VP Pence Vows Return to the Moon, Boots on Mars during KSC Visit

Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, 2017 tour of NASA's Kennedy Space Center - along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com
Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, tour of NASA’s Kennedy Space Center – along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Vice President Mike Pence, during a whirlwind visit to NASA’s Kennedy Space Center in Florida, vowed that America would fortify our leadership in space under the Trump Administration with impressive goals by forcefully stating that “our nation will return to the moon, and we will put American boots on the face of Mars.”

“American will once again lead in space for the benefit and security of all of our people and all of the world,” Vice President Mike Pence said during a speech on Thursday, July 6, addressing a huge crowd of more than 500 NASA officials and workers, government dignitaries and space industry leaders gathered inside the cavernous Vehicle Assembly Building at the Kennedy Space Center – where Apollo/Saturn Moon landing rockets and Space Shuttles were assembled for decades in the past and where NASA’s new Space Launch System (SLS) megarocket and Orion deep space crew capsule will be assembled for future human missions to the Moon, Mars and beyond.

Pence pronounced the bold space exploration goals and a reemphasis on NASA’s human spaceflight efforts from his new perch as Chairman of the newly reinstated National Space Council just established under an executive order signed by President Trump.

“We will re-orient America’s space program toward human space exploration and discovery for the benefit of the American people and all of the world.”

Vice President Mike Pence speaks before an audience of NASA leaders, U.S. and Florida government officials, and employees inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Pence thanked employees for advancing American leadership in space. Behind the podium is the Orion spacecraft flown on Exploration Flight test-1 in 2014. Credits: NASA/Kim Shiflett

However Pence was short on details and he did not announce any specific plans, timetables or funding during his 25 minute long speech inside the iconic VAB at KSC.

It remains to been seen how the rhetoric will turn to reality and all important funding support.

The Trump Administration actually cut their NASA 2018 budget request by $0.5 Billion to $19.1 Billion compared to the enacted 2017 NASA budget of $19.6 Billion – including cuts to SLS and Orion.

By contrast, the Republican led Congress – with bipartisan support – is working on a 2018 NASA budget of around 19.8 Billion.

“Let us do what our nation has always done since its very founding and beyond: We’ve pushed the boundaries on frontiers, not just of territory, but of knowledge. We’ve blazed new trails, and we’ve astonished the world as we’ve boldly grasped our future without fear.”

“From this ‘Bridge to Space,’ our nation will return to the moon, and we will put American boots on the face of Mars.” Pence declared.

Lined up behind Pence on the podium was the Orion spacecraft flown on Exploration Flight Test-1 (EFT-1) in 2014 flanked by a flown SpaceX cargo Dragon and a mockup of the Boeing CST-100 Starliner crew capsule.

The crewed Dragon and Starliner capsules are being developed by SpaceX and Boeing under NASA contracts as commercial crew vehicles to ferry astronauts to the International Space Station (ISS).

Pence reiterated the Trump Administrations support of the ISS and working with industry to cut the cost of access to space.

Vice President Mike Pence (holding Orion model) tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6 KSC visit – posing with KSC Director/astronaut Robert Cabana, acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio, Lockheed Martin CEO Marillyn Hewson and KSC Deputy Director Janet Petro inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Acting NASA Administrator Robert Lightfoot also welcomed Vice President Pence to KSC and thanked the Trump Administration for its strong support of NASA missions.

“Here, of all places, we can see we’re not looking at an ‘and/or proposition’,” Lightfoot said.

“We need government and commercial entities. We need large companies and small companies. We need international partners and our domestic suppliers. And we need academia to bring that innovation and excitement that they bring to the next workforce that we’re going to use to actually keep going further into space than we ever have before.”

View shows the state of assembly of NASA’s Orion EM-1 deep space crew capsule during inspection tour by Vice President Mike Pence on July 6, 2017 inside the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center. 1st integrated flight with NASA’s SLS megarocket is slated for 2019. Credit: Ken Kremer/kenkremer.com

After the VAB speech, Pence went on an extensive up close inspection tour of KSC facilities led by Kennedy Space Center Director and former shuttle astronaut Robert Cabana, showcasing the SLS and Orion hardware and infrastructure critical for NASA’s plans to send humans on a ‘Journey to Mars’ by the 2030s.

“We are in a great position here at Kennedy, we made our vision a reality; it couldn’t have been done without the passion and energy of our workforce,” said Kennedy Space Center Director Cabana.

“Kennedy is fully established as a multi-user spaceport supporting both government and commercial partners in the space industry. As America’s premier multi-user spaceport, Kennedy continues to make history as it evolves, launching to low-Earth orbit and beyond.”

Vice President Mike Pence holds and inspects an Orion capsule heat shield tile with KSC Director/astronaut Robert Cabana during his July 6, 2017 tour/speech at NASA’s Kennedy Space Center – accompanied by acting NASA administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

Pence toured the Neil Armstrong Operations and Checkout Building (O & C) where the Orion deep space capsule is being manufactured for launch in 2019 on the first integrated flight with SLS on the uncrewed EM-1 mission to the Moon and back – as I witnessed for Universe Today.

Vice President Mike Pence tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6, 2017 KSC visit with KSC Director/astronaut Robert Cabana inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2019 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

SpaceX Falcon 9 Dazzles Delivering ‘Epic’ Intelsat DTH TV Comsat to Orbit for America’s

SpaceX Falcon 9 blasts off with Intelsat 35e - 4th next gen ‘Epic’ comsat for Intelsat - on July 5, 2017 at 7:37 p.m. EDT from Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ comsat for Intelsat – on July 5, 2017 at 7:37 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The third time proved to be the charm as SpaceX kept up a torrid 2017 launch pace and successfully ignited another Falcon 9 rocket late Wednesday, July 5, from the Florida Space Coast and delivered a powerful and heavy weight commercial TV satellite to orbit that will serve “tens of millions of customers globally,” Intelsat VP for Sales Kurt Riegel, told Universe Today at NASA’s Kennedy Space Center press site.

The SpaceX Falcon 9 put on a dazzling near dusk display as it roared off historic launch pad 39A on SpaceX’s tenth launch of 2017 Wednesday evening into brilliant blue skies with scarcely a cloud to be seen and delightfully summer weather conditions.

Blastoff of the Falcon 9 carrying the Intelsat 35e communications satellite for commercial high speed broadband provider Intelsat occurred right on time at dinnertime July 5 at 7:38 p.m. EDT, or 2338 UTC from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The thunderous blastoff wowed hordes of spectators gathered along space coast beaches and causeways and local residential neighborhoods from came across the globe to witness and the launch spectacle and many of whom will be users of and benefit from the services offered by Intelsat 35e.

“Tens of millions of customers will be served and be touched by Intelsat 35e,” Intelsat VP for Sales & Marketing Kurt Riegel, told Universe Today in an exclusive interview beside the iconic countdown clock at NASA’s Kennedy Space Center Florida press site.

Launch of expendable SpaceX Falcon 9 with 4th next gen ‘Epic’ DTH comsat for Intelsat at 7:37 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com

Wednesday’s liftoff finally took place safely after back to back last moment scrubs on Sunday and Monday (July 2/3) kept Falcon 9 from igniting its engine for the delayed journey to orbit.

Elon Musk told the SpaceX launch and engineering team to stand down over the 4th of July holiday and instead thoroughly investigate the root cause of the pait of launch aborts.

The near scrubs resulted from insidious anomaly not detected after the initial launch abort on Sunday, July 2.

SpaceX Falcon 9 launch of with ‘Epic’ comsat for Intelsat at 7:38 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

Intelsat 35e will be utilized by copious public, government and commercial clients throughout the Americas, Europe and Africa.

The 23 story tall Falcon 9 lofted Intelsat’s commercial Epic 35e next-generation high throughput satellite to geostationary transfer orbit.

It separated from the Falcon 9 upper stage as planned about a half hour after liftoff.

“The Intelsat 35e satellite separated from the rocket’s upper stage 32 minutes after launch, at 8:10 pm EDT, and signal acquisition has been confirmed,” Intelsat announced post launch..

“This was the SpaceX’s first satellite launch contracted by Intelsat,” Ken Lee, Intelsat’s senior vice president of space systems, told Universe Today in a prelaunch interview on Sunday.

“Intelsat 35e is the fourth in the series of our ‘Epic’ satellites. It will provide the most advanced digital services ever and a global footprint.”

SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX has now safely and successfully demonstrated an amazing launch pace with 3 rockets propelled aloft in the span of just 12 days from both US coasts. Had Intelsat 35e been launched on Sunday, July 3, it would have established and even faster record pace of 3 launches in just 9 days.

“The successful launch of Intelsat 35e is a major milestone in our business plan for 2017, furthering the footprint and resilience of our Intelsat EpicNG infrastructure,” said Stephen Spengler, Chief Executive Officer, Intelsat, in a statement.

“With each Intelsat EpicNG launch, we advance our vision of creating a global, high performance for our customers that will unlock new growth opportunities in applications including mobility, wireless infrastructure and private data networks. As we further our innovations with respect to ground infrastructure and managed service offerings, like IntelsatOne Flex, we are transforming the role of satellite in the telecommunications landscape.”

Launch of expendable SpaceX Falcon 9 with 4th next gen ‘Epic’ DTH comsat for Intelsat at 7:38 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the KSC press site. Credit: Ken Kremer/kenkremer.com

The geostationary comsat will provide high performance services in the C- And Ku-bands to customers in North and South America, the Caribbean, as well as the continents of Europe and Africa.

The Ku band service includes a customized high power beam for direct-to-home television (DTH) and data communications services in the Caribbean as well as mobility services in Europe and Africa

The first stage was not recovered for this launch because the massive 6800 kg (13000 lb) Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.

Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Expendable SpaceX Falcon 9 is seen rising to launch position in this up close view of payload fairing encapsulating Intelsat 35e comsat and is now erected to launch position and poised for liftoff on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Intelsat reps Kurt Riegel, Sr VP Intelsat Sales (c), and Diane VanBeber, VP Intelsat investor relations (l), speak to Ken Kremer/Universe Today (r) about Intelsat35e launch on SpaceX Falcon 9 beside the countdown clock at the Kennedy Space Center Press Site in Florida. Credit: Ken Kremer/kenkremer.com
Never used SpaceX Falcon 9 is seen rising to launch position and now stands erect and poised for liftoff Intelsat 35e on July 3, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Artists concept of Intelsat 35e in geostationary Earth orbit. Credit: Intelsat
SpaceX Falcon 9 is poised for liftoff with Intelsat 35e – 4th next gen ‘Epic’ comsat on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Targeting 3rd launch in 10 Days with ‘Epic’ Intelsat Comsat on July 5 – Watch Live

Never used SpaceX Falcon 9 is seen rising to launch position and now stands erect and poised for liftoff Intelsat 35e on July 3, 2017 at Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Never used SpaceX Falcon 9 is seen rising to launch position and now stands erect and poised for Intelsat 35e liftoff on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Spectacular 4th of July fireworks are coming tonight, July 3,[reset to July5] to the Florida Space Coast courtesy of SpaceX and Intelsat with the planned near dusk launch of the commercial Epic 35e next-generation high throughput satellite to geostationary orbit for copious customers in the Americas, Europe and Africa. UPDATE: After a 2nd abort launch is now NET July 5.

JULY 5 UPDATE: GO for launch attempt tonight at 7:37 PM. Weather looks good at this time.

“SpaceX, confirms that we are ‘Go’ for a launch tonight, 5 July, at approximately 23:37:00 UTC (7:37pm EDT), GO INTELSAT 35E!!” Intelsat announced.

If all goes well, SpaceX will have demonstrated an amazing launch pace with 3 rockets propelled aloft in the span of just 10 days from both US coasts.

Originally slated for Sunday evening, July 2, the launch was automatically aborted by the computer control systems literally in the final moments before the scheduled liftoff due to a guidance issue, and under picture perfect weather conditions – which would have resulted in 3 launches in 9 days.

Following the 24 hour scrub turnaround, blastoff of the Intelsat 35e communications satellite for commercial broadband provider Intelsat is now slated for dinnertime early Monday evening, July 3 at 7:37 p.m. EDT, or 2337 UTC from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Up close view of payload fairing encapsulating Intelsat 35e comsat launching atop expendable SpaceX Falcon 9 booster at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. This booster is not equipped with grid fins or landing legs. Credit: Ken Kremer/kenkremer.com

The first stage will not be recovered for this launch because the massive 6800 kg Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.

“There will be no return of the booster for this mission, “ Ken Lee, Intelsat’s senior vice president of space systems, told Universe Today in a prelaunch interview on Sunday.

“We [Intelsat] need all the fuel to get to orbit.”

By using all available fuel on board the Falcon 9, Intelsat 35e will be delivered to a higher orbit.

“This will enable us to use less fuel for orbit raising maneuvers and make more available for station keeping maneuvers,” Lee told me.

“We hope this will potentially extend the satellites lifetime by 1 or 2 years.”

“Intelsat 35e is the fourth in the series of our ‘Epic’ satellites. It will provide the most advanced digital services ever and a global footprint.”

You can watch the launch live on a SpaceX dedicated webcast starting about 15 minutes prior to the opening of the launch window at 7:37 p.m. EDT, or 2337 UTC

Watch the SpaceX broadcast live at: SpaceX.com/webcast

The never before used Falcon 9’s launch window extends for nearly an hour – 58 minutes – until 8:35 p.m. EDT, July 5, or 0035 UTC

Expendable SpaceX Falcon 9 is seen rising to launch position and is now erected to launch position and poised for liftoff with Intelsat 35e on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

“Our whole team had to activate quickly to get Intelsat 35e into this window and ready for launch. The good news is we partnered with SpaceX and Boeing, the satellite builder,” said Kurt Riegel Sr VP Intelsat Sales & Markenting, in an interview with Universe Today at the countdown clock at the KSC Press Site.

There was barely a week to turn around the Falcon 9 rocket and launch pad sinevc the blastoff of BulgariaSat-1.

“Boeing got everything accomplished on time and not give an inch on our test schedule or our quality which is so important to us.”

Monday’s [now Wednesday July] weather forecast is currently 70% GO for favorable conditions at launch time.

The weather odds have changed dramatically all week – trending more favorable.

The concern is for the Cumulus Cumulus Cloud Rule according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

Monday’s abort took place 10 seconds before liftoff but was called at T-Zero by the SpaceX launch director. A problem was detected with the GNC system, which stands for guidance, navigation and control.

“We had a vehicle abort criteria violated at T-minus 10 seconds, a GNC criteria,” the launch director announced on the SpaceX webcast soon after the abort was called.

“We’re still looking into what that is at this time.

He then announced a scrub for the day.

“We’re not going to be able to get a recycle in today without going past the end of the window, so we’re officially scrubbed,” he stated on the webcast.

“Go ahead and put a 24-hour recycle into work.”

SpaceX Falcon 9 is poised for liftoff with Intelsat 35e – 4th next gen ‘Epic’ comsat on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The brand new 29 story tall SpaceX Falcon 9 will deliver Intelsat 35e to a Geostationary Transfer Orbit (GTO).

The geostationary comsat will provide high performance services in the C- And Ku-bands to customers in North and South America, the Caribbean, as well as the continents of Europe and Africa.

Artists concept of Intelsat 35e in geostationary Earth orbit. Credit: Intelsat

The Ku band service includes a customized high power beam for direct-to-home television (DTH) and data communications services in the Caribbean as well as mobility services in Europe and Africa.

Hordes of spectators lined local area beaches and causeways north and south of the launch pad in anticipation of Sunday’s launch.

Many are expected to return given the promising weather forecast and July 4th holiday weekend.

The 229-foot-tall (70-meter) Falcon 9/Intelsat 353e rocket was raised erect Sunday morning, July 2 and is poised for liftoff and undergoing final prelaunch preparations.

The first and second stages will again be fueled with liquid oxygen and RP-1 propellants starting about one hour before liftoff.

Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 29 June 2017 as seen from Banana River lagoon, Titusville, FL. The Falcon 9 is slated to launch Intelsat 35e on July 3, 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 29 June 2017 as seen from Banana River lagoon, Titusville, FL. The Falcon 9 is slated to launch Intelsat 35e on July 3, 2017. Credit: Ken Kremer/Kenkremer.com

Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

SpaceX Ramps Up; Reused SpaceX BulgariaSat-1 Booster Arrives in Port as Next Falcon 9 Test Fires for July 2 Intelsat Launch – Gallery

What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com
What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL/KENNEDY SPACE CENTER, FL – The launch cadence at Elon Musk’s SpaceX is truly ramping up with Falcon 9 boosters rapidly coming and going in all directions from ground to space as the firm audaciously sets its sight on a third commercial payload orbital launch on July 2 in the span of just 9 days from its East and West Coast launch bases.

It was a magnificent sight to behold !! Seeing commercial passenger carrying cruise ships and commercial recycled rockets that will one day carry paying passenger to space, floating side by side in the busy channel of narrow Port Canaveral, basking in the suns glow from the sunshine state.

The doubly ‘flight-proven’ SpaceX Falcon 9 booster portends a promising future for spaceflight that Elon Musk hopes and plans will drastically slash the high cost of rocket launches and institute economic savings that would eventually lead to his dream of a ‘City on Mars!’ – sooner rather than later.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Thursday, June 29, serves as a perfect example of how SpaceX is rocking the space industry worldwide.

First, the reused first stage Falcon 9 booster from last Friday’s (June 23) SpaceX launch of the BulgariaSat-1 HD television broadcast satellite floated magnificently into Port Canaveral early Thursday morning atop the diminutive oceangoing droneship upon which it safely touched down upright on a quartet of landing legs some eight minutes after launch.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Second, SpaceX engineers then successfully conducted a late in the day static hot fire test of the Falcon 9 first stage engines and core that will power the next launch of the Intelsat 35e commercial comsat to orbit this Sunday, July 2.

So the day was just chock full of nonstop SpaceX rocketry action seeing a full day of rocket activities from dawn to dusk.

SpaceX Falcon 9 Booster and Canaveral Lighthouse together- Twice used SpaceX Falcon 9 which launched BulgariaSat-1 into orbit from KSC on 23 June floats into Port Canaveral with Cape Canaveral LIghthouse seen between landing legs in the distance as OCISLY drone ship crew on which she landed are working on deck on June 29, 2017. Credit: Ken Kremer/kenkremer.com

Thursday’s nonstop Space Coast action spanning from the north at the Kennedy Space Center and further south to Cape Canaveral Air Force Station and Port Canaveral was the culmination of space launch flow events that actually began days, weeks and months earlier.

The 156 foot- tall Falcon 9 booster had successfully landed on the tiny rectangular shaped “Of Course I Still Love You” or OCISLY droneship less than nine minutes after liftoff on Friday, June 23 on the BulgariaSat-1 flight.

That mission began with the picture perfect liftoff of the BulgariaSat-1 communications satellite for East European commercial broadband provider BulgariaSat at 3:10 p.m. EDT, or 19:10 UTC, June 23, with ignition of all nine of the ‘flight-proven’ Falcon 9 first stage engines on SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider.

The 15 story tall first stage touched down with a slight tilt of roughly eight degrees as a direct result of the extremely demanding landing regime.

Then after spending several post landing and launch days at sea due to stormy weather along the Florida Space Coast and to accommodate local shipping traffic and SpaceX planning needs, the booster at last neared shore from the south off the coast of Melbourne, FL.

Accompanied by a small armada of support vessels it was slowly towed to port by the Elsbeth III.

The SpaceX flotilla arrived at last at the mouth of Port Canaveral and Jetty Park Pier jutting into the Atlantic Ocean at about 830 a.m. EDT – offering a spectacular view at to a flock of space enthusiasts and photographers including this author.

SpaceX Booster arrival on 30 June 2017. Credit: Dawn Leek Taylor

I highly recommend you try and see a droneship arrival if all possible.

The leaning boosters – of which this is only the second – are even more dramatic!

Because the Falcon 9 barely survived the highest ever reentry force and landing heat to date, Musk reported.

The rectangularly shaped OCISLY droneship is tiny – barely the size of a moderately sized apartment complex parking lot.

Credit: Ken Kremer/kenkremer.com

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year.

Some two minutes and 40 seconds after liftoff the first and second stages separated.

As the second stage continued to orbit, the recycled first stage began the daunting trip back to Earth on a very high energy trajectory that tested the limits of the boosters landing capability.

“Falcon 9 will experience its highest ever reentry force and heat in today’s launch. Good chance rocket booster doesn’t make it back,” SpaceX founder and CEO Elon Musk wrote in a prelaunch tweet.

Following stage separation, Falcon 9’s first stage carried out two burns, the entry burn and the landing burn using a trio of the Merlin 1D engines.

Ultimately the 15 story tall booster successfully landed on the “Of Course I Still Love You” or OCISLY droneship, stationed in the Atlantic Ocean about 400 miles (600 km) offshore and east of Cape Canaveral.

“Rocket is extra toasty and hit the deck hard (used almost all of the emergency crush core), but otherwise good,” Musk tweeted shortly after the recycled booster successfully launched and landed for its second time.

Up close view of blackened Aluminum grid fins on twice used SpaceX Falcon 9 1st stage which just sailed into Port Canaveral on 29 June after launching BulgariaSat-1 23 June 2017 from pad 39A on NASA’s Kennedy Space Center. The fins are being replaced by more resilient units made of Titanium as demonstrated 1st during the recent Iridium 2 launch. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 and Iridium-2 counted as the eighth and ninth SpaceX launches of 2017.

Including those two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Both landing droneships are now back into their respective coastal ports.

It’s a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by Musk.

Watch my BulgariaSat-1 launch video from KSC pad 39A

Video Caption: Launch of SpaceX Falcon 9 on June 23, 2017 from pad 39A at the Kennedy Space Center carrying BulgariaSat-1 TV broadband satellite to geosynchronous orbit for BulgariaSat, which is Bulgaria’s 1st GeoComSat – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Accomplishes Double Headed American Space Spectacular – 2 Launches and 2 Landings in 2 Days from 2 Coasts: Gallery

Liftoff of SpaceX Falcon 9 on June 25 at 1:25 p.m. PDT (4:25 p.m. EDT) carrying ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from Vandenberg Air Force Base in California. Credit: SpaceX
Liftoff of SpaceX Falcon 9 on June 25 at 1:25 p.m. PDT (4:25 p.m. EDT) carrying ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from Vandenberg Air Force Base in California. Credit: SpaceX

KENNEDY SPACE CENTER, FL – With Sunday’s successful Falcon 9 blastoff for Iridium Communications joining rocketry’s history books, Elon Musk’s SpaceX accomplished a double headed American space spectacular this weekend with 2 launches and 2 booster landings in 2 days from 2 coasts for 2 commercial customers – in a remarkably rapid turnaround feat that set a new record for minimum time between launches for SpaceX.

On Sunday, June 25 at 1:25 p.m. PDT (4:25 p.m. EDT; 2025 UTC) a SpaceX Falcon 9 rocket successfully launched a second set of ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from SLC-4E on Vandenberg Air Force Base in California.

“All sats healthy and talking,” tweeted Matt Desch, Iridium Communications CEO, soon after launch and confirmation that all 10 Iridium NEXT satellites were successfully deployed from their second stage satellite dispensers. Iridium is a global leader in mobile voice and data satellite communications.

“It was a great day!”

The US West Coast Falcon 9 liftoff of the Iridium-2 mission from California on Sunday, June 25 took place barely 48 hours after the US East Coast Falcon 9 liftoff of the BulgariaSat-1 mission from Florida on Friday, June 23.

Without a doubt, Musk’s dream of rocket reusability as a here and now means to slash the high costs of launching to space and thereby broaden access to space for more players is rapidly taking shape.

Following separation of the first and second stages, the Falcon 9’s 15 story tall first stage successfully landed on the “Just Read the Instructions” droneship ocean going platform stationed several hundred miles out in the Pacific Ocean off the coast of California, despite challenging weather conditions.

Indeed the droneships position was changed in the final minutes before launch due to the poor weather.

“Droneship repositioned due to extreme weather. Will be tight,” tweeted Musk minutes before liftoff.

The 156 foot tall booster touched down about 8 and ½ minutes after liftoff from Vandenberg AFB.

Liftoff of SpaceX Falcon 9 on June 25 at 1:25 p.m. PDT (4:25 p.m. EDT) carrying ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from Vandenberg Air Force Base in California. Credit: SpaceX

The launch, landing and deployment of the 10 Iridium Next satellites was all broadcast live on a SpaceX webcast.

The perfectly executed Iridium-2 and BulgariaSat-1 launch and landing duo clearly demonstrates the daunting capability of SpaceX’s privately owned and operated engineering team to pull off such a remarkable feat in nimble fashion.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The stage was set for the unprecedented Falcon 9 launch doubleheader just a week ago when SpaceX CEO and billionaire founder Elon Musk tweeted out the daring space goal after all went well with the Florida Space Coast’s static hotfire test for the first in line BulgariaSat-1 flight.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Check out the expanding gallery of Bulgariasat-1 eyepopping photos and videos from several space journalist colleagues and friends and myself.

Click back as the gallery grows !

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Dawn Leek Taylor

Sunday’s Iridium 2 flight was Iridium Communications second contracted launch with SpaceX.

“This payload of 10 satellites was deployed into low-Earth orbit, approximately one hour after a SpaceX Falcon 9 rocket lifted off from Vandenberg,” Iridium said in a statement.

The Mini Cooper sized Iridium NEXT satellites each weigh 1,900 pounds, totaling approximately 19,000 pounds placed into space. That is the weight of a semi tractor trailer truck!

The inaugural Iridium 1 launch with the first ten Iridium Next satellites took place successfully at the start of this year on Jan. 14, 2017.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

The new set of ten Iridium Next mobile relay satellites were delivered into a circular orbit at an altitude of 625 kilometers (388 miles) above Earth.

They were released one at a time from a pair of specially designed satellite dispensers at approximately 100 second intervals.

“Since the successful January 14, 2017 launch, Iridium NEXT satellites have already been integrated into the operational constellation and are providing service. The first eight operational Iridium NEXT satellites are already providing superior call quality and faster data speeds with increased capacity to Iridium customers. The two additional satellites from the first launch are continuing to drift to their operational orbital plane, where upon arrival they will begin providing service.”

Iridium 2 is the second of eight planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

At least 75 will be launched by SpaceX to low-Earth orbit, with 66 making up the operational constellation.

The inaugural launch of the advanced Iridium NEXT satellites in January 2017 started the process of replacing an aging Iridium fleet in orbit for nearly two decades.

Nine of the 81 will serve as on-orbit spares and six as ground spares.

“Now, and for approximately the next 45 days, these newly launched satellites will undergo a series of testing and validation procedures, ensuring they are ready for integration with the operational constellation,” said Iridium.

“We are thrilled with yesterday’s success. These new satellites are functioning well, and we are pressing forward with the testing process,” said Scott Smith, chief operating officer at Iridium.

“Since the last launch, the team at our Satellite Network Operations Center (SNOC) has been anxiously awaiting this new batch of satellites. There is a lot of work to do, and we are up for the challenge.”

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 and Iridium-2 count as the eighth and ninth SpaceX launches of 2017.

Including these two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Both landing droneships are now headed back into their respective coastal ports.

It’s a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by Musk.

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

Watch this BulgariaSat-1 launch video from KSC pad 39A

Video Caption: Launch of SpaceX Falcon 9 on June 23, 2017 from pad 39A at the Kennedy Space Center carrying BulgariaSat-1 TV broadband satellite to geosynchronous orbit for BulgariaSat, which is Bulgaria’s 1st GeoComSat – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

BulgariaSat-1 streaks to orbit after June 23, 2017 liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
BulgariaSat-1 arcs over eastwards to Africa as it streaks to orbit after June 23, 2017 liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida- as seen from the crawlerway. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
BulgariaSat-1 liftoff atop SpaceX Falcon 9 on June 23, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Ashley Carrillo
BulgariaSat-1 liftoff atop SpaceX Falcon 9 on June 23, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Ashley Carrillo
BulgariaSat-1 launches June 23, 2017 on SpaceX Falcon 9 from NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Wesley Baskin
BulgariaSat-1 launches June 23, 2017 on SpaceX Falcon 9 from NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Wesley Baskin
Launch 2nd recycled SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 Blazes to Orbit on Used SpaceX Falcon 9 Rocket as Breakthrough Booster Lands 2nd Time on Oceanic Platform

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – In another breakthrough milestone aimed at slashing the high cost of rocketry, the innovators at billionaire entrepreneur Elon Musk’s SpaceX successfully launched a ‘used’ rocket for only the second time in history – that blazed a path to orbit with its BulgariaSat-1 commercial television comsat payload Friday afternoon, June 23, from the Kennedy Space Center and just minutes later landed upright and intact on an oceanic platform waiting offshore in the vast currents of the Atlantic ocean.

“This is really a great day for us,” Maxim Zayakov, CEO of BulgariaSat and Bulsatcom told Universe Today during pre and post launch interview’s onsite at NASA’s Kennedy Space Center in Florida.

“Everything is seeming to be a good success so far.”

To top that, SpaceX is targeting a bicoastal weekend doubleheader of launches signaling a remarkably rapid turnaround capability. Another Falcon 9 is scheduled for blastoff on Sunday, June 25 at 1:25 p.m. PDT (4:25 p.m. EDT; 2025 UTC) from Vandenberg Air Force Base in California on the Iridium-2 mission, less than 48 hours apart – which would set a new launch turnaround record for SpaceX.

The picture perfect liftoff of the BulgariaSat-1 communications satellite for East European commercial broadband provider BulgariaSat began at 3:10 p.m. EDT, or 19:10 UTC, June 23, with ignition of all nine of the ‘flight-proven’ Falcon 9 first stage engines on SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Launch 2nd recycled SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider.

“Everything went down just as we expected,” BulgariaSat CEO Zayakov told me. “Of course there was a lot of excitement. And there are a lot of excited and scared feelings [with launches].”

“At the end of the day it not only worked out just as expected with the launch but the satellite also already reported in telemetry that she is doing fine,” Zayakov elaborated.

BulgariaSat-1 is the first geostationary communications satellite orbited for the nation of Bulgaria.

“We will start using it as soon as we can, in about one and a half months.”

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

The used 229-foot-tall (70-meter) SpaceX Falcon 9 carrying BulgariaSat-1 soared off historic pad 39A into brilliant mid-afternoon blue skies drenching the Florida Space Coast with beloved sunshine to the delight of hordes of spectators gathered from across the globe – including a Bulgarian TV crew witnessing their first launch.

History’s first ‘flight-proven’ Falcon 9 booster was successfully launched by SpaceX this past March for Luxembourg based telecommunications giant SES on the SES-10 mission – likewise from pad 39A.

Some 35 minutes after blastoff, BulgariaSat-1 was successfully separated as planned from the Falcon 9 second stage and deployed to its targeted initial geostationary transfer orbit (GTO).

“So now she is on her way to the orbital position. The solar arrays deployed about 30 minutes after spacecraft separation from the second stage.”

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida- as seen from the crawlerway. Credit: Ken Kremer/kenkremer.com

Would you launch with Space X again?

“Yes looking to the future we would be happy to use SpaceX again in the future, certainly why not. SpaceX is definitely up there,” Zayakov replied.

BulgariaSat-1 will be located at the Bulgarian orbital position at 1.9 degrees East longitude and will provide reliable satellite communications solutions to broadcast, telecom, corporate and government customers.

How many customers will be served? I asked Zayakov.

“BulgariaSat-1 will serve about 800,000 customers in Bulgaria and about another million subscribers elsewhere in eastern Europe and the Balkans,” Zayakov elaborated.

The BulgariaSat-1 geostationary comsat will provide direct-to-home television (DTH) and data communications services to Southeastern Europe, including Serbia, the Balkans and other European regions.

You could not have asked for better weather as the recycled Falcon 9 roared to life for the second time with a paying customer and put on a long and exciting space spectacle for those lucky and fortunate enough to witness history with their own eyeballs first hand and follow along for several minutes as the rocket accelerated magnificently to orbit and arched over to the African continent in the nearly cloudless sky.

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year.

Some two minutes and 40 seconds after liftoff the first and second stages separated.

As the second stage continued to orbit, the recycled first stage began the daunting trip back to Earth on a very high energy trajectory that tested the limits of the boosters landing capability.

“Falcon 9 will experience its highest ever reentry force and heat in today’s launch. Good chance rocket booster doesn’t make it back,” SpaceX founder and CEO Elon Musk wrote in a prelaunch tweet.

Following stage separation, Falcon 9’s first stage carried out two burns, the entry burn and the landing burn using a trio of the Merlin 1D engines.

Ultimately the 15 story tall booster successfully landed on the “Of Course I Still Love You” or OCISLY droneship, stationed in the Atlantic Ocean about 400 miles (600 km) offshore and east of Cape Canaveral.

“Rocket is extra toasty and hit the deck hard (used almost all of the emergency crush core), but otherwise good,” Musk tweeted shortly after the recycled booster successfully launched and landed for its second time.

The 156 foot tall first stage may have touched down with a slight tilt.

The OCISLY droneship is expected back into Port Canaveral in a few days.

The 8,100 pounds (3,700 kilograms) BulgariaSat-1 satellite was built by SSL in Palo Alto, Calif. It has a design lifetime for a 15-year mission.

BulgariaSat-1 is equipped with 2 Ku-band FSS transponders and 30 Ku-band BSS transponders for fixed satellite services and advanced television services such as high definition television.

With BulgariaSat-1 now safely in orbit, a period of critical testing and checkout is on tap next.

“It takes about ten days to arrive and stabilize at the final orbital slot,” Zayakov stated. “Then after those 10 days it takes about another 20 to 30 days to actually do all the orbital checkouts and orbital tests required to make sure that the satellite is performing fine and that we can start using it for broadcasts.”

“So in about one and a half months we will be ready to start using BulgariaSat-1.”

“We will start using it as soon as we can!”

2 enthusiastic ‘Thumbs Up’ from Maxim Zayakov, CEO of BulgariaSat, during interview with Universe Today at KSC countdown clock following June 23, 2017 launch of BulgariaSat-1 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The BulgariaSat-1 launch had originally been slated for this past Monday, June 19 but was delayed four days to fix a valve in the payload fairing.

“Postponing launch to replace fairing pneumatic valve,” Musk tweeted last Sunday. “It is dual redundant, but not worth taking a chance.”

And everything went off without a hitch!

BulgariaSat-1 counts as the eighth SpaceX launch of 2017.

Payload fairing encapsulating BulgariaSat-1 comsat launching atop used SpaceX Falcon 9 booster at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Photo of BulgariaSat-1 undergoing launch processing. Credit: SpaceX
SpaceX Falcon 9 BulgariaSat-1 mission patch logo. Credit: SpaceX/BulgariaSat

2nd SpaceX Recycled Falcon 9 Rocket Launching 1st Bulgarian GeoComSat June 23, Plus Potential Weekend Launch ‘Doubleheader’ – Watch Live

Flight-proven SpaceX Falcon 9 first stage arrives at Launch Complex 39A at NASA's Kennedy Space Center in Florida slated for launch of BulgariaSat-1 on June 23, 2017. Credit: Ken Kremer/kenkremer.com
Flight-proven SpaceX Falcon 9 first stage arrives at Launch Complex 39A at NASA’s Kennedy Space Center in Florida slated for launch of BulgariaSat-1 on June 23, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – For only the second time in history, SpaceX will launch a ‘flight-proven’ Falcon 9 rocket this Friday afternoon and the payload this time for this remarkable and science fictionesque milestone is the first geostationary communications satellite for the nation of Bulgaria.

Blastoff of the BulgariaSat-1 communications satellite for commercial broadband provider BulgariaSat is slated for early Friday afternoon, June 23 at 2:10 p.m. EDT, or 18:10 UTC from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider. The geostationary comsat will provide direct-to-home television (DTH) and data communications services to Southeastern Europe, including the Balkans and other European regions.

Flight-proven SpaceX Falcon 9 poised for launch of BulgariaSat-1 on June 23, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The used 229-foot-tall (70-meter) SpaceX Falcon 9 will deliver BulgariaSat-1 to a Geostationary Transfer Orbit (GTO).

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 15 June 2017 as seen from Space View Park, Titusville, FL. The Falcon 9 is slated to launch BulgariaSat-1on June 23, 2017. Credit: Ken Kremer/Kenkremer.com

All systems are GO at this point!

And if all goes well there is a definite possibility of a weekend bicoastal launch double header by SpaceX – says SpaceX billionaire founder and CEO Elon. The next Falcon 9 mission is scheduled for blastoff on Sunday, June 25 from Vandenberg Air Force Base in California, barely 48 hours apart.

SpaceX is maintaining a blistering launch pace this year.

The Falcon 9 booster arrived just hours after launch of the Dragon CRS-11 resupply mission for NASA on June 3 – as I witnessed the recycled rockets arrival at pad 39A first hand later the same day (see photos).

Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

SpaceX successfully launched history’s first ‘flight-proven’ Falcon 9 booster this past March for Luxembourg based telecommunications giant SES on the SES-10 mission – likewise from pad 39A.

Recycled SpaceX Falcon 9 skyrockets to orbit with SES-10 telecomsat from historic Launch Complex 39A as it zooms past US Flag by the countdown clock at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

The late lunchtime liftoff time for BulgariaSat-1 offers a very convenient opportunity for everyone to enjoy an eyewitness view, regardless of whether you live locally or if have the availability to take a quick trip to the Florida Space Coast.

And the current weather outlook is excellent say forecasters.

You can watch the launch live on a SpaceX dedicated webcast starting about 15 minutes prior to the opening of the launch window at 2:10 p.m. EDT, or 18:10 UTC

Watch the SpaceX broadcast live at: SpaceX.com/webcast

The recycled Falcon 9’s launch window extends for a full two hours until 4:10 p.m. EDT, June 23, or 20:10 UTC.

Fridays weather forecast is currently 90% GO for favorable conditions at launch time. That’s about as good as it gets for the notoriously fickle central Florida region.

The concern is for the Cumulus Cumulus Cloud Rule according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

In case of a scrub for any reason on Friday, June 23, the backup launch opportunity is Saturday, June 24, at 2:10 p.m. EDT, or 18:10 UTC. Likewise it extends for two hours.

Saturdays’ weather forecast also quite good, dropping only slightly to 80% GO. The concern is for the Cumulus Cumulus Cloud Rule.

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year. Following stage separation, Falcon 9’s first stage will attempt a landing on the “Of Course I Still Love You” droneship, which will be stationed in the Atlantic Ocean.

The satellite was built by SSL in Palo Alto, Calif. It has a design lifetime for a 15-year mission.

“We selected SSL to manufacture our first satellite early on, based on its history of success and reliability,” says Maxim Zayakov, chief executive officer of Bulgaria Sat. “SSL has been an excellent partner in helping us bring this project to fruition.”

BulgariaSat-1 will be equipped with 2 Ku-band FSS transponders and 30 Ku-band BSS transponders for fixed satellite services and advanced television services such as high definition television.

Photo of BulgariaSat-1 undergoing launch processing. Credit: SpaceX

The historic pad 39A was previously used to launch NASA’s Apollo Saturn Moon rockets and Space Shuttles.

The path to launch was cleared following the successful completion of a critical static hot-fire test of the first stage last Thursday, June 15.

The hot fire test lasted about seven seconds as I witnessed from Banana River Lagoon and Rt. 1 in Titusville, which provides numerous excellent viewing locations.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 15 June 2017 as seen from Space View Park, Titusville, FL. The Falcon 9 is slated to launch BulgariaSat-1on June 23, 2017. Credit: Ken Kremer/Kenkremer.com

The BulgariaSat-1 launch had originally been slated for this past Monday, June 19 but was delayed four days to fix a valve in the payload fairing.

Payload fairing encapsulating BulgariaSat-1 comsat launching atop used SpaceX Falcon 9 booster at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming SpaceX launch of BulgariaSat 1, recent SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

June 22-24: “SpaceX BulgariaSat 1 launch, SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 BulgariaSat-1 mission patch logo. Credit: SpaceX/BulgariaSat

The Aerospike Engine Was Considered for the Shuttle, But Never Flew. That’s About to Change

Artist's impression of the Demonstrator 3 aerospike test vehicle and the Haas 2CA SSTO rocket. Credit: ARCA

The aerospike engine is a time-honored concept. In the past, NASA tested the concept extensively on the ground and hoped to incorporate it into the Space Shuttle and their next-generation Venture Star program (a Single-Stage-To-Orbit (SSTO) vehicle). However, due to budget constraints, the Space Shuttle ended up being equipped with bell-shaped nozzles instead, and the Venture Star never saw the light of day.

But thanks to New Mexico-based aerospace company ARCA, the aerospike engine is getting a new lease on life. This coming August, they will conduct a test flight of the aerospike engine using their Demonstrator 3 rocket, which will constitute the first space flight of the engine. If all goes well, it will be a major step towards the creation of a fleet of Single-Stage-To-Orbit (SSTO) rockets.

What makes the aerospike engine appealing is the fact that it offers efficient thrust over a wide range of altitudes, and is also more fuel-efficient than current engines. With traditional bell-shaped nozzles, reliable thrust tends to occur only at sea level. Beyond that, the engine isn’t capable of taking advantage of decreases in atmospheric pressure since the gases are contained by the nozzle.

The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA’s Sternis Space Center, Mississippi. Credit: NASA’s Marshall Space Flight Center

In contrast, the aerospike engine’s exhaust is capable of expanding from sea level all the way up to space, which ensures both fuel-efficiency and a high degree of specific impulse (Isp) at all flight levels. Already, ARCA and NASA have scheduled ground and vacuum tests for the engine. But in the meantime, they also want to gather data on how it performs in flight. This is where the Demonstrator 3 test comes into play.

In addition to testing the engine’s efficiency, it will also test the aerospike’s super-cold fuel storage technology. Basically, the engine relies on a decomposing 70% concentration of hydrogen peroxide at a temperature of only 250 °C to generate thrust. The byproduct of this is oxygen and water, which makes the aerospike the most environmentally-friendly rocket concept to date. As Dumitru Popescu, the CEO of ARCA, said in a recent statement:

“By sending the Demonstrator 3 rocket in space using a super cold engine, with only 250 °C instead of 3500 °C in the reaction chamber, paired with the aerospike technology, we are going to demonstrate the impressive potential of the aerospike.”

Ultimately, the goal here is to demonstrate that SSTO rockets are feasible, which ARCA is exploring with their Haas 2CA concept. The latest in the Haas rocket family, named in honor of Austrian-Romanian rocketry pioneer Conrad Haas, this launch vehicle uses hydrogen peroxide and kerosene for fuel and is capable of generating 22,900 kg (50,500 lbs) of thrust at sea level, and about 33,565 kg (74,000 lbs) in a vacuum.

Compared to multi-stage rockets, SSTOs offer both lower costs and greater flexibility when it comes to launching small payloads into orbit. According to estimates produced by Space Works and Eurostat, this small satellite market will be growing by $5.3 billion in the next decade. As such, aerospace companies that can offer competitive launch rates and flexibility will be able to take advantage of this growth.

The company unveiled the Haas 2CA back in March of 2017 at their company headquarters in Las Cruces, New Mexico. In 2018, ARCA hopes to conduct their first test launch of the Haas 2CA from NASA’s Wallops Flight Facility in Virginia. But before that can happen, the company needs to make sure the aerospike engine performs as well as expected. As Popescu explained:

“The Haas 2CA Single Stage to Orbit is just the beginning of a new generation of space vehicle, shaped by innovation that will generate lower cost. We are going to answer one of the industry’s most asked questions: can an aerospike deliver in flight the pressure compensation generated by altitude variation and deliver the expected performance by saving fuel? We want to pick up where NASA left off and prove that this technology is actually the way to go for space flights.”

The test flight, which will take place at Spaceport America in the New Mexico desert, will consist of a suborbital space flight that will take the Demonstrator 3 up to an altitude of 100 km. If this flight is achieved, ARCA will have demonstrated that the engine technology is flight qualified, that SSTO rockets are feasible, and that super cold engines paired with aerospike technology will allow for environmentally friendly suborbital rockets.

Artist’s impression of the Haas 2C rocket ascending into orbit. Credit: ARCA

The test will also be a milestone for the commercial aerospace industry, which was founded on the desires to make space more accessible and lowering the costs associated with individual launches. And as Popescu was sure to indicate, the best way to do this is not to merely improve upon existing concepts, but leverage cutting-edge and time-tested technologies to create new ones.

“We are confident that the aerospike engine combined with composite material fuel tanks and dense fuels will significantly lower the costs for orbital and suborbital launches,” he said. “We truly believe that the answer for cost reduction of space flight is innovation, not trying to make old technologies a little bit more efficient. This will never generate significant price drop of space launches, but merely small improvements. With this philosophy in mind we expect to increase the registered value of our company from its current $20 million to at least $200 millions by 2019.”

The development of SSTOs are just one way that the commercial aerospace industry is making space exploration more economical. Other examples include SpaceX’s developments of reusable rockets, and Rocketlab‘s use of lightweight materials to create two-stage disposable rockets.

These measures are not only allowing for the commercialization of Low-Earth Orbit (LEO), but are opening up possibilities that were previously thought to be impossible for the time being – like space-based solar power and space habitats!

Stay tuned for more on this and other upcoming tests. And be sure to check out this video on how ARCA is preparing for the upcoming aerospike test flight, courtesy of ARCA:

Further Reading: ARCA, ARCA News

Elon Musk Details His Vision for a Human Civilization on Mars

Artist's impression of the the Interplanetary Spacecraft approaching Mars. Credit: SpaceX

Elon Musk has never been one to keep his long-term plans to himself. Beyond the development of reusable rockets, electric cars, and revolutionizing solar power, he has also been quite vocal about establishing a colony on Mars within his lifetime. The goal here is nothing less than ensuring the survival of the human race by creating a “backup location”, and calls for some serious planning and architecture.

These and other aspects of Musk’s proposed mission to Mars were outlined in an essay titled “Making Humans a Multi-Planetary Species“, which was published in the June 2017 issue of the journal New Space. The paper is a summary of the presentation he made at the 67th Annual Meeting of the International Astronautical Congress, which took place from September 26th–30th, 2016, in Guadalajara, Mexico.

The paper was produced by Scott Hubbard, a consulting professor at Stanford University and the Editor-in-Chief of NewSpace, and includes all the material and slides from Musk’s original presentation. Contained within are Musk’s thoughts on how the colonization of Mars could be accomplished in this century and what issues would need to be addressed.

Elon Musk revealing his Mars Plans at the 67th annual meetings of the IAC. Credit: SpaceX/IAC

These include the costs of sending people and payloads to Mars, the technical details of the rocket and vehicle that would be making the trip, and possible cost breakdowns and timelines. But of course, he also addresses the key philosophical questions – “Why go?” and “Why Mars?”

Addressing this first question is one of the most important aspects of space exploration. Remember John F. Kennedy’s iconic “We Choose to go to the Moon” speech? Far from just being a declaration of intent, this speech was a justification by the Kennedy administration for all the time, energy, and money it was committing to the Apollo program. As such, Kennedy’s speech stressed above all else why the goal was a noble undertaking.

In looking to Mars, Musk struck a similar tone, emphasizing survival and humanity’s need to expand into space. As he stated:

“I think there are really two fundamental paths. History is going to bifurcate along two directions. One path is we stay on Earth forever, and then there will be some eventual extinction event. I do not have an immediate doomsday prophecy, but eventually, history suggests, there will be some doomsday event. The alternative is to become a space-bearing civilization and a multi-planetary species, which I hope you would agree is the right way to go.”

As for what makes Mars the natural choice, that was a bit more of a tough sell. Granted, Mars has a lot of similarities with Earth – hence why it is often called “Earth’s Twin” – which makes it a tantalizing target for scientific research. But it also has some rather stark differences that make long-term stays on the surface seem less than appealing. So why would it be the natural choice?

Artist’s rendition of a passenger aboard the ITS looking down on Mars. Credit: SpaceX

As Musk explains, proximity has a lot to do with it. Sure, Venus is closer to Earth, getting as close as 41 million km (25,476,219 mi), compared to 56 million km (3,4796,787 mi) with Mars. But Venus’ hostile environment is well-documented, and include a super-dense atmosphere, temperatures hot enough to melt lead and sulfuric acid rain! Mercury is too hot and airless, and the Jovian moons are very far.

This leaves us with just two options for the near-future, as far as Musk is concerned. One is the Moon, which is likely to have a permanent settlement on it in the coming years. In fact, between the ESA, NASA, Roscosmos, and the Chines National Space Administration, there is no shortage of plans to build a lunar outpost, which will serve as a successor to the ISS.

But compared to Mars, it is less resource rich, has no atmosphere, and represents a major transition as far as gravity (0.165 g compared to 0.376 g) and length of day (28 days vs. 24.5 hours) are concerned. Herein lies the greatest reason to go to Mars, which is the fact that our options are limited and Mars is the most Earth-like of all the bodies that are currently accessible to us.

What’s more, Musk makes allowances for the fact that colonists could start kick-starting the terraforming process, to make it even more Earth-like over time. As he states (bold added for emphasis):

“In fact, we now believe that early Mars was a lot like Earth. In effect, if we could warm Mars up, we would once again have a thick atmosphere and liquid oceans. Mars is about half as far again from the Sun as Earth is, so it still has decent sunlight. It is a little cold, but we can warm it up. It has a very helpful atmosphere, which, being primarily CO2 with some nitrogen and argon and a few other trace elements, means that we can grow plants on Mars just by compressing the atmosphere.

“It would be quite fun to be on Mars because you would have gravity that is about 37% of that of Earth, so you would be able to lift heavy things and bound around. Furthermore, the day is remarkably close to that of Earth. We just need to change the populations because currently we have seven billion people on Earth and none on Mars.”

Naturally, no mission can be expected to happen without the all-important vehicle. To this end, Musk used the annual IAC meeting to unveil his company’s plans for the Interplanetary Transport System. An updated version of the Mars Colonial Transporter (which Musk began talking about in 2012), the ITS will consist of two main components – a reusable rocket booster and the Interplanetary Spaceship.

The process for getting to Mars with these components involves a few steps. First, the rocket booster and spaceship take off together and the spaceship is delivered into orbit. Next, while the spaceship assumes a parking orbit, the booster returns to Earth to be reloaded with the tanker craft. This vehicle is the same design as the spaceship, but contains propellant tanks instead of cargo areas.

The tanker is then launched into orbit with the booster, where it will rendezvous with the spaceship and refuel it for the journey to Mars. Overall, the propellant tanker will go up anywhere from three to five times to fill the tanks of the spacecraft while it is in orbit. Musk estimates that the turnaround time between the spacecraft launch and the booster retrieval could eventually be as low as 20 minutes.

This process (if Musk gets its way) would expand to include multiple spaceships making the journey to and from Mars every 26 months (when Mars and Earth are closest together):

“You would ultimately have upwards of 1,000 or more spaceships waiting in orbit. Hence, the Mars Colonial fleet would depart en masse. It makes sense to load the spaceships into orbit because you have got 2 years to do so, and then you can make frequent use of the booster and the tanker to get really heavy reuse out of those. With the spaceship, you get less reuse because you have to consider how long it is going to last—maybe 30 years, which might be perhaps 12–15 flights of the spaceship at most.”

In terms of the rocket’s structure, it would consist of an advanced carbon fiber exterior surrounding fuel tanks, which would rely on an autogenous pressurization system. This involves the fuel and oxygen being gasified through heat exchanges in the engine, which would then be used to pressurize the tanks. This is a much simpler system than what is currently being used for the Falcon 9 rocket.

The booster would use 42 Raptor engines arranged in concentric rings to generate thrust. With 21 engines in the outer ring, 14 in the inner ring, and seven in a center cluster, the booster would have an estimated lift-off thrust of 11,793 metric tons (13,000 tons) – 128 MegaNewtons – and a vacuum thrust of 12,714 metric tons (14,015 tons), or 138 MN. This would make it the first spacecraft where the rocket performance bar exceeds the physical size of the rocket.

As for the spacecraft, the designs calls for a pressurized section at the top with an unpressurized section beneath. The pressurized section would hold up to 100 passengers (thought Musk hopes to eventually increase that capacity to 200 people per trip), while all the luggage and cargo necessary for building the Martian colony would be kept in the unpressurized section below.

As for the crew compartments themselves, Musk was sure to illustrate how time in them would not be boring, since the transit time is a long. “Therefore, the crew compartment or the occupant compartment is set up so that you can do zero-gravity games – you can float around,” he said. “There will be movies, lecture halls, cabins, and a restaurant. It will be really fun to go. You are going to have a great time!”

The system architecture of the Interplanetary Transport System. Credit: SpaceX

Below both these sections, the liquid oxygen tank, fuel tank and spacecraft engines are located. The engines, which would be directly attached to the thrust cone at the base, would consists of an outer ring of three sea-level engines – which would generate 361 seconds of specific impulse (Isp) – and an inner cluster of six vacuum engines that would generate 382s Isp.

The exterior of the spacecraft will also be fitted with a heatshield, which will be composed of the same material that SpaceX uses on its Dragon spacecraft. This is known as a phenolic-impregnated carbon ablator (PICA), which SpaceX is on their third version of.  In total, Musk estimates that the Interplanetary Spaceship will be able to transport 450 tons of cargo to Mars, depending upon how many times the tanker can refill the craft.

And, depending on the Earth-Mars rendezvous, the transit time could be as little as 80 days one-way (figuring for a speed of 6km/s). But with time, Musk hopes to cut that down to just 30 days, which would make it possible to establish a sizable population on Mars in a relatively short amount of time. As Musk indicated, the magic number here in 1 million, meaning the number of people it would take to establish a self-sustaining colony on Mars.

He admitted that this would be a major challenge, and could as long as a century to complete:

“If you can only go every 2 years and if you have 100 people per ship, that is 10,000 trips. Therefore, at least 100 people per trip is the right order of magnitude, and we may end up expanding the crew section and ultimately taking more like 200 or more people per flight in order to reduce the cost per person. However, 10,000 flights is a lot of flights, so ultimately you would really want in the order of 1,000 ships. It would take a while to build up to 1,000 ships. How long it would take to reach that million-person threshold, from the point at which the first ship goes to Mars would probably be somewhere between 20 and 50 total Mars rendezvous—so it would take 40–100 years to achieve a fully self-sustaining civilization on Mars.”

Cutaway of the Interplanetary Spaceship. Credit: SpaceX

When the ITS is ready to launch, it will do so from Launch Pad 39A at the Kennedy Space Center in Florida, which SpaceX currently uses to conduct Falcon 9 launches from. But of course, the most daunting aspect of any colonization effort is cost. At present, and using current methods, sending upwards of 1 million people to Mars is simply not affordable.

Using Apollo-era methods as a touchstone, Musk indicated that the cost to go to Mars would be around $10 billion per person – which is derived from the fact that the program itself cost between $100 and $200 billion (adjust for inflation) and resulted in 12 astronauts setting foot on the Moon. Naturally, this is far too high for the sake of creating a self-sustaining colony with a population of 1 million.

As a result, Musk claimed that the cost of transporting people to Mars would have to be cut by a whopping 5 million percent! Musk’s desire to lower the costs associated with space launches is well-known, and is the very reason he founded SpaceX and began developing reusable technology. However, costs would need to be lowered to the point where a ticket to Mars would cost about the same as a median house – i.e. $200,000 – before any trips to Mars could happen.

Artist’s impression of the ITS in transit, with its solar arrays deployed. Credit: SpsaceX

As to how this could be done, several strategies are outlined, many of which Musk and space agencies like NASA are already actively pursuing. They include full Reusability, where all stages of a rocket and its cargo module (not just the first stage) would have to be retrievable and reusable. Refueling in Orbit is a second means, which would mean the spacecraft would not have to carry all the fuel they need with them from Earth.

On top of that, there would have to be the option for propellant Production on Mars, where the spaceship will be able to refuel at Mars to make the return trip. This concept has been explored in the past for lunar and Martian missions. And in Mars’ case, the presence of atmospheric and frozen CO², and water in both the soil and the polar ice caps, would mean that methane, oxygen and hydrogen fuel could all be manufactured.

Lastly, there is the question of which propellant would be best. As it stands, there are there basic choices when it comes – kerosene (rocket fuel), hydrogen, and methane. All of these present certain advantages and can be manufactured in-situ on Mars. But based on a cost-benefit breakdown, Musk claims that methane would be the most cost-effective propellant.

As always, Musk also raised the issue of timelines and next steps. This consisted of a rundown of SpaceX’s accomplishments over the past decade and a half, followed by an outline of what he hopes to see his company do in the coming years and decades.

Artist impression of a Mars settlement with cutaway view. Credit: NASA Ames Research Center

These include the development of the first Interplanetary Spaceship in about four years time, which will be followed by suborbital test flights. He even hinted how the spacecraft could have commercial applications, being used for the rapid transportation of cargo around the world. As for the development of the booster, he indicated that this would be a relatively straightforward process since it simply involves scaling up the existing Falcon 9 booster.

Beyond that, he estimated that (assuming all goes well) a ten-year time frame would suffice for putting all the components together so that it would work for bringing people to Mars. Last, but not least, he offered some glimpses of what could be accomplished with ITS beyond Mars. As the name suggests, Musk is hoping to conduct missions to other destination in the Solar System someday.

Given the opportunities for in-situ fuel production (thanks to the abundance of water ice), the moons of both Jupiter and Saturn were mentioned as possible destination. But beyond moons like Europa, Enceladus, and Titan (all of which were mentioned), even destinations in the trans-Neptunian region of the Solar System were indicated as a possibility.

Given that Pluto also has an abundance of water ice on its surface, Musk claimed that a refueling depot could be built here to service missions to the Kuiper Belt and Oort Cloud. “I would not recommend this for interstellar journeys,” he admitted, “but this basic system—provided we have filling stations along the way—means full access to the entire greater solar system.”

Artist’s impression of the ITS conducting a flyby of Jupiter. Credit: SpaceX

The publication of this paper, many months after Musk presented the details of his plan to the annual IAC meeting, has naturally generated both approval and skepticism. While there are those who would question Musk’s timelines and his ability to deliver on the proposals contained within, others see it as a crucial step in the fulfillment of Musk’s long-held desire to see the colonization of Mars happen in this century.

To Scott Hubbard, it serves as a valuable contribution to the history of space exploration, something that future generations will be able to access so they can chart the history of Mars exploration – much in the same way NASA archival materials are used to study the history of the Moon landing. As he remarked:

“In my view, publishing this paper provides not only an opportunity for the spacefaring community to read the SpaceX vision in print with all the charts in context, but also serves as a valuable archival reference for future studies and planning. My goal is to make New Space the forum for publication of novel exploration concepts-particularly those that suggest an entrepreneurial path for humans traveling to deep space.”

Elon Musk is no stranger to thinking big and dreaming big. And while many of his proposals in the past did not come about in the time frame he originally specified, no one can doubt that he’s delivered so far. It will be very exciting to see if he can take the company he founded 15 years ago for the sake of fostering the exploration of Mars, and use it instead to lead a colonization effort!

Update: Musk tweeted his thanks to Hubbard for the publication and has indicated that there are some “major changes to the plan coming soon.”

And be sure to check out this video of Musk’s full speech at the 67th annual meeting of the IAC, courtesy of SpaceX:

Further Reading: New Space

Reused SpaceX Dragon Supply Ship Arrives Space Station, Cygnus Departs, Falcon 9 Launch & Landing: Photos/Videos

The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV
The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – The first ever reused Dragon supply ship successfully arrived at the International Space Station (ISS) two days after a thunderous liftoff from NASA’s Kennedy Space Center atop a SpaceX Falcon 9 rocket on Saturday, June 3. The first stage booster made a magnificent return to the Cape and erect ground landing some 8 minutes after liftoff.

Meanwhile the already berthed Orbital ATK Cygnus OA-7 supply ship departed the station on Sunday, June 4 after ground controllers detached it and maneuvered it into position for departure.

The commercial Dragon cargo freighter carrying nearly 3 tons of science and supplies for the multinational crew on the CRS-11 resupply mission reached the space stations vicinity Monday morning, June 5, after a two day orbital chase starting from the Kennedy Space Center and a flawless series of carefully choreographed thruster firings culminated in rendezvous.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, following a 48 hour delay due to a stormy weather scrub at the Florida Space Coast on Thursday, June 1.

The stunning Falcon 9 launch and landing events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

The Falcon 9 blastoff also counts as the 100th flight from KSC’s historic pad 39A which previously launched NASA’s Apollo astronauts on lunar landing missions and space shuttles for 3 decades

Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

By 8:30 a.m. Monday morning ground controllers had maneuvered Dragon to within 250 meters of the station and the imaginary keep out sphere around the orbiting complex.

Engineers carefully assessed the health of the Dragon and its systems to insure its ability to slowly and safely move in closer for capture by the crew.

When Dragon reached a distance of 11 meters, it was grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm Monday morning at 9:52 a.m. EDT, a few minutes ahead of schedule.

“Capture complete,” radioed Whitson as Dragon was captured at its grapple pin by the grappling snares at the terminus of the Canadarm2 robotic arm.

Dragon’s capture took place as the ISS was orbiting 250 miles over the South Atlantic Ocean as it was nearing the East coast of Argentina.

“Complete complete. Go for capture configuration,” replied Houston Mission control.

The newly arrived SpaceX Dragon CRS-11 resupply ship is installed to the Harmony module on June 5, 2017. The Progress 66 cargo craft is docked to the Pirs docking compartment and the Soyuz MS-04 crew vehicle is docked to the Poisk module. Credit: NASA

“We want to thank the entire team on the ground that made this possible, both in Hawthorne and in Houston. Really around the whole world, from support in Canada for this wonderful robotic arm, Kennedy Space Center’s launch support, to countless organizations which prepared the experiments and cargo,” Fischer radioed in response.

“These people have supplied us with a vast amount of science and supplies, really fuel for the engine of innovation we get to call home, the International Space Station. We have a new generation of vehicles now, led by commercial partners like SpaceX, as they build the infrastructure that will carry us into the future of exploration.”

“It’s also the first second mission to the ISS which was previously here as CRS-4. The last returned visitor was space shuttle Atlantis on the STS-135 mission,” Fischer said.

A little over two hours after it was captured by Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson, ground teams maneuvered the unpiloted SpaceX Dragon cargo craft for attachment to the Earth-facing port of the station’s Harmony module.

“Ground controllers at Mission Control, Houston reported that Dragon was bolted into place at 12:07 p.m. EDT as the station flew 258 statute miles over central Kazakhstan,” NASA reported.

The berthing of Dragon to Harmony was not broadcast live on NASA TV.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad and Cape Canaveral media viewing site – including an A/V compilation of sonic booms from the propulsive ground landing.

Video Caption: CRS-11 Launch from KSC Pad 39A with the first re-used Dragon capsule. SpaceX Falcon 9 launch of the CRS-11 mission to take supplies, equipment and experiments to the ISS, followed by the first stage landing at LZ-1 on the Cape Canaveral Air Force Station. Credit: Jeff Seibert

Video Caption: SpaceX Falcon 9/Dragon CRS 11 Launch 3 June 2017. Launch of SpaceX Falcon 9 on June 3, 2017 from pad 39A at the Kennedy Space Center, FL carrying 1st recycled Dragon supply ship bound for the International Space Station on the CRS-11 mission loaded with 3 tons of science and supplies – as seen in this remote video taken at the pad under cloudy afternoon skies. Credit: Ken Kremer/kenkremer.com

Video Caption: Sonic booms from the return of the CRS-11 booster to LZ-1 on June 3, 2017. Triple sonic booms signal the return of the Falcon 9 first stage to LZ-1 after launching the CRS-11 Dragon spacecraft to the ISS. Credit: Jeff Seibert

The gumdrop shaped 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The CRS-11 cargo ship will support over 62 of the 250 active research investigations and experiments being conducted by Expedition 52 and 53 crew members.

The flight delivered investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

40 new micestonauts are also aboard inside the rodent research habitat for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The therapy will also examine whether bone can be regenerated for the first time. No drug exists for bone regeneration.

The unpressurized trunk of the Dragon spacecraft also transported 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Blastoff of 1st recycled SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on June 3, 2017 delivering Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

NASA decided to use the SpaceX weather related launch delay to move up the departure of the “SS John Glenn” Cygnus cargo ship by over a month since it was already fully loaded and had completed its mission to deliver approximately 7,600 pounds of supplies and science experiments to the orbiting laboratory and its Expedition 51 and 52 crew members for Orbital ATK’s seventh NASA-contracted commercial resupply mission called OA-7.

Named after legendary Mercury and shuttle astronaut John Glenn – 1st American to orbit the Earth – the supply ship had spent 44 days at the station.

The “SS John Glenn” will now remain in orbit a week to conduct the third SAFFIRE fire experiment as well as deploy four small Nanoracks satellites before Orbital ATK flight controllers send commands June 11 to deorbit the spacecraft for its destructive reentry into the Earth’s atmosphere over the Pacific Ocean.

The Orbital ATK Cygnus cargo craft, with its prominent Ultra Flex solar arrays, is pictured moments after being released from the International Space Station on June 4, 2017 . Credit: NASA TV

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

……….

SpaceX Falcon 9 aloft carrying 1st reused Dragon on CRS-11 resupply flight to the International Space Station on June 3, 2017 from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek
Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek
Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com
3 June 2017 launch of SpaceX Falcon 9 on CRS-11 mission to the ISS – as seen from Port Orange, FL. Credit: Gerald DaBose
Landing of SpaceX Falcon 9 1st stage following launch of Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on June 3, 2017 to the ISS. Credit: Jean Wright
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com