KENNEDY SPACE CENTER, FL – A new Russian/American duo has arrived at the International Space Station this morning, April 20, after a six-hour flight following their successful launch aboard a Russian Soyuz capsule on a fast track trajectory to the orbiting outpost.
The two person international crew comprising NASA astronaut Jack Fischer and cosmonaut Fyodor Yurchikhin of the Russian space agency Roscosmos launched aboard a Russian Soyuz MS-04 spacecraft from the Baikonur Cosmodrome in Kazakhstan at 3:13 a.m. (1:13 p.m. Baikonur time).
After orbiting the Earth just four times on a planned accelerated trajectory they reached the station six hours later and safely docked at the station at 9:18 a.m. EDT.
“We have contact and capture confirmed at the space station at 9:18 am EDT,” said the NASA Houston mission control commentator.
The station and Soyuz vehicles were flying some 250 mi (400 km) over the northern Atlantic at the time of docking.
The dynamic duo of Yurchikhin and Fischer join three Expedition 51 crew members already onboard – Expedition 51 Commander Peggy Whitson of NASA and Flight Engineers Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).
Thus the overall station crew complement of astronauts and cosmonauts increases to five – from the US, Russia and France – representing their respective space agencies and countries.
Jack Fisher is a rookie space flyer whereas Yurchikhin is an accomplished veteran on this his 5th mission to orbit.
Prior to docking the crew accomplished an approximately 10 min flyaround inside the Soyuz shortly before sunrise and beautyfully backdropped by earth towards the end at a distance of roughly several hundred meters away.
All Soyuz systems performed as planned for what was an entirely automated rendezvous and docking using the Russian KURS docking system. The crew could have intervened if needed.
The new pair of Expedition 51 crew members will spend about four and a half months aboard the station during their increment.
They will be very busy conducting approximately 250 science investigations in fields such as biology, Earth science, human research, physical sciences and technology development.
And there will be no time to rest! Because this week’s just launched unpiloted ‘SS John Glenn’ Cygnus resupply ship is eagerly awaiting its chance to join the station and deliver nearly 4 tons of science experiment, gear and crew provisions to stock the station and further enhance its research output.
Orbital ATK’s seventh Cygnus cargo delivery flight to the station – dubbed OA-7 or CRS-7 – launched at 11:11 a.m. EDT Tuesday, April 18 atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.
The SS John Glenn is expected to arrive at the station early Saturday morning on April 22.
Expedition 51 astronauts Thomas Pesquet of ESA and Peggy Whitson of NASA will use the space station’s Canadian-built robotic arm to grapple Cygnus, about 6:05 a.m. Saturday.
They will use the arm to maneuver and berth the unmanned vehicle to the Node-1 Earth-facing nadir port on the Unity module.
“Investigations arriving will include an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment and an advanced plant habitat for studying plant physiology and growth of fresh food in space,” says NASA.
“Another new investigation bound for the U.S. National Laboratory will look at using magnetized cells and tools to make it easier to handle cells and cultures, and improve the reproducibility of experiments. Cygnus also is carrying 38 CubeSats, including many built by university students from around the world, as part of the QB50 program. The CubeSats are scheduled to deploy from either the spacecraft or space station in the coming months.”
Cygnus will remain at the space station for about 85 days until July before its destructive reentry into Earth’s atmosphere, disposing of several thousand pounds of trash.
Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – Orbital ATK’s Cygnus supply ship soared to space from the Florida Space Coast at lunchtime today, Tuesday, April 18, drenched in sunshine and carrying the ‘SS John Glenn’ loaded with over three and a half tons of precious cargo – bound for the multinational crew residing aboard the International Space Station (ISS).
Just like clockwork, Orbital ATK’s seventh cargo delivery flight to the station launched right on time at 11:11 a.m. EDT Tuesday at the opening of the launch window atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.
The ‘SS John Glenn’ Cygnus resupply spacecraft was manufactured by NASA commercial cargo provider Orbital ATK. The vehicle is also known alternatively as the Cygnus OA-7 or CRS-7 mission.
“This was a great launch,” said Joel Montalbano, NASA’s deputy manager of the International Space Station program, at the post launch media briefing at NASA’s Kennedy Space Center.
‘We have a vehicle on its way to the ISS.”
Huge crowds gathered at public viewing areas ringing Cape Canaveral and offering spectacular views from Playalinda Beach to the north, the inland waterway and more beautiful space coast beaches to the south.
Near perfect weather conditions and extended views of the rocket roaring to orbit greeted all those lucky enough to be on hand for what amounts to a sentimental third journey to space for American icon John Glenn.
The launch was carried live on NASA TV with extended expert commentary. Indeed this launch coverage was the final one hosted by NASA commentator George Diller- the longtime and familiar ‘Voice of NASA’ – who is retiring from NASA on May 31.
The serene sky blue skies with calm winds and moderate temperatures were punctuated with wispy clouds making for a thrilling spectacle as the rocket accelerated northeast up the US East Coast on a carefully choreographed trajectory to the massive orbiting outpost.
“The status of the spacecraft is great!” said Frank Culbertson, a former shuttle and station astronaut and now Orbital ATK’s Space Systems Group president.
The mission is named the ‘S.S. John Glenn’ in tribute to legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.
Glenn was one of the original Mercury Seven astronauts selected by NASA. At age 77 he later flew a second mission to space aboard Space Shuttle Discovery- further cementing his status as a true American hero.
Glenn passed away in December 2016 at age 95. He also served four terms as a U.S. Senator from Ohio.
A picture of John Glenn in his shuttle flight suit and a few mementos are aboard.
After a four day orbital chase Cygnus will arrive in the vicinity of the station on Saturday, April 22.
“It will be captured at about 6 a.m. EDT Saturday,” Montalbano elaborated.
Expedition 51 astronauts Thomas Pesquet of ESA (European Space Agency) and Peggy Whitson of NASA will use the space station’s Canadian-built robotic arm to grapple Cygnus, about 6:05 a.m. Saturday.
They will use the arm to maneuver and berth the unmanned vehicle to the Node-1 Earth-facing nadir port on the Unity module.
Cygnus will remain at the space station for about 85 days until July before its destructive reentry into Earth’s atmosphere, disposing of several thousand pounds of trash.
The countdown for today’s launch of the 194-foot-tall two stage United Launch Alliance (ULA) rocket began when the rocket was activated around 3 a.m. The rocket was tested during a seven-hour long countdown.
This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission. Each Cygnus is named after a deceased NASA astronaut.
“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions. “Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”
“The Atlas V performed beautifully,” said Thorpe at the post launch briefing.
The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.
Cygnus OA-7 is loaded with 3459 kg (7626 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.
The official OA-7 payload manifest includes the following:
TOTAL PRESSURIZED CARGO WITH PACKAGING: 7,442.8 lbs. / 3,376 kg
• Science Investigations 2,072.3 lbs. / 940 kg
• Crew Supplies 2,103.2 lbs. / 954 kg
• Vehicle Hardware 2,678.6 lbs. / 1,215 kg
• Spacewalk Equipment 160.9 lbs. / 73 kg
• Computer Resources 4.4 lbs. / 2 kg
• Russian Hardware 39.7 lbs. / 18 kg
UNPRESSURIZED CARGO (CubeSats) 183 lbs. / 83 kg
The Orbital ATK Cygnus CRS-7 (OA-7) mission launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration (XEPF) to accommodate the enhanced, longer Cygnus variant being used.
“ULA is excited to be a part of the team that delivered such an important payload to astronauts aboard the ISS,” said Gary Wentz, ULA vice president of Human and Commercial Systems, in a statement.
“Not only are we delivering needed supplies as the first launch under our new RapidLaunch™ offering, but we are truly honored to launch a payload dedicated to John Glenn on an Atlas V, helping to signify the gap we plan to fill as we start launching astronauts from American soil again in 2018.”
The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. There are no side mounted solids on the first stage. The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C-1 engine.
Overall this is the 71st launch of an Atlas V and the 36th utilizing the 401 configuration.
The 401 is thus the workhorse version of the Atlas V and accounts for half of all launches.
Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – The ‘SS John Glenn’ cargo freighter stands proudly poised for launch at pad 41 from the Florida Space Coast on Tuesday April 18, loaded with a stash of nearly 4 tons of science investigations and essential supplies atop a United Launch Alliance Atlas V rocket destined for the multinational crew aboard the International Space Station (ISS).
The lunchtime liftoff of the ‘SS John Glenn’ Cygnus resupply spacecraft manufactured by NASA commercial cargo provider Orbital ATK is slated for 11:11 a.m. EDT Tuesday, April 18 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.
The US cargo ships provided by NASA suppliers Orbital ATK and SpaceX every few months act as NASA’s essential railroad to space. And they are vital to operating the station with a steady stream of new research experiments as well as essential hardware, spare parts, crew supplies, computer, maintenance and spacewalking equipment as well food, water, clothing, provisions and much more.
The launch window lasts 30 minutes and runs from 11:11-11:41 a.m. EDT April 18.
Excited spectators are gathering from near and far and Tuesday’s weather outlook is spectacular so far.
Blastoff of the S.S. John Glenn on the OA-7 or CRS-7 flight counts as Orbital ATK’s seventh contracted commercial resupply services mission to the ISS for NASA.
The ‘S.S. John Glenn’ is named in honor of legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.
If you can’t attend in person, there are a few options to watch online.
NASA’s Atlas V/Cygnus CRS-7 launch coverage will be broadcast on NASA TV and the NASA launch blog beginning at 10 AM, Tuesday morning.
A ULA webcast will be available starting at 10 a.m. at: www.ulalaunch.com
And for the first time ever you can also watch the launch live via a live 360 stream on the NASA Television YouTube channel. The 360 degree broadcast starts about 10 minutes prior to lift off at:
The late morning daytime launch offers the perfect opportunity to debut this technology with the rocket magnificently visible atop a climbing plume of smoke and ash – and with a “pads-eye” view!
Science plays a big role in this mission in tribute named in tribute to John Glenn. Over one third of the payload loaded aboard Cygnus involves science.
“The new experiments will include an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment and an advanced plant habitat for studying plant physiology and growth of fresh food in space,” according to NASA.
The astronauts will grow food in space, including Arabidopsis and dwarf wheat, in an experiment that could lead to providing nutrition to astronauts on a deep space journey to Mars.
“Another new investigation bound for the U.S. National Laboratory will look at using magnetized cells and tools to make it easier to handle cells and cultures, and improve the reproducibility of experiments. Cygnus also is carrying 38 CubeSats, including many built by university students from around the world as part of the QB50 program. The CubeSats are scheduled to deploy from either the spacecraft or space station in the coming months.”
Also aboard is the ‘Genes in Space-2’ experiment. A high school student experiment from Julian Rubinfien of Stuyvescent High School, New York City, to examine accelerated aging during space travel. This first experiment will test if telomere-like DNA can be amplified in space with a small box sized experiment that will be activated by station astronauts.
The Saffire III payload experiment will follow up on earlier missions to study the development and spread of fire and flames in the microgravity environment of space. The yard long experiment is located in the back of the Cygnus vehicle. It will be activated after Cygnus departs the station roughly 80 days after berthing. It will take a few hours to collect the data for transmission to Earth.
Furthermore you can learn more about the Orbital ATK CRS-7 mission by going to the mission home page at: http://www.nasa.gov/orbitalatk
From a weather standpoint, Tuesday’s launch outlook is outstanding at this time.
According to meteorologists with the U.S. Air Force 45th Weather Squadron we are forecasting a 90 percent chance of “go” conditions at the 11:11 a.m. EDT launch time. The primary concern is for the possibility of cumulus clouds.
The forecast calls for temperatures of 75-76° F with on-shore winds peaking below 10 knots during the countdown.
In the event of a delay for any reason related to weather or technical issues a backup launch opportunity exists for Wednesday, April 19, and also looks promising.
The AF is also predicting the same 90 percent chance of “go” conditions at launch time. With the primary concern again being for the possibility of cumulus clouds.
The rocket was rolled out to pad 41 at about 9 a.m. EDT this morning Monday April 17, in a process that takes about 25 minutes
The rocket and spacecraft passed the Launch Readiness Review held by United Launch Alliance and Orbital ATK on April 15. Launch managers from ULA, Orbital ATK and NASA determined all is ready for Tuesday’s targeted launch to the ISS.
OA-7 is loaded with 3500 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.
The Orbital ATK Cygnus CRS-7 (OA-7) mission will launch aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) in the 401 configuration vehicle. This includes a 4-meter-diameter payload fairing in its longest, extra extended configuration (XEPF) to accommodate the enhanced, longer Cygnus variant being used.
The first stage of the Atlas V booster is powered by the RD AMROSS RD-180 engine. There are no side mounted solids on the first stage. The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C-1 engine.
Overall this is the 71st launch of an Atlas V and the 36th utilizing the 401 configuration.
The 401 is thus the workhorse version of the Atlas V and accounts for half of all launches.
Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the SS John Glenn/ULA Atlas V launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Apr 18-19: “SS John Glenn/ULA Atlas V launch to ISS, SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
KENNEDY SPACE CENTER, FL – Imagine watching a real rocket launch in a 360 degree live video broadcast. Well NASA is about to make it happen for the first time in a big way and on a significant mission.
On Tuesday April 18, NASA will broadcast the launch of the ‘S.S. John Glenn’space station cargo freighter in a feat marking the world’s first live 360-degree stream of a rocket launch – namely the United Launch Alliance (ULA) Atlas V rocket.
The ‘S.S. John Glenn’ is named in honor of legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.
The late morning daytime launch offers the perfect opportunity to debut this technology with the rocket magnificently visible atop a climbing plume of smoke and ash – and with a “pads-eye” view!
The ‘S.S. John Glenn’ is actually a Cygnus resupply spacecraft built by NASA commercial cargo provider Orbital ATK for a cargo mission heading to the International Space Station (ISS) – jam packed with nearly 4 tons or research experiments and gear for the stations Expedition 51 crew of astronauts and cosmonauts.
“NASA, in coordination with United Launch Alliance (ULA) and Orbital ATK, will broadcast the world’s first live 360-degree stream of a rocket launch,” the agency announced in a statement.
“The live 360 stream enables viewers to get a pads-eye view.”
The Cygnus spaceship will launch on a ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
Liftoff of the S.S. John Glenn on Orbital ATK’s seventh commercial resupply services mission to the ISS – dubbed OA-7 or CRS-7 – is slated for 11:11 a.m. EDT Tuesday, April 18.
The launch window lasts 30 minutes and runs from 11;11-11:41 a.m. EDT.
You can watch the live 360 stream of the Atlas V/OA-7 cargo resupply mission liftoff to the ISS on the NASA Television YouTube channel starting 10 minutes prior to lift off at:
The sunshine state’s weather outlook is currently very promising with a forecast of an 80% chance of favorable ‘GO’ conditions at launch time Tuesday morning.
John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.
The S.S. John Glenn will carrying more than 7,600 pounds of science research, crew supplies and hardware to the orbiting outpost.
How can you watch the streaming 360 video? Read NASA’s description:
“To view in 360, use a mouse or move a personal device to look up and down, back and forth, for a 360-degree view around Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida. Note: not all browsers support viewing 360 videos. YouTube supports playback of 360-degree videos on computers using Chrome, Firefox, Internet Explorer and Opera browsers. Viewers may use the YouTube app to view the launch on a smart phone. Those who own virtual reality headsets will be able to look around and experience the view as if they were actually standing on the launch pad.”
“While virtual reality and 360 technology have been increasing in popularity, live 360 technology is a brand new capability that has recently emerged. Recognizing the exciting possibilities opened by applying this new technology to spaceflight, NASA, ULA, and Orbital ATK seized this opportunity to virtually place the public at the base of the rocket during launch. Minimum viewing distance is typically miles away from the launch pad, but the live 360 stream enables viewers to get a pads-eye view.”
The naming announcement for the ‘S.S. John Glenn’ was made by spacecraft builder Orbital ATK during a ceremony held inside the Kennedy Space Center (KSC) clean room facility when the cargo freighter was in the final stages of flight processing – and attended by media including Universe Today on March 9.
“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony inside the Payload Hazardous Servicing Facility (PHFS) high bay at NASA’s Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the SS John Glenn/ULA Atlas V launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Apr 17-19: “SS John Glenn/ULA Atlas V launch to ISS, SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Comings and goings continue apace on the International Space Station! After living and working fruitfully for six months in space aboard the ISS, an international trio of astronauts and cosmonauts including NASA’s Shane Kimbrough departed the orbiting lab complex aboard their Soyuz capsule and plummeted back safely through the Earth’s atmosphere to a soft touchdown in Kazahkstan on Monday- as NASA meanwhile targets liftoff of the next US resupply ship a week from today.
These are busy times indeed with regular flights to low Earth orbit and back to maintain and enhance the scientific research aboard the multinationally built and funded million pound orbiting outpost.
ISS Expedition 50 came to a glorious end for Commander Shane Kimbrough of NASA and Flight Engineers Sergey Ryzhikov and Andrey Borisenko of the Russian space agency Roscosmos as they returned to Earth Monday, April 10 in Kazakhstan aboard their Soyuz spacecraft after spending 173 days aloft in the weightless environment of space.
The Russian Soyuz MS-02 capsule touched down safely by making a parachute assisted landing in Kazakhstan at approximately 7:20 a.m. EDT (5:20 p.m. Kazakhstan time).
The three person crew comprising Kimbrough, Ryzhikov and Andrey Borisenko landed southeast of the remote town of Dzhezkazgan in Kazakhstan.
Meanwhile as the trio were landing, NASA is targeting launch of the next commercial cargo ship for blastoff on April 18 with more than three tons of science and supplies to stock the station for the Expedition 51 crew.
Christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962 – the next Orbital ATK Cygnus cargo ship heading to the space station will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
Liftoff of the S.S. John Glenn from NASA commercial cargo provider Orbital ATK on their seventh commercial resupply services mission to the ISS is slated for 11 a.m. EDT Tuesday, April 18.
John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.
During their time in orbit, the Expedition 50 crew members contributed to hundreds of experiments in biology, biotechnology, physical science and Earth science aboard the world-class orbiting laboratory.
“For example, the Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity. Results from this investigation could lead to the treatment of diseases and injury in space, and provide a way to improve stem cell production for medical therapies on Earth,” said NASA.
“The Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates, such as rodents and humans, from regenerating lost bone and tissue, and how microgravity conditions impact the process. Results will provide a new understanding of the biological reasons behind a human’s inability to regrow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic, non-healing wounds.”
Kimbrough, Ryzhikov and Andrey Borisenko served as members of the Expedition 49 and 50 crews onboard the International Space Station during their 173 days in orbit.
During two flights Kimbrough has now amassed 189 days in space. During his two flights Borisenko now totals 337 days in space. Rookie Ryzhikov logged 173 days in space.
They leave behind another trio of crewmates who will continue as Expedition 51; namely NASA astronaut and new station commander Peggy Whitson, Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency).
The next manned Soyuz launch will carry just two crewmembers. Due to Russian funding cutbacks only 1 cosmonaut will launch. The crew comprises Jack Fischer of NASA and Fyodor Yurchikhin of Roscosmos. They are scheduled to launch Thursday, April 20 from Baikonur, Kazakhstan.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
PORT CANAVERAL/KENNEDY SPACE CENTER, FL – Basking in the sunrise glow, the world’s first recycled booster – namely a SpaceX Falcon 9 – sailed serenely into Port Canaveral this morning, Tuesday, April 4, atop the tiny droneship on which it soft landed shortly after launching on March 30 for an unprecedented second time.
Shortly before sunrise, SpaceX’s recovered Falcon 9 first stage triumphantly arrived on Tuesday at the mouth of Port Canaveral and the public pier at Jetty Park around 7 am – greeted by excited onlookers, media and space buffs eager to be an eyewitness to the first rocket to launch and land two times fully intact !
The Falcon 9 standing proudly erect on the football field sized OCISLY droneship landing pad was towed into port by the Elsbeth III in the wee morning hours around 7 am. The ships made their way majestically along the channel westwards until reaching the docking port.
Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.
Click back as the arrival gallery grows !
The milestone SpaceX mission to refly the first ever ‘used rocket’ blasted off right on time at the opening of the dinnertime launch window on Thursday, March 30, at 6:27 p.m. EDT.
The used two stage 229-foot-tall (70-meter) rocket carried the SES-10 telecommunications payload to orbit using a ‘Flight-Proven’ Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center (KSC) in Florida.
After the 156 foot tall first stage booster completed its primary mission task, SpaceX engineers successfully guided it to a second landing on the tiny Of Course I Still Love You – OCISLY – drone ship for a soft touchdown some eight and a half minutes after liftoff.
“This is a huge revolution in spaceflight,” billionaire SpaceX CEO and Chief Designer Elon Musk told reporters at the post launch briefing at the Kennedy Space Center press site, barely an hour after liftoff.
Musk’s goal is to drastically reduce the cost of spaceflight so that it will one day lead to a ‘City on Mars’.
OCISLY had left Port Canaveral several days ahead of the March 30 launch and was prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast, just waiting for the boosters 2nd history making approach and pinpoint propulsive soft landing.
This recycled Falcon 9 first stage booster had initially launched a year ago in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.
Check out these exquisite videos showing various aspects of the Port arrival and processing:
Video Caption: This video shows the return of the first re-used SpaceX Falcon 9 booster to Port Canaveral on 4/4/17 in detail. After launching the SES-10 satellite on 3/30/17 it then landed on the OCISLY drone ship for the second time. The video highlights OCISLY’s return to port and docking. The booster was then hoisted off the droneship with a crane and stationed on a pedestal on land for processing. Credit: Jeff Seibert
Video Caption: The booster looks ready for another flight after arriving in to Port Canaveral, FL on 4 April 2017 and launching/landing from KSC on 30 March 2017. Elon Musk has said it will be put on display in Florida. This is a total game changer for the rocket industry. Credit:USLaunchReport
After making its way picturesquely through Port Canaveral channel, the droneship was docked, Workers soon attached a metal cap to the top of the first stage.
Next they removed the restraining chains fastening the booster to the deck. Next they hoisted it off the droneship with a work crane and transported it onto a work pedestal on the ground for further processing.
By late evening I observed that the workers were still busily operating on the booster. They were welding the metal cap to the top of the booster. All 4 landing legs were still attached as of 10 p.m. EDT on Tuesday, April 4.
The legs will soon be detached so the booster can be rotated horizontal and trucked back to the huge hangar at pad 39A.
Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
“This is a huge revolution in spaceflight,” billionaire SpaceX CEO and Chief Designer Elon Musk told reporters at the post launch briefing at the Kennedy Space Center press site, barely an hour after liftoff.
And as if the relaunch of a ‘Flight-Proven’ booster was not enough, SpaceX engineers deftly maneuvered the Falcon 9 first stage to a second successful pinpoint landing on a miniscule droneship at sea.
The stunning events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.
Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.
Click back as the gallery grows !
The milestone SpaceX mission to refly the first ever ‘used rocket’ blasted off right on time at the opening of the dinnertime launch window on Thursday, March 30, at 6:27 p.m. EDT.
The used two stage 229-foot-tall (70-meter) rocket carried the SES-10 telecommunications payload to orbit using a ‘Flight-Proven’ Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center (KSC) in Florida.
Musk said SpaceX invested about a billion dollars of his firm’s own funds and 15 years of hard won effort to accomplish the unprecedented feat that many experts deemed virtually unattainable or outright impossible.
“This represents the culmination of 15 years of work at SpaceX to be able to refly a rocket booster,” Musk elaborated.
“It’s really a great day, not just for SpaceX, but for the space industry as a whole, proving something can be done that many people said was impossible.”
‘We had a team embedded with SpaceX all along the way,” SES CTO Haliwell said at the post launch briefing.
Furthermore Halliwell was instrumental in signing up telecom giant SES as the paying customer who had complete confidence in placing his firm’s expensive SES-10 communication satellite atop SpaceX’s history making used and now successfully reflown booster.
“There have been naysayers,” Halliwell told reporters at a prelaunch press briefing on March 28. “I can tell you there was a chief engineer of another launch provider — I will not say the name — who told me, categorically to my face, you will never land a first stage booster. It is impossible. If you do it then it will be completely wrecked.”
“We are confident in this booster,” Halliwell told me at the prelaunch briefing.
“There is not a huge risk,” Halliwell stated emphatically. “In this particular case we know that the reusability capability is built into the design of the Falcon 9 vehicle.”
“You’ve got to decouple the emotion from the engineering,” Halliwell elaborated on Thursday’s launch. “The engineering team that Elon has working for him is really second to none. He asks very simple profound questions. And he gets very good answers. The proof is in the pudding.”
“This will rock the space industry,” said Halliwell at the post launch media briefing. “And SpaceX already has!”
The recycled Falcon delivered the nearly six ton SES-10 satellite to geostationary transfer orbit where it will provide significantly improved TV, voice, data and maratime service to over 37 million customers across Central and South America.
This recycled Falcon 9 first stage booster first launched in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.
Furthermore, after the 156 foot tall first stage booster completed its primary mission task, SpaceX engineers successfully guided it to a second landing on the tiny OCISLY drone ship for a soft touchdown some eight and a half minutes after liftoff.
OCISLY had left Port Canaveral several days ahead of the March 30 launch and was prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast, just waiting for the boosters 2nd history making approach and pinpoint propulsive soft landing.
It thus became the first booster in history to launch twice and land twice.
Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Since the beginning of the Space Age, scientists have relied on multi-stage rockets in order to put spacecraft and payloads into orbit. The same technology has allowed for missions farther into space, sending robotic spacecraft to every planet in the Solar System, and astronauts to the Moon. But looking to the future, it is clear that new ideas will be needed in order to cut costs and expand launch services.
Hence why the ARCA Space Corporation has developed a concept for a single-stage-to-orbit (SSTO) rocket. It’s known as the Haas 2CA, the latest in a series of rockets being developed by the New Mexico-based aerospace company. If all goes as planned, this rocket will be the first SSTO rocket in history, meaning it will be able to place payloads and crew into Earth’s orbit relying on only one stage with one engine.
The rocket was unveiled on Tuesday, March 28th, at their company headquarters in Las Cruces. The rocket is currently seeking FAA approval, and ARCA is working diligently to get it ready for its test launch in 2018 – which will take place at NASA’s Wallops Flight Facility located on Virginia’s eastern shore. If successful, the company hopes to use this rocket to deploy small satellites to orbit in the coming decade.
Established in 1999 by a group of Romanian rocket enthusiasts (led by company CEO Dumitru Popescu), ARCA’s original focus was on balloon-launched rockets. In the course of the company’s history, ARCA has launched two stratospheric rockets, four large scale stratospheric balloons, and has been awarded some lucrative governmental contracts to test aerospace and space exploration technologies.
In 2003, the company joined the $10 million Ansari X Prize Competition and began work on their first demonstrator rocket. Known as the Demonstrator 2B – a single stage suborbital rocket – the rocket was successfully launched on September 9th, 2004, from Cape Midia Air Force Base. In the years that followed, they expanded their repertoire to include other concepts – like the Helen rocket, the Stabilo crewed vehicle, and the Excelsior Aerospike.
In 2013, ARCA was contracted by the European Space Agency (ESA) to create a Drop Test Vehicle (DTV) that would test the atmospheric deceleration parachutes being used by the Schiaperelli lander (as part of the ExoMars mission). Being the same weight and using the same parachute deployment systems as Schiaperelli, the DTV conducted a freefall exercise which simulated the dynamic pressure conditions of entering the Martian atmosphere
In that same year, ARCA relocated to New Mexico, where they have continued working on their rocket series and other aerospace ventures from their headquarters at the Las Cruces Airport. It was here that they introduced the Haas rocket series – named in honor of Austrian-Romanian rocketry pioneer Conrad Haas – which now consists of the Haas 2B and 2C rockets.
The 2B is a proven concept, designed for suborbital flight for the sake of space tourism. But as of this week, the 2C is now part of ARCA’s rocket family. Relying on single stage and single Executor engine, this rocket will small satellites into orbit. The rocket is fueled by hydrogen peroxide and kerosene (which combines to create a nontoxic fuel), and measures (53 feet) long and (5 feet) in diameter.
The 2C weights about 550 kg (1210 pounds) empty, and 16280 kg (35,887 pounds) when fully fueled. It will also be able to provide 22900 kg (50,500 lbs) of thrust at sea level, and about 33,565 kg (74,000 lbs) in a vacuum. In this configuration, the rocket is capable of delivering 100kg (220lbs) to Low Earth Orbit (LEO), at a cost of $1 million per launch (or $10,000/kg; $4,545/lb).
This several times less what SpaceX can do with its Falcon 9 rocket, which can deliver 22,800 km payloads to orbit for $62 million a launch – which works out to about $2719/kg or $1233/lb. However, one must take into account that the Falcon 9 is a heavier launch vehicle, and that there are additional issues that come into play where larger launch vehicles are concerned. As Dumitru Popescu told Universe Today via email:
“With the Haas 2C, the customer can launch on the desired orbit parameter, when he/she wants. Basically, the launch will be tailored on the customer needs. A more fair comparison will be between the Haas 2CA and Falcon 1 and Electron. Falcon 1 had a launch cost of $6.7 millions for a proposed payload of 670kg, or a demonstrated one of 180kg. In the best case scenario, this leads us to the same price of $10,000/kg. In the case of the Electron rocket, the cost per launch is $4.9 million for a 150kg payload. This leads us to a price of a $32.600/kg. Falcon 1, Electron, Haas 2CA have their market and a comparison with a big launcher isn’t fair in my opinion. Overall, if we will be able to keep this price, the Haas 2CA, at $1 million/launch will become the cheapest launcher in history.”
In addition, the Haas 2C rocket benefits from the fact that it is cheaper and easier to manufacture, and that it’s SSTO configuration offers greater flexibility and reliability.
“In the case of staged rockets, we are literally talking about more rockets combined in one vehicle to achieve orbit,” said Popsecu. “It is definitely more cost effective to operate one rocket than a vehicle made of multiple rockets, as it requires less time, less qualified manpower and less demanding transport and launch operations. The SSTO may also offer the possibility to launch from an inland spaceport, as there are no first stages that will fall on the ground after burnout.”
To prepare the rocket for its 2018 launch, ARCA is currently collaborating with NASA through its Cooperative Opportunity Program and with the help of the Ames, Kennedy, Marshall, Stennis, and Johnson Space Centers. Popescu is also entering into discussions with the New Mexico Spaceport Authority to conduct launches from Spaceport America, and is looking to secure a partnership with a US defense agency.
If all goes well, this little aerospace company will be making spaceflight history. As Popescu said in a company press release:
“When the Haas 2CA rocket launches, it will be the first rocket in history to place itself entirely into orbit. This opens new frontiers for exploration of the Solar System as the rocket can be refueled in-orbit and re-utilize its aerospike engine thus eliminating the need for additional upper stages. After the full qualification, the vehicle could be operated from inland spaceports as there are no stages that fall on the ground at burnout. Staged rockets, even though they provide more payload performance for the same takeoff mass, are less reliable because of an increased number of parts due to flight events requested by staging and ignition of the upper stage engine. Also, staged rockets are deemed to be more expensive because they are literally made up of more than one rocket. Manufacturing and assembling more rockets in one launcher requires more, time, money, and personnel. The SSTO technology, once implemented, will increase the space flight responsiveness and lower the cost to values expected by the industry for decades. This rocket will also be the fastest vehicle to reach orbit, taking less than 5 minutes.”
In addition, the aerospace industry will have another company looking to lower the costs of launches and expanding domestic launch capability. Be sure to check out the company’s video detailing the Haas 2C and its unique characteristics:
KENNEDY SPACE CENTER, FL – SpaceX accomplished an American ‘Science Triumph’ with today’s “Mind Blowing” and history making second launch and landing of a previously flown Falcon 9 booster that successfully delivered a massive and powerful Hi Def TV satellite to orbit for telecom giant SES from the Kennedy Space Center. Note: Breaking News story being updated.
The milestone SpaceX mission to refly the first ever ‘used rocket’ blasted off right on time at dinnertime today, Thursday, March 30, at 6:27 p.m. EDT. It carried the SES-10 telecommunications payload to orbit atop a ‘Flight-Proven’ Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
The recycled Falcon delivered the nearly six ton SES-10 satellite to geostationary transfer orbit where it will provide significantly improved TV, voice, data and maratime service to over 37 million customers across Central and South America.
The daring mission to relaunch a used booster dubbed ‘Flight-Proven’ seems like its straight out of a science fiction thriller.
Yet today’s stellar results fully vindicates billionaire SpaceX CEO and Chief Designer Elon Musk’s bold vision to slash launch costs by recovering and reusing spent first stage rockets from his firms Falcon 9 launch vehicle.
“My mind is blown,” Musk said in post launch remarks at the KSC press site. “This is one of the coolest things ever.”
“We just had an incredible day today – the first re-flight of an orbital-class booster.”
“It did its mission perfectly, dropped off the second stage, came back and landed on the drone ship, right on the bullseye. It’s an amazing day, I think, for space as a whole, for the space industry.”
For the first time in world history a recovered and ‘Flight-Proven’ rocket has actually launched on a second mission and not only roared aloft but survived intact all the way to its intended orbit and delivered a second satellite to orbit for a paying customer- in this case the commercial TV broadcast satellite provider SES- one of the world’s largest.
“This will rock the space industry,” said SES CTO Martin Halliwell at the post launch media briefing. “And SpaceX already has!”
“We are confident in this booster,” Halliwell told me at a prelaunch press briefing on March 28.
“There is not a huge risk,” Halliwell stated emphatically. “In this particular case we know that the reusability capability is built into the design of the Falcon 9 vehicle.”
This recycled Falcon 9 first stage booster had initially launched in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.
Furthermore, after the 156 foot tall first stage booster completed its primary mission task, SpaceX engineers successfully guided it to a second landing on the tiny OCISLY drone ship for a soft touchdown some eight and a half minutes after liftoff.
OCISLY had left Port Canaveral several days ahead of the March 30 launch and was prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast, just waiting for the boosters 2nd history making approach and pinpoint propulsive soft landing.
It thus became the first booster in history to launch twice and land twice.
And this magnificent achievement was accomplished through the dedication and hard work of engineers and scientists who benefited from the American education system that cultivated and nurtured their talents – like generations before them – and that we as a country must continue to support and fortify with reliable and ample research and development (R&D) and educational funding – now and in the future – if we wish to remain leaders in science and space.
The entire Falcon 9/SES-10 launch and landing was broadcast live on the SpaceX hosted webcast.
Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about SpaceX SES-10, EchoStar 23 and CRS-10 launches to ISS, ULA SBIRS GEO 3 launch, GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Mar 31, Apr 1: “SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
KENNEDY SPACE CENTER, FL – The moment of truth is rapidly approaching as SpaceX attempts the world’s first reflight of an orbital class rocket later today, Thursday, March 30, with the firms Falcon 9 standing proudly at historic launch complex 39A at NASA’s Kennedy Space Center in Florida – ready to deliver an advanced TV broadcast satellite to orbit for the America’s for telecom giant SES.
If successful, the launch will mightily advance billionaire SpaceX CEO Elon Musk’s bold vision to slash launch costs by recovering and reusing spent first stage rockets from his firms Falcon 9 launch vehicle.
“The SES-10 mission will mark a historic milestone on the road to full and rapid reusability,” say Space officials.
“We are confident in this booster,” SES CTO Martin Halliwell told Universe Today at a press briefing on March 28.
The milestone SpaceX mission destined to refly the first ever ‘used rocket’ is slated for lift off on Thursday, March 30, at 6:27 p.m. EDT carrying the SES-10 telecommunications payload to orbit atop a ‘Flight-Proven’ Falcon 9 rocket from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
So, if you want to witness this truly magnificent event in space history with your own eyes, there’s only a few hours left for you to ‘Get Your Ass to KSC!’ to paraphrase Apollo 11 moonwalker Buzz Aldrin.
The nearly six ton SES-10 satellite will provide significantly improved TV, voice, data and maratime service to over 37 million customers across Central and South America.
Eventually, Musk hopes to help establish a ‘City on Mars’ by building Interplanetary Colonial Transporters to transport human settlers to live on the Red Planet – the most Earth-like world in our Solar System.
You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 6:27 pm EDT or 10:27 pm UTC liftoff time.
The two and a half hour launch window closes at 9:57 p.m. EDT.
The weather outlook is glorious along the Florida Space Coast with an 80% chance of favorable conditions at launch time in the latest AF prognosis.
However for the back-up launch date on Friday, the outlook worsens considerable to only 40% favorable.
“This thing is good to go!” Halliwell told me.
The Falcon 9 booster to be recycled was initially launched in April 2016 for NASA on the SpaceX Dragon CRS-8 resupply mission to the International Space Station (ISS) under contract for the space agency.
The 156 foot tall first stage was recovered about eight and a half minutes after liftoff via a pinpoint propulsive soft landing on an tiny ocean going droneship prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast.
If all goes well SpaceX will also attempt to re-land the Falcon 9 first stage on an oceangoing barge for an unprecedented second time, provided there are sufficient fuel reserves remaining after accomplishing its primary mission of delivering SES-10 to GTO, Halliwell stated.
The SES-10 launch comes barely 2 weeks after the prior SpaceX launch of EchoStar XXIII on March 16.
SpaceX, founded by billionaire and CEO Elon Musk, inked a deal in August 2016 with telecommunications giant SES, to refly a ‘Flight-Proven’ Falcon 9 booster.
Luxembourg-based SES and Hawthrone, CA-based SpaceX jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster.”
The flight proven SpaceX Falcon 9 rocket will deliver SES-10 to a Geostationary Transfer Orbit (GTO).
SES-10 has a launch mass of 5,300 kg or 11,700 pounds, which includes the dry mass and propellant.
The spacecraft utilizes for both chemical propulsion for orbit raising and electric propulsion for station keeping.
SES-10 will replace AMC-3 and AMC-4 to provide enhanced coverage and significant capacity expansion over Latin America, says SES.
“The satellite will be positioned at 67 degrees West, pursuant to an agreement with the Andean Community (Bolivia, Colombia, Ecuador and Peru), and will be used for the Simón Bolivar 2 satellite network.”
Up to 3 additional SES satellites could launch on SpaceX Falcon 9 rockets by the end of this year.
Watch for Kens’ continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about SpaceX SES-10, EchoStar 23 and CRS-10 launches to ISS, ULA SBIRS GEO 3 launch, GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Mar 31, Apr 1: “SpaceX SES-10, EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings