies of Earth to determine how effective the instrument is at sniffing out sources of water on other bodies.

Planetary Resources onfographic, showing the process of asteroid prospecting. Credit: Planetary Resources

Based on the findings from this initial flight, the company plans to further develop the sensor technology, which will be incorporated into their next mission – the Arkyd-301. This spacecraft will be the first step in Planetary Resources plan to make asteroid mining a reality. Using the same technology as the Arkyd-6 (with some refinements), the spacecraft will be responsible for identifying sources of water on Near-Earth Asteroids.

These asteroids will be the target of future missions, where commercial spacecraft attempt to rendezvous and mine them for water ice. As Chris Voorhees, the Chief Engineer at Planetary Resources, said:

“If all of the experimental systems operate successfully, Planetary Resources intends to use the Arkyd-6 satellite to capture MWIR images of targets on Earth’s surface, including agricultural land, resource exploration regions, and infrastructure for mining and energy. In addition, we will also have the opportunity to perform specific celestial observations from our vantage point in low Earth orbit. Lessons learned from Arkyd-6 will inform the company’s approach as it builds on this technology to enable the scientific and economic evaluation of asteroids during its future Space Resource Exploration Mission.”

All told, there are over 1600 asteroids in Near-Earth space. According to Planetary Resources own estimates, these contain a total of 2 trillion metric tons (2.2 US tons) of water, which can be used for the sake of life support and manufacturing fuel for space missions. By tapping this abundant off-world resource, they estimate that the associated costs of mounting missions to space can be reduced by 95%.

Much like SpaceX’s ongoing development of reusable rockets and attempts to create reusable space planes (such as the Dream Chaser and the Sabre Engine), the goal here is to make space exploration not only affordable, but lucrative. Once that is achieved, the size and shape of space exploration will be limited only by our imaginations.

And be sure to check out this video from Planetary Resources that outlines their Exploration Program:

“The success of the Arykd-6 will validate and inform the design and engineering philosophies we have embraced since the beginning of this innovative project,” said Chris Lewicki, President and CEO, Planetary Resources. “We will continue to employ these methods through the development of the Arkyd-301 and beyond as we progress toward our Space Resource Exploration Mission.”

Further Reading: Planetary Resources

SpaceX Resuming Launches from Damaged Pad 40 on Dec. 4 with Station Resupply Flight for NASA; Covert Zuma Remains on Hold

SpaceX Dragon CRS-9 was the last International Space Station resupply mission to lift off successfully from pad 40 on July 18, 2016, prior to the Cape Canaveral, FL, launch pad explosion with the Amos-6 payload that heavily damaged the pad and infrastructure on Sept. 1, 2016. Cargo launches for NASA will resume with Dragon CRS-13 in December 2017. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon CRS-9 was the last International Space Station resupply mission to lift off successfully from pad 40 on July 18, 2016, prior to the Cape Canaveral, FL, launch pad explosion with the Amos-6 payload that heavily damaged the pad and infrastructure on Sept. 1, 2016. Cargo launches for NASA will resume with Dragon CRS-13 in December 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After postponing last week’s liftoff of the covert ‘Zuma’ spy satellite due to last minute concerns about the reliability of the payload fairing encapsulating it while poised for liftoff at KSC pad 39, SpaceX is set to at last resume launches from their previously damaged and now repaired Cape Canaveral pad 40 with a cargo resupply mission for NASA to the International Space Station (ISS) on Dec 4.

NASA and SpaceX have jointly decided to move forward with the Dragon CRS-13 cargo blastoff apparently because the mission does not involve use of the problematical payload fairing that halted last weeks planned Falcon 9 launch with the rocket and the mysterious Zuma payload.

Zuma was ready and waiting at pad 39A for the GO to launch that never came.

Then after a series of daily delays SpaceX ultimately announced a ‘stand down’ for super secret Zuma at pad 39A on Friday, Nov. 17, for the foreseeable future.

SpaceX engineers also had to deal with the after effects of a fire that broke out on a Merlin engine test stand during preparations for a hot fire test that resulted from a leak during a ‘LOX drop’ that halted testing of the Block 5 version of the Merlin 1D.

SpaceX Falcon 9 rocket blastoff of clandestine Zuma spysat to low earth orbit for a classified US government customer is postponed indefinitely from Launch Complex 39A at the Kennedy Space Center, FL, from last targeted launch date of 17 Nov 2017. Credit: Ken Kremer/Kenkremer.com

Since SpaceX’s gumdrop shaped Dragon cargo freighter launches as a stand alone aerodynamically shielded spacecraft atop the Falcon 9, it does not require additional protection from atmospheric forces and friction housed inside a nose cone during ascent to orbit unlike satellites with many unprotected exposed surfaces, critical hardware and delicate instruments.

Thus Dragon is deemed good to go since there currently appear to be no other unresolved technical issues with the Falcon 9 rocket.

“NASA commercial cargo provider SpaceX is targeting its 13th commercial resupply services mission to the International Space Station for no earlier than 2:53 p.m. EST Monday, Dec. 4,” NASA announced on the agency blog and social media accounts.

The Dec. 4 launch date for Dragon CRS-13 was announced by NASA’s space station manager Dan Hartman during the Orbital ATK Antares/Cygnus launch campaign that culminated with a successful blastoff last Sunday, Nov 12 from NASA’s Wallops Flight Facility on Virginia’s eastern shore.

But the targeted Dec 4 liftoff from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL, was cast in doubt after SpaceX disclosed the payload fairing issue related launch delay on Friday.

Since last week SpaceX engineers have been busy taking the time to carefully scrutinize all the pertinent fairing data before proceeding with the top secret Zuma launch.

“We have decided to stand down and take a closer look at data from recent fairing testing for another customer,” said SpaceX spokesman John Taylor last Friday.

Covert Zuma spysat is encapsulated inside the nose cose at the top of the SpaceX Falcon 9 rocket in this up-close view from Launch Complex 39A at the Kennedy Space Center, FL, taken on Nov. 17, 2017. An unresolved issue with the nose cone caused indefinite launch postponement. Credit: Ken Kremer/Kenkremer.com

All of SpaceX’s launches this year from Florida’s Spaceport have taken place from NASA’s historic Launch Complex-39A at the Kennedy Space Center.

Pad 39A became SpaceX’s only operational Florida Space Coast launch pad following a catastrophic launch pad accident last year on Sept. 1, 2016 that took place during a routine fueling test that suddenly ended in a devastating explosion and fire that completely consumed the Falcon 9 rocket and Amos-6 payload and heavily damaged the pad and support infrastructure.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Since the Amos-6 accident workers raced to finish refurbishments to NASA’s long dormant pad 39A to transform into operational status and successfully launched a dozen missions this year.

Simultaneously additional crews have been hard at work to repair damaged pad 40 so that flights can resume there as soon as possible for the bulk of NASA, commercial and military contracted missions.

Meanwhile SpaceX wants to upgrade pad 39A to launch the Falcon Heavy and crewed Dragon flight. But those launches cant take place until pad 40 resumes operational status.

The Dragon CRS-13 mission was recently announced as the maiden mission for the reopening of pad 40.

Altogether Dragon CRS-13 will count as the fourth SpaceX Dragon liftoff of 2017.

The 20-foot high, 12-foot-diameter Dragon CRS-13 vessel will carry about 3 tons of science and supplies to the orbiting outpost and stay about 4 weeks.

It will be a reused Dragon that previously flew on the CRS-6 mission.

“The Dragon [CRS-13] spacecraft will spend about a month attached to the space station,” NASA said.

SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

The prior Dragon CRS-12 resupply ship launched from pad 39A on Aug. 14, 2017 from KSC pad 39A and carried more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

Dragon CRS-9 was the last ISS resupply mission to launch from pad 40 on July 18, 2016.

The recently arrived Orbital ATK Cygnus cargo ship is expected to depart the station from the Earth facing Unity node on Dec. 3 to make way for Dragon’s berthing at the Harmony node.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of SpaceX CRS-13, Zuma and KoreaSat-5A & Orbital ATK OA-8 Cygnus and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Station Astronauts Unload Cygnus Science; Antares Launch Gallery

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Astronauts aboard the International Space Station are now busily unloading nearly four tons of science experiments, research gear, station equipment and crew supplies – following the spectacular launch of the Orbital ATK Antares rocket earlier this week on Sunday Nov. 12 from Virginia’s eastern shore that propelled the Cygnus cargo freighter to an on time arrival two days later on Tuesday Nov. 14.

The Orbital ATK Cygnus spacecraft was christened the S.S. Gene Cernan and named in honor of NASA’s Apollo 17 lunar landing commander; Gene Cernan.

Among the goodies delivered by the newly arrived S.S. Gene Cernan Cygnus OA-8 supply run to resident the crew of six astronauts and cosmonauts from the US, Russia and Italy are ice cream, pizza and presents for the holidays. They are enjoying the fruits of the earthy labor of thousands of space workers celebrating the mission’s success.

The six-member Expedition 53 crew poses for a portrait inside the Japanese Kibo laboratory module with the VICTORY art spacesuit that was hand-painted by cancer patients in Russia and the United States. On the left (from top to bottom) are NASA astronauts Joe Acaba and Mark Vande Hei with cosmonaut Alexander Misurkin of Roscosmos. On the right (from top to bottom) are European Space Agency astronaut Paolo Nespoli, cosmonaut Sergey Ryazanskiy of Roscosmos and Expedition 53 Commander Randy Bresnik of NASA. Credit: NASA/ESA/Roscosmos

The journey began with the flawless liftoff of the two stage Antares rocket shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Check out the expanding gallery of launch imagery and videos captured by this author and several space colleagues of Antares prelaunch activities around the launch pad and through Sunday’s stunningly beautiful sunrise blastoff.

After a carefully choreographed series of intricate thruster firings to raise its orbit in an orbital pursuit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

The Orbital ATK Cygnus OA-8 spacecraft is pictured after it had been grappled with the Canadarm2 robotic arm by astronauts Paolo Nespoli and Randy Bresnik on Nov. 14, 2017. Credit: NASA

Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik then deftly maneuvered the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm to grapple and successfully capture the Cygnus cargo freighter at 5:04 a.m., Tuesday Nov. 14.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, then maneuvered the arm and robotic hand grappling Cygnus towards the exterior hull and berthed the cargo ship at the Earth-facing port of the stations Unity module.

The berthing operation was completed at 7:15 a.m. after all 16 bolts were driven home for hard mating as the station was flying 252 miles over the North Pacific in orbital night.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Apollo 17 was NASA’s final lunar landing mission. Gere Cernan was the last man to walk on the Moon.

A portrait of Gene Cernan greets the astronauts as they open the hatch to the Cygnus cargo spacecraft named in his honor. Credit: NASA

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and release 14 CubeSats using a NanoRacks deployer, a record number for the spacecraft.

It will then be commanded to fire its main engine to lower its orbit and carry out a fiery and destructive re-entry into Earth’s atmosphere over the Pacific Ocean as it disposes of several tons of trash.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 manifest includes:

Crew Supplies 2,734.1 lbs. / 1,240 kg
Science Investigations 1631.42 lbs. / 740 kg
Spacewalk Equipment 291.0 lbs. / 132 kg
Vehicle Hardware 1,875.2 lbs. / 851 kg
Computer Resources 75.0 lbs. / 34 kg

Total Cargo: 7,359.0 lbs. / 3,338 kg
Total Pressurized Cargo with Packaging: 7,118.7 lbs. / 3,229 kg
Unpressurized Cargo (NanoRacks Deployer): 240.3 lbs. / 109 kg

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Orbital ATK’s Antares rocket and S.S. Gene Cernan Cygnus OA-8 resupply ship pierce the oceanside clouds over NASA Wallops Flight Facility in Virginia, after sunrise liftoff on Nov. 12, 2017 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Hardware for the Orbital ATK Antares rocket launching the Cygnus OA-8 resupply mission to the International Space Station on Nov. 11, 2017 – as it was being assembled for flight inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility. Credit: Ken Kremer/kenkremer.com

Orbital ATK Cygnus OA-8 mission patch. Credit: Orbital ATK

Clandestine Zuma SpySat’s SpaceX Liftoff Postponed Indefinitely to Resolve Payload Fairing Issue

SpaceX Falcon 9 rocket blastoff of clandestine Zuma spysat to low earth orbit for a classified US government customer is postponed indefinitely from Launch Complex 39A at the Kennedy Space Center, FL, from last targeted launch date of 17 Nov 2017. Credit: Ken Kremer/Kenkremer.com

SpaceX Falcon 9 rocket blastoff of clandestine Zuma spysat to low earth orbit for a classified US government customer is postponed indefinitely from Launch Complex 39A at the Kennedy Space Center, FL, from last targeted launch date of 17 Nov 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Liftoff of the clandestine spy satellite codenamed ‘Zuma’ on a SpaceX Falcon 9 rocket has been postponed indefinitely to resolve a lingering issue with the testing of a payload fairing for another customer.

SpaceX announced today, Friday, Nov 17, that they will ‘stand down’ to allow engineers the additional time needed to carefully scrutinize all the pertinent data before proceeding with the top secret Zuma launch.

“We have decided to stand down and take a closer look at data from recent fairing testing for another customer,” said SpaceX spokesman John Taylor.

The super secret ‘Zuma’ spysat is a complete mystery and it has not been claimed by any U.S. government entity – not even the elusive NRO spy agency ! The NRO does claim ownership of a vast fleet of covert and hugely capable orbiting surveillance assets supporting US national security.

Zuma’s goals are veiled in virtually complete darkness. And as far as the taxpaying public is concerned its ownerless.

Originally scheduled for Wednesday evening at 8 p.m. EST Nov 15, the Zuma launch from the Florida Space Coast had already been postponed twice this week before today’s decision to called it off indefinitely.

Covert Zuma spysat is encapsulated inside the nose cose at the top of the SpaceX Falcon 9 rocket in this up-close view from Launch Complex 39A at the Kennedy Space Center, FL, taken on Nov. 17, 2017. An unresolved issue with the nose cone caused indefinite launch postponement. Credit: Ken Kremer/Kenkremer.com

The initial 24 hour delay to Thursday was to deal with unspecified ‘mission assurance’ issues.

The second days delay to Friday was pinned more specifically on the payload fairing or nose cone.

SpaceX has also had to deal with an engine testing problem that caused a fire on a test stand while preparing to hot fire a Block 5 Merlin 1D engine at their Texas facility on Nov. 4. It is not known if this was part of the ‘mission assurance’ issues.

No new targeted launch date has been announced.

“Though we have preserved the range opportunity for tomorrow, we will take the time we need to complete the data review and will then confirm a new launch date,” Taylor stated.

SpaceX had been planning an ambitious launch campaign of 4 or more launches by the end of this year – including the maiden launch of the triple barreled Falcon Heavy. That seems very unlikely now.

Just exactly what the fairing problem is has not been disclosed. Its also not known if the two delays are related or not.

The fairing is jettisoned three minutes after liftoff. Any failure to deploy would result in a total loss of the mission.

The first stage landing legs attached to the side of the SpaceX Falcon 9 booster are seen up close on Nov, 17, 2017 as the rocket awaits blastoff with the unclaimed Zuma surveillance satellite from Launch Complex 39A at the Kennedy Space Center, FL. Credit: Ken Kremer/Kenkremer.com

Zuma was to roar off seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida during a lengthy two hour launch window that extended from 8 to 10 p.m. each targeted day this week.

The Eastern range had been reserved by SpaceX for a potential Saturday launch opportunity as well.

However all mention of the Zuma launch has now been deleted from the website of the 45th Space Wing at Patrick Air Force Base, FL.

Up close view of the nose cone encapsulating the covert Zuma payload atop SpaceX Falcon 9 at KSC pad 39A. Credit: Julian Leek

Forecast weather conditions in central Florida were near perfect over the past few days and spectators would have witnessed a dazzling sky show as the two stage 229-foot-tall (70-meter-tall) Falcon 9 soared to orbit.

One of the few tidbits we can confirm is that the launch contract was arranged as a commercial enterprise under the auspices of Northrop Grumman Corporation – as a means to significantly slash launch costs for whatever U.S government entity is responsible for Zuma.

That goal is completely in line with SpaceX founder and CEO Elon Musk’s entire company-wide goal in developing the Falcon and Dragon family of rockets and spaceships.

“The U.S. Government assigned Northrop Grumman the responsibility of acquiring launch services for this mission,” Lon Rains, Northrop Grumman Director of Communications, told Universe Today.

“We have procured the Falcon 9 launch service from SpaceX.”

But the launch was only publicly announced 1 month ago in mid October and it suddenly appeared on the SpaceX launch manifest after an FAA launch license was granted.

We don’t know anything about the ‘Zuma’ payloads characteristics and vital statistics – despite the seemingly endless leaks streaming out of Washington these days.

“The Zuma payload is a restricted payload,” Rains told me.

“Northrop Grumman is proud to be a part of the Zuma launch,” Rains added. “This event represents a cost effective approach to space access for government missions.”

The only clue to its goals to be revealed is the intended orbit.

“It will be launched into Low Earth Orbit,” Rains informed me.

Low Earth Orbit extends to roughly 1200 miles altitude and includes the ISS orbit for example at approx. 250 miles.

“As a company, Northrop Grumman realizes this is a monumental responsibility and we have taken great care to ensure the most affordable and lowest risk scenario for Zuma.”

Base of the SpaceX Falcon 9 rocket being used to launch the covert Zuma payload at KSC pad 39A. Credit: Julian Leek

On Friday evening the rocket was lowered to the horizontal position on the transporter erector on pad 39A. It will be rolled back to the processing hangar outside the perimeter fence for further engineering evaluation.

Whenever the launch is rescheduled SpaceX will attempt to recover the 16 story tall first stage booster with a soft landing on the ground back at Cape Canaveral Air Force Station. So expect some extremely loud sonic booms to rock the space coast region about eight minutes after liftoff.

Watch for Ken’s continuing onsite coverage of SpaceX Zuma, KoreaSat-5A & SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Covert Zuma spysat is encapsulated inside the nose cose at the top of the SpaceX Falcon 9 rocket in this up-close view from Launch Complex 39A at the Kennedy Space Center, FL, taken on Nov. 16, 2017. Launch reset to Nov. 17, 2017. Credit: Ken Kremer/Kenkremer.com

SpaceX Falcon 9 stands erect topped with super secret Zuma spysat claimed by no US government entity on Launch Complex 39A at the Kennedy Space Center, FL, poised for liftoff on 16 Nov 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

Zuma satellite mission patch. Credit: SpaceX/Northrop Grumman

S.S Gene Cernan Honoring Last Moonwalker Arrives at International Space Station Carrying Tons of Research Gear and Supplies

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The S.S. Gene Cernan Cygnus spacecraft named in honor of the Apollo 17 lunar landing commander and launched by Orbital ATK from the eastern shore of Virgina at breakfast time Sunday, Nov. 12, arrived at the International Space Station early Tuesday morning, Nov 14, carrying over 3.7 tons of research equipment and supplies for the six person resident crew.

Soon thereafter at 5:04 a.m., Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik successfully captured Orbital ATK’s Cygnus cargo freighter using the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Nespoli and Bresnik were working at a robotics work station inside the seven windowed domed Cupola module that offers astronauts the most expansive view outside to snare Cygnus with the robotic arms end effector.

The Cygnus cargo freighter – named after the last man to walk on the Moon – reached its preliminary orbit nine minutes after blasting off early Sunday atop the upgraded 230 version of the Orbital ATK Antares rocket from NASA’s Wallops Flight Facility in Virginia.

The flawless liftoff of the two stage Antares rocket took place shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Sunday’s spectacular Antares launch delighted spectators – but came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a completely reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.

After a carefully choreographed series of intricate thruster firings to raise its orbit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

With Cygnus firmly in the grip of the robots hand, ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, maneuvered the arm towards the exterior hull and berth the cargo ship at the Earth-facing port of the stations Unity module.

1st stage capture was completed at 7:08 a. EST Nov 14.

After driving in the second stage gang of bolts, hard mate and capture were completed at 7:15 a.m.

The station was flying 252 miles over the North Pacific in orbital night at the time of berthing.

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

NASA TV provided live coverage of the rendezvous and grappling.

Including Cygnus there are now five visiting vehicle spaceships parked at the space station including also the Russian Progress 67 and 68 resupply ships and the Russian Soyuz MS-05 and MS-06 crew ships.

International Space Station Configuration. Five spaceships are parked at the space station including the Orbital ATK Cygnus after Nov. 14, 2017 arrival, the Progress 67 and 68 resupply ships and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

On this flight, the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cernan was commander of Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Apollo17, NASA’s final lunar landing mission, on December 7, 1972, as seen from the KSC press site. Credit: Mark and Tom Usciak

………….

Ken’s upcoming outreach events:

Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 16, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Nov 15, 17: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com

The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/Kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

Despite Merlin Engine Testing Anomaly SpaceX Forges Ahead With Ambitious Year End Launch Schedule Commencing Nov. 15

A Falcon 9 Merlin 1D engine during hot fire engine test firing on a test stand in McGregor, Texas in this February 2012 file photo. Credit: SpaceX

A Falcon 9 Merlin 1D engine during hot fire engine test firing on a test stand in McGregor, Texas in this February 2012 file photo. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Despite suffering a significant engine testing “anomaly” and fire during test protocols with a Merlin engine that powers both stages of SpaceX’s Falcon 9 rocket, the Elon Musk founded company is forging ahead with an ambitious year end launch schedule that commences this week with blastoff of the secretive Zuma mission on Wednesday evening, Nov. 15. Clearly Musk & Co. feel it is safe to proceed.

While preparing to conduct a test firing of the most advanced Merlin engine of the type that will launch astronauts to the International Space Station (ISS) as soon as next year, something sparked the outbreak of a fire in a test bay earlier this month on a SpaceX engine test stand at their rocket development facility in McGregor, Texas, SpaceX spokesman John Taylor confirmed to Universe Today.

The resulting fire in a McGregor, Texas test bay apparently did not involve an engine explosion as technicians were getting ready to conduct an actual hot fire test. The fire may have occurred as a result of a leak while setting the Merlin engine up on a test stand during pre-test procudures. Details have not been released.

“We do not expect this to have any impact on our launch cadence,” SpaceX spokesman John Taylor told Universe Today.

“SpaceX is committed to our current manifest.”

Since the fire involved the most advanced Block 5 version of the Merlin rather than the currently used Block 4 version, SpaceX engineers and management decided they can safely and responsibly move forward with the upcoming jam packed schedule of Falcon 9 and Falcon Heavy launches, while simultaneously continuing the anomaly investigation.

2017 has been a banner year thus far for SpaceX involving 16 missions to date that ties a ULA record established in 2009.

The most recent launch took place of Oct. 30 delivering KoreaSat-5A to its intended orbit – along with a magnificent soft landing and recovery of the first stage booster on an oceangoing platform that floated ‘back in town’ days later.

SpaceX Falcon 9 blasts off with KoreaSat-5A commercial telecomsat atop Launch Complex 39A at the Kennedy Space Center, FL, on Halloween eve 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

The fire took place on Nov. 4, as first reported by the Washington Post on Nov. 9.

“On November 4, SpaceX experienced an anomaly during a Qualification test set up of a Merlin engine at our rocket development facility in McGregor, Texas,” SpaceX spokesman Taylor told me.

With a slew of critical launches looming starting tomorrow, Nov. 15, SpaceX had to decide quickly whether to pause or move ahead with their final planned launches of 2017 – numbering at least 4 or more and possibly including the long-awaited and long-delayed mammoth Falcon Heavy. It utilizes 27 Merlin 1D engines in the first stage cores.

SpaceX has decided to move ‘Full Speed Ahead’ – after an initial review of the fire incident which is still ongoing.

Seemingly, the fire happened during the set up period for the Merlin engine before the actual qualification engine test had begun. A leak may have occurred around the test stand and caused the fire to brake out.

Although 2017 has been a great year, SpaceX has suffered two catastrophic rocket accidents in 2015 and 2016 as a result of unrelated failures traced to the second stage which slowed down the launch pace as engineers raced to identify and rectify the root causes.

Engineers were conducting a pre-test operation when the test bay fire broke out. It may take a few weeks or more to repair the test stand and resume hot fire testing.

SpaceX has notified customers such as NASA, the FAA and the USAF about the incident – for which SpaceX plans a Dragon cargo resupply mission to the ISS launching as soon as Dec. 4 from Cape Canaveral Air Force Station, FL.

“We are now conducting a thorough and fully transparent investigation of the root cause.”

Fortunately there were no injuries to any personal.

“No one was injured and all safety protocols were followed during the time of this incident,” Taylor explained.

The Merlin engine about to be tested involved the most advanced type known as the Block 5 version that will be used to propel astronauts to orbit inside the SpaceX Crew Dragon.

Up close look as technicians quickly work to detach all 4 landing legs from the recovered SpaceX Falcon 9 Koreasat-5A booster on Nov. 3, 2017 after it sailed into Port Canaveral the day before. Credit: Ken Kremer/Kenkremer.com

The Falcon 9 is currently powered by 9 Merlin 1D engines of the Block 4 version.

Altogether they generate a combined 1.7 million pounds of liftoff thrust.

SpaceX can continue launches with the less advanced Merlin 1D version because testing of Block 4 is still happening.

SpaceX Falcon 9 blasts off with KoreaSat-5A commercial telecomsat atop Launch Complex 39A at the Kennedy Space Center, FL, on Halloween eve 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

Meanwhile launch preparations are in full swing for Wednesday’s nighttime blastoff of the mysterious Zuma mission for the U.S. government at 8 p.m. EST on Nov. 15 from pad 39A on NASA’s Kennedy Space Center.

SpaceX Falcon 9 stands erect at sunrise with KoreaSat5A DTH TV commercial comsat atop Launch Complex 39A at the Kennedy Space Center, FL, poised for Halloween eve liftoff on 30 Oct 2017. As seen from inside the pad perimeter. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing onsite coverage of SpaceX Zuma, KoreaSat-5A & SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 15, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Nov 14, 16: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 first stage booster is hoisted off OCISLY droneship after being towed through the channel of Port Canaveral, FL on Nov. 2. It successfully launched KoreaSat-5A telecomsat to orbit on Oct. 30, 2017. Credit: Ken Kremer/Kenkremer.com

Antares Rocket Blasts Off from Virginia Bound for Space Station with Cygnus Cargo Ship and Tons of Vital Science Supplies

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – An Orbital ATK Antares rocket successfully blasted off this morning, Sunday, Nov. 12, from the eastern shore of Virginia on a NASA contracted mission bound for the International Space Station (ISS) carrying a Cygnus cargo ship loaded with nearly 4 tons of vital science and supplies.

The two stage Antares rocket launched flawlessly shortly sunrise Sunday at 7:19 a.m. EST, Nov. 12 on an upgraded version of the Antares rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia carrying the Cygnus resupply spacecraft named in honor of Gene Cernan, the last man to walk on the Moon.

Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com

The launch came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.

Finally the rocket roared off the pad Sunday under cloudy skies – to the delight of a spectators, with a brilliant flash of light. Slowly at first and then accelerating almost straight up before arcing over just slightly in a southeasterly direction and soon disappearing into the thick clouds. In fact it was so load that local residents told me their windows and houses shook and rattled.

Saturday’s sudden scrub disappointed tens of thousands of spectators who had gathered around the East coast launch region and beyond for a rare chance to see the launch of a powerful rocket on a critical cargo delivery mission for NASA conducted the benefit of the six person crew serving on the station to advance science for all of humanity.

The pilot may have intentionally flown the plane low enough to avoid detection so he could take photos for profit.

As a result of this extremely serious violation of flight rules which raises significant safety and base security issues the FAA and NASA are now undertaking an intense review of rules after the repeated serious incursions by planes and boats into exclusion zones during launches, and what penalties and fines should be applied.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

“Today’s successful launch of the OA-8 Cygnus on our Antares launch vehicle once again demonstrates the reliability of Orbital ATK’s hardware along with our commitment to deliver critical cargo to astronauts on the International Space Station,” said Frank Culbertson, President of Orbital ATK’s Space Systems Group.

“Soon, Cygnus will rendezvous with the space station to deliver valuable scientific experiments, hardware and crew supplies to the orbiting platform. On this mission, Cygnus will again display its flexibility as an in-orbit science platform by supporting experiments to be performed inside the cargo module while attached to the space station. We are proud to dedicate this mission to Apollo astronaut Gene Cernan and his family and look forward to celebrating the OA-8 contributions to science in his name.”

After a two day orbital chase the S.S. Gene Cernan will arrive in the vicinity of the space station early Tuesday, Nov. 14. Cygnus will be grappled by Expedition 53 astronaut Paolo Nespoli of ESA (European Space Agency) of Italy at approximately 4:50 a.m. EST on November 14 using the space station’s robotic arm. He will be assisted by NASA astronaut Randy Bresnik.

NASA TV will provide live coverage of the rendezvous and grappling.

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

The 14 story tall commercial Antares rocket launched for only the second time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.

The rocket performed flawlessly said Kurt Eberly, Orbital ATK deputy program manager for Antares, during the post launch briefing at NASA Wallops.

There was only a slight over performance of the Castor XL solid fueled second stage, which was all to the good – as occurred during the first launch of the upgraded Antares a year ago in October 2016 on the OA-5 resupply mission.

Indeed the overperformance of the second stage may allow Orbital ATK to load the Cygnus with an even heavier cargo load than previously foreseen.

On this flight,the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Cernan was commander of the Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

The 139-foot-tall (42.5-meter) Antares rocket had been rolled out to the launch pad around 1 a.m. EST Thursday morning, Nov. 9, and erected as planned into the vertical position, Kurt Eberly, Orbital ATK deputy program manager for Antares, told Universe Today.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer