Dragon Snared by Stations ‘Star Trek’ Crewmate, Delivers Science for 1 Year Mission

Flight Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as SpaceX Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

KENNEDY SPACE CENTER, FL – Following the flawless blastoff of the SpaceX Falcon 9 booster and Dragon cargo ship on Tuesday, April 14, the resupply vessel arrived at the International Space Station today, April 17, and was successful snared by the outposts resident ‘Star Trek’ crewmate, Expedition 43 Flight Engineer Samantha Cristoforetti of the European Space Agency, donning her futuristic outfit from the famed TV show near and dear to space fans throughout the known galaxy!

Cristoforetti grappled the SpaceX Dragon freighter with the station’s robotic arm at 6:55 a.m. EDT, with the able assistance of fellow crewmate and Expedition 43 Commander Terry Virts of NASA.

Dragon is hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.

Cristoforetti and Virts were manipulating the 57.7-foot-long (17-meter-long) Canadian-built robotic arm while working inside the stations seven windowed domed Cupola, that reminds many of Darth Vader’s lair in ‘Star Wars’ lore.

Success! @SpaceX #Dragon is attached to deliver 2 tons of science & supplies for @Space_Station crew. #ISScargo
Success! @SpaceX #Dragon is attached to deliver 2 tons of science & supplies for @Space_Station crew. #ISScargo

The SpaceX Dragon blasted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 (Commercial Resupply Services-6) mission bound for the space station.

The Dragon cargo spacecraft was berthed to the Earth facing port of Harmony module of the International Space Station at 9:29 a.m. EDT.

The entire multihour grappling and berthing operations were carried live on NASA TV, for much of the morning and everything went smoothly.

The crew plans to open the hatch between Dragon and the station on Saturday.

The SpaceX Dragon space freighter is in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon space freighter is in the grips of the Canadarm2 robotic arm. Credit: NASA TV

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

Dragon is loaded with more than 4,300 pounds of supplies, science experiments, and technology demonstrations, including critical materials to support about 40 of more than 250 science and research investigations during the station’s Expeditions 43 and 44.

Among the research investigations are a fresh batch of 20 rodents for the Rodent Research Habitat, and experiments on osteoporosis to counteract bone deterioration in microgravity, astronaut vision loss, protein crystal growth, and synthetic muscle for prosthetics and robotics.

An Espresso machine is also aboard to enhance station morale during the daily grind some 250 miles above Earth.

Following the April 14 launch, SpaceX made a nearly successful soft landing of the first stage on an ocean floating platform in the Atlantic Ocean. Read my story – here.

Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

Watch @AstroSamantha move #Canadarm2 into place to capture the @SpaceX #Dragon. Credit: NASA
Watch @AstroSamantha move #Canadarm2 into place to capture the @SpaceX #Dragon. Credit: NASA

High Resolution Video Reveals Dramatic SpaceX Falcon Rocket Barge Landing and Launch

View of Falcon 9 first stage landing burn and touchdown on ‘Just Read the Instructions’ landing barge. Credit SpaceX

Video caption: High resolution and color corrected SpaceX Falcon 9 first stage landing video of CRS-6 first stage landing following launch on April 14, 2015. Credit: SpaceX

KENNEDY SPACE CENTER, FL – A new high resolution video from SpaceX shows just how close the landing attempt of their Falcon 9 first stage on an ocean floating barge came to succeeding following the rockets launch on Tuesday afternoon, April 14, from Cape Canaveral, Florida, on a resupply run for NASA to the International Space Station (ISS).

Newly added video shows video taken from the barge:

The SpaceX Falcon 9 carrying the Dragon cargo vessel blasted off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 mission bound for the space station.

The flawless Falcon 9 liftoff came a day late following a postponement from Monday, April 13, due to threatening clouds rolling towards the launch pad in the final minutes of the countdown. See an up close video view of the launch from a pad camera, below.

Video caption: SpaceX CRS-6 Falcon 9 Launch to the International Space Station on April 14, 2015. Credit: Alex Polimeni

The dramatic hi res landing video was released by SpaceX CEO Elon Musk. It clearly reveals the deployment of the four landing legs at the base of the booster as planned in the final moments of the landing attempt, aimed at recovering the first stage booster.

By about three minutes after launch, the spent fourteen story tall first stage had separated from the second stage and reached an altitude of some 125 kilometers (77 miles) following a northeastwards trajectory along the U.S. east coast.

SpaceX engineers relit a first stage Merlin 1D engine some 200 miles distant from the Cape Canaveral launch pad to start the process of a precision guided descent towards the barge, known as the ‘autonomous spaceport drone ship’ (ASDS).

It had been pre-positioned offshore of the Carolina coast in the Atlantic Ocean.

SpaceX initially released a lower resolution view taken from a chase plane captured dramatic footage of the landing.

“Looks like Falcon landed fine, but excess lateral velocity caused it to tip over post landing,” tweeted SpaceX CEO Elon Musk.

The Falcon successfully reached the tiny ocean floating barge in the Atlantic Ocean, but tilted over somewhat over in the final moments of the approach, and tipped over after landing and exploded in a fireball.

“Either not enough thrust to stabilize or a leg was damaged. Data review needed.”

“Looks like the issue was stiction in the biprop throttle valve, resulting in control system phase lag,” Musk elaborated. “Should be easy to fix.”

The next landing attempt is set for the SpaceX CRS-7 launch, currently slated for mid- June, said Hans Koenigsmann, SpaceX Director of Mission assurance, at a media briefing at KSC.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

The 20 story tall Falcon 9 hurled Dragon on a three day chase of the ISS where it will rendezvous with the orbiting outpost on Friday, April 17. Astronauts will grapple and berth Dragon at the station using the robotic arm.

Up close view of the SpaceX Falcon 9 rocket landing legs prior to launch on April 14, 2015 on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
Up close view of the SpaceX Falcon 9 rocket landing legs prior to launch on April 14, 2015 on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

SpaceX Dragon Launches on Science Supply Run to Station, Booster Hard Lands on Barge

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After a 24 hour delay due to threatening clouds, a SpaceX Falcon 9 rocket soared spectacularly to orbit from the Florida Space coast today, April 14, carrying a Dragon on a science supply run bound for the the International Space Station that will help pave the way for deep space human missions to the Moon, Asteroids and Mars.

Meanwhile, SpaceX’s bold attempt to land and recover the 14 story tall first stage of the Falcon 9 rocket successfully reached a tiny ocean floating barge in the Atlantic Ocean, but tilted over somewhat over in the final moments of the approach, and tipped over after landing and broke apart. Here’s a Vine video posted on Twitter by Elon Musk:

See the video of the launch, below.

SpaceX will continue with attempt to soft land and recover the rocket on upcoming launches, which was a secondary goal of the company. SpaceX released some imagery and video with a few hours of the landing attempt.

“Looks like Falcon landed fine, but excess lateral velocity caused it to tip over post landing,” tweeted SpaceX CEO Elon Musk.

Falcon 9 first stage approaches Just Read the Instructions. Image of SpaceX Falcon 9 first start booster in final moments of hard landing on ocean going barge after CRS-6 launch. Credit: SpaceX
Falcon 9 first stage approaches Just Read the Instructions. Image of SpaceX Falcon 9 first start booster in final moments of hard landing on ocean going barge after CRS-6 launch. Credit: SpaceX

The Falcon 9 first stage was outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX.

The top priority was to safely launch the Falcon 9 and deliver critical supplies to the station with the Dragon cargo vessel.

“Five years ago this week, President Obama toured the same SpaceX launch pad used today to send supplies, research and technology development to the ISS,” said NASA Administrator Charles Bolden.

“Back then, SpaceX hadn’t even made its first orbital flight. Today, it’s making regular flights to the space station and is one of two American companies, along with The Boeing Company, that will return the ability to launch NASA astronauts to the ISS from U.S. soil and land then back in the United States. That’s a lot of progress in the last five years, with even more to come in the next five.”

“Looks like Falcon landed fine, but excess lateral velocity caused it to tip over post landing,” tweeted SpaceX CEO Elon Musk.

A chase plane captured dramatic footage of the landing on the ocean going platform known as the ‘autonomous spaceport drone ship’ (ASDS).

It was pre-positioned some 200 to 250 miles offshore of the Carolina coast in the Atlantic Ocean along the rockets flight path flying along the US Northeast coast to match that of the ISS.

The ASDS measures only 300 by 100 feet, with wings that extend its width to 170 feet.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission. to the International Space Station. Credit: Ken Kremer/kenkremer.com

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

The SpaceX Falcon 9 with the Dragon vessel for the CRS-6 launch lifts off for the International Space Station at 4:10 PM eastern time on 4/14/15 from Cape Canaveral.  Credit: Alex Polimeni/AmericaSpace
The SpaceX Falcon 9 with the Dragon vessel for the CRS-6 launch lifts off for the International Space Station at 4:10 PM eastern time on 4/14/15 from Cape Canaveral. Credit: Alex Polimeni/AmericaSpace

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

After a three day orbital chase, the Dragon spacecraft with rendezvous with the million post Earth orbiting outpost Friday morning April 17.

After SpaceX engineers on the ground maneuver the Dragon close enough to the station, European Space Agency (ESA) astronaut Samantha Cristoforetti will use the station’s 57.7-foot-long (17-meter-long) robotic arm to reach out and capture Dragon at approximately 7 a.m. EDT on April 17.

Cristoforetti will be assisted by fellow Expedition 43 crew member and NASA astronaut
Terry Virts, as they work inside the stations seven windowed domed cupola to berth Dragon at the Earth-facing port of the Harmony module.

The series of images shows the journey the SpaceX Falcon 9 rocket and Dragon spacecraft from its launch at 4:10 p.m. EDT on Tuesday April 14, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, to solar array deployment. Credit: NASA TV
The series of images shows the journey the SpaceX Falcon 9 rocket and Dragon spacecraft from its launch at 4:10 p.m. EDT on Tuesday April 14, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, to solar array deployment. Credit: NASA TV

Watch for Ken’s continuing onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

SpaceX Falcon 9 and Dragon set for Blastoff and Bold Landing Effort Today – Watch Live

SpaceX Falcon 9 and Dragon poised at Cape Canaveral Space Launch Complex 40 in Florida for planned April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The skies are clear at the moment for today’s, April 14, second attempt to launch the SpaceX Falcon 9 rocket and Dragon resupply capsule on a critical mission for science bound for the International Space Station (ISS) and a bold effort to land the boosters first stage on a tiny barge in the vast expanse of the Atlantic Ocean.

The first attempt to launch the rocket and CRS-6 Dragon cargo capsule on Monday, April 13, was scrubbed just about three minutes before the scheduled blastoff at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, due to a violation of the launch weather constraints.

Today’s second liftoff attempt 24 hours later, is slated for approximately 4:10 p.m. from SLC-41.

NASA Television plans live launch coverage starting at 3:00 p.m EDT:

You can watch the launch live on NASA TV here: http://www.nasa.gov/nasatv

SpaceX also plans live launch coverage beginning at 4:15 p.m. EDT: www.spacex.com/webcast

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays like on Monday due to weather or technical factors will force a scrub.

SpaceX Falcon 9 and Dragon erected at Cape Canaveral pad 40 in Florida in advance of April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon erected at Cape Canaveral pad 40 in Florida in advance of April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com

Another delay would likely result in at least a 48 hour scrub.

U.S. Air Force weather forecasters from the 45th Weather Squadron currently rate the chances of favorable conditions at launch time as 60 percent GO for liftoff of the sixth SpaceX commercial resupply services mission (CRS-6) to the ISS. That’s the same as Monday’s launch attempt.

Air Force meteorologists will be watching for storms or thick clouds moving close to the launch site, as happened in the final hour prior to Monday’s try.

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the CRS-6 mission.

Infographic shows how SpaceX Falcon 9 will fly back to Earth after next launch on CRS-6 mission to ISS. Credit: SpaceX
Infographic shows how SpaceX Falcon 9 will fly back to Earth after next launch on CRS-6 mission to ISS. Credit: SpaceX

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

The ship will remain berthed at the ISS for about five weeks.

Watch for Ken’s continuing onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

The SpaceX Falcon 9 with the Dragon vessel for the CRS-6 launch is poised upright to the International Space Station for a launch at 4:10 PM eastern time from Cape Canaveral.  Credit: Alex Polimeni/AmericaSpace
The SpaceX Falcon 9 with the Dragon vessel for the CRS-6 launch is poised upright to the International Space Station for a launch at 4:10 PM eastern time from Cape Canaveral. Credit: Alex Polimeni/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 11-14: “SpaceX, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida.  Credit: SpaceX
Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida. Credit: SpaceX

SpaceX Falcon 9 and Dragon CRS-6 set for April 13 Launch to ISS and Historic Landing Attempt

Infographic shows how SpaceX Falcon 9 will fly back to Earth after next launch on CRS-6 mission to ISS. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Now just a day away, all systems are “GO” for blastoff of the next SpaceX Falcon 9 rocket carrying the Dragon CRS-6 cargo capsule on Monday, April 13, on a mission to the International Space Station (ISS) and a near simultaneous historic attempt to soft land the boosters first stage on a barge in a remote area of the Atlantic Ocean, hundreds of miles offshore from the US eastern seaboard.

In advance of Mondays launch attempt, SpaceX engineers successfully completed the practice countdown dress rehearsal and required static fire engine test this afternoon, Saturday, April 11, to ensure everything is ready with the rocket and first Stage Merlin 1-D engines for a safe and successful mission to the orbiting outpost.

The Dragon capsule has already been loaded with most of the cargo bound for the space station and was mated to the Falcon 9 booster earlier this week.

Although it is raining heavily now around the Florida Space Coast region along with multiple tornado warning threats, NASA and SpaceX officials are hopeful that weather conditions will clear sufficiently to permit Monday’s planned launch.

U.S. Air Force weather forecasters from the 45th Weather Squadron currently rate the chances of favorable conditions at launch time as 60 percent GO for liftoff of the sixth SpaceX commercial resupply services mission (CRS-6) to the ISS.

Static fire engine test completed on April 11, 2015 in advance of April 13 launch attempt to the International Space Station. Credit: SpaceX
Static fire engine test completed on April 11, 2015 in advance of April 13 launch attempt to the International Space Station. Credit: SpaceX

SpaceX and NASA are targeting blastoff of the Falcon 9 and Dragon CRS-6 spacecraft for Monday, April 13, slated at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

NASA Television plans live launch coverage starting at 3:30 p.m EDT: http://www.nasa.gov/multimedia/nasatv/index.html

SpaceX also plans live launch coverage beginning at 4:15pm EDT: www.spacex.com/webcast

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays due to weather or technical factors will force a scrub.

If all goes well with Mondays launch attempt, the Dragon spacecraft will rendezvous with the Earth orbiting outpost Wednesday, April 15, after a two day orbital chase.

In the event of a scrub for any reason, the backup launch day is 24 hours later on Tuesday, April 14, at approximately 4:10 p.m.

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the CRS-6 mission.

The SpaceX plan is to direct the spent 1st stage on a precision guided rocket assisted descent from high altitude to accomplish a pinpoint soft landing onto a tiny platform in the middle of a vast ocean.

The ocean-going barge is known as the ‘autonomous spaceport drone ship’ (ASDS). It is being positioned some 200 to 250 miles offshore of the Carolina’s in the Atlantic Ocean along the rockets flight path flying along the US Northeast coast to match that of the ISS.

The ASDS measures only 300 by 100 feet, with wings that extend its width to 170 feet.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida. File photo. Credit: Ken Kremer – kenkremer.com

This marks the 2nd attempt by SpaceX to recovery the 14 story tall Falcon 9 first stage booster on the ASDS barge.

The first attempt in January during the CRS-5 mission was largely successful, as I wrote earlier at Universe Today, despite making a ‘hard landing’ on the ASDS. The booster did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

Dragon cargo vessel ready for mating to SpaceX Falcon 9 rocket for CRS-6 mission launch to the International Space Station (ISS) scheduled for April 13, 2015. Credit: SpaceX
Dragon cargo vessel ready for mating to SpaceX Falcon 9 rocket for CRS-6 mission launch to the International Space Station (ISS) scheduled for April 13, 2015. Credit: SpaceX

The ship will remain berthed at the ISS for about five weeks.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

Watch for Ken’s continuing onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Dragon cargo vessel being mated to SpaceX Falcon 9 rocket for CRS-6 mission launch to the International Space Station (ISS) scheduled for April 13, 2015. Credit: SpaceX
Dragon cargo vessel being mated to SpaceX Falcon 9 rocket for CRS-6 mission launch to the International Space Station (ISS) scheduled for April 13, 2015. Credit: SpaceX

………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 11-13: “SpaceX, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

SpaceX Resets CRS-6 Space Station Launch to April 13 with Booster Landing Attempt

Falcon 9 and Dragon undergoing preparation in Florida in advance of April 13 launch to the International Space Station on the CRS-6 mission. Credit: SpaceX

The clock is ticking towards the next launch of a SpaceX cargo vessel to the International Space Station (ISS) hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ station crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.

The mission, dubbed SpaceX CRS-6 (Commercial Resupply Services-6) will also feature the next daring attempt by SpaceX to recover the Falcon 9 booster rocket through a precision guided soft landing onto an ocean-going barge.

SpaceX and NASA are now targeting blastoff of the Falcon 9 rocket and Dragon spacecraft for Monday, April 13, just over a week from now, at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

NASA Television plans live launch coverage starting at 3:30 p.m.

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays due to weather or technical factors will force a scrub.

The backup launch day in case of a 24 hour scrub is Tuesday, April 14, at approximately 4:10 p.m.

Falcon 9 launches have been delayed due to issues with the rockets helium pressurization bottles that required investigation.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida. File photo. Credit: Ken Kremer – kenkremer.com

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the mission.

An on time launch on April 13 will result in the Dragon spacecraft rendezvousing with the Earth orbiting outpost Wednesday, April 15 after a two day orbital chase.

After SpaceX engineers on the ground maneuver the Dragon close enough to the station, European Space Agency (ESA) astronaut Samantha Cristoforetti will use the station’s 57.7-foot-long (17-meter-long) robotic arm to reach out and capture Dragon at approximately 7:14 a.m. EDT on April 15.

Cristoforetti will be assisted by fellow Expedition 43 crew member and NASA astronaut Terry Virts, as they work inside the stations seven windowed domed cupola to berth Dragon at the Earth-facing port of the Harmony module.

SpaceX Dragon cargo ship approaches ISS, ready for grappling by astronauts. Credit: NASA
SpaceX Dragon cargo ship approaches ISS, ready for grappling by astronauts. Credit: NASA

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

The ship will remain berthed at the ISS for about five weeks.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

The prior resupply mission, CRS-5, concluded in February with a successful Pacific Ocean splashdown and capsule recovery.

Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida.  Credit: SpaceX
Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida. Credit: SpaceX

The CRS-5 mission also featured SpaceX’s history making attempt at recovering the Falcon 9 first stage as a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

As I wrote earlier at Universe Today, despite making a ‘hard landing’ on the vessel dubbed the ‘autonomous spaceport drone ship,’ the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

Listen to my live radio interview with BBC 5LIVE conducted in January 2015, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

Watch for Ken’s onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

You Can Vote to Name America’s New Rocket from ULA

Help ULA name America’s next rocket to space. Credit: ULA

Help ULA name America’s next rocket to space. Credit: ULA
Voting Details below
Watch ULA’s March 25 Delta Launch Live – details below
Update 3/26: 2 new names have been added to the voting list – Zeus and Vulcan !
[/caption]

United Launch Alliance (ULA) is asking the public for your help in naming their new American made rocket, now under development that “represents the future of space”- and will replace the firms current historic lines of Atlas and Delta rocket families that began launching back near the dawn of the space age.

Eagle, Freedom or GalaxyOne – those are the names to choose from for the next two weeks, from now until April 6.

UPDATE 3/26: 2 new names have been added to the voting list – Zeus and Vulcan !

ULA says the names were selected from a list of over 400 names submitted earlier this year by ULA’s 3400 employees and many space enthusiasts.

ULA has set up a simple voting system whereby you can vote for your favorite name via text or an online webpage.

Currently dubbed the “Next Generation Launch System,” or NGLS, ULA’s new president and CEO Tory Bruno is set to unveil the next generation rockets design and name at the National Space Symposium on April 13 in Colorado Springs, Colorado.

“ULA’s new rocket represents the future of space – innovative, affordable and reliable,” said Bruno, in a statement.

“More possibilities in space means more possibilities here on earth. This is such a critical time for space travel and exploration and we’re excited to bring all of America with us on this journey into the future.”

The NGLS is ULA’s response to what’s shaping up as a no holds barred competition with SpaceX for future launch contracts where only the innovative and those who dramatically cut the cost of access to space will survive.

The first flight of the NGLS is slated for 2019.

Here’s how you can cast your vote for America’s next rocket to April 6, 2015:

Visit the website: http://bit.ly/rocketvote

OR

Voters can text 22333 to submit a vote for their favorite name. The following key can be used to text a vote:

• ULA1 for “Eagle”
• ULA2 for “Freedom”
• ULA3 for “GalaxyOne”

3/26 Update: Zeus and Vulcan have been added to the voting list

One small step for ULA, one giant leap for space exploration. Vote to name America’s next ride to space: Eagle, Freedom, or GalaxyOne? #rocketvote http://bit.ly/rocketvote
One small step for ULA, one giant leap for space exploration. Vote to name America’s next ride to space: Eagle, Freedom, or GalaxyOne? #rocketvote http://bit.ly/rocketvote

“Name America’s next ride to space. Vote early, vote often … ” says Bruno.

I have already voted – early and often.

Over 11,000 votes were tallied in just the first day.

Currently ULA is the nation’s premier launch provider, launching at a rate of about once per month. 13 launches are planned for 2015- as outlined in my earlier article here.

But ULA faces stiff and relentless pricing and innovative competition from NewSpace upstart SpaceX, founded by billionaire Elon Musk.

NGLS is ULA’s answer to SpaceX – they must compete in order to survive.

To date ULA has accomplished a 100 percent mission success for 94 launches since the firms founding in 2006 as a joint venture between Boeing and Lockheed Martin. They have successfully launched numerous NASA, national security and commercial payloads into orbit and beyond.

Planetary missions launched for NASA include the Mars rovers and landers Phoenix and Curiosity, Pluto/New Horizons, Juno, GRAIL, LRO and LCROSS.

A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida.  Credit: Ken Kremer- kenkremer.com
ULA’s new rocket will launch from this pad in 2019
A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida. Credit: Ken Kremer- kenkremer.com

ULA’s most recent launch for NASA involved the $1.1 Billion Magnetospheric Multiscale (MMS) mission comprised of four formation flying satellites which blasted to Earth orbit atop an Atlas V rocket from Cape Canaveral Air Force Station, Florida, during a spectacular nighttime blastoff on March 12, 2015. Read my onsite reports – here and here.

“Space launch affects everyone, every day, and our goal in letting America name its next rocket is to help all Americans imagine the future of endless possibilities created by affordable space launch,” Bruno added.

NGLS will include some heritage design from the Atlas V and Delta IV rockets, but will feature many new systems and potentially some reusable systems – to be outlined by Bruno on April 13.

ULA plans to phase out the Delta IV around 2019 when the current contracts are concluded. The Atlas V will continue for a transitional period.

The Atlas V is also the launcher for Boeing’s CST-100 manned space taxi due to first launch in 2017.

NGLS will launch from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida, the same pad as for the Atlas V, as well as from Vandenberg AFB, Calif.

ULA’s next Delta IV launch with GPS IIF-9 is scheduled shortly for Wednesday, March 25, with liftoff at 2:36 p.m. EDT from Cape Canaveral.

Live webcast begins at 2:06 p.m. Live link here – http://www.ulalaunch.com/webcast.aspx

Vote now!

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Tory Bruno, ULA President and CEO, speaks about the ULA launch of NASA’s Orion EFT-1 mission on Delta IV Heavy rocket in the background at the Delta IV launch complex 37 on Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer- kenkremer.com
Tory Bruno, ULA President and CEO, speaks about the ULA launch of NASA’s Orion EFT-1 mission on Delta IV Heavy rocket in the background at the Delta IV launch complex 37 on Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer- kenkremer.com

Orbital ATK Aims for March 2016 Antares Rocket Launch Restart with New Engines

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com

The newly merged company Orbital ATK is aiming to restart launches of their “upgraded Antares” rocket in March 2016 using completely new engines, following the catastrophic explosion on Oct. 28, 2014 that destroyed the rocket seconds after blastoff from a Virginia launch pad. Antares was carrying a Cygnus module loaded with supplies on a critical space station resupply mission for NASA.

The March 2016 launch date of Antares from the Wallops Island base along Virginia’s eastern shore was announced by David Thompson, Orbital ATK, President and CEO, during a recent conference call with investors and analysts regarding the formal merger of Orbital Sciences and ATK.

“The target date for that [Antares launch] is the 1st of March next year,” said Thompson.

Cygnus will be fully loaded with new supplies for the station crew.

“The first launch … will have a full cargo load on board.”

The Orbital Sciences Corp. commercial Antares rocket was destroyed in a raging inferno about 15 seconds after liftoff on Oct. 28 when one of the Soviet-era built first stage engines apparently exploded and cascaded into a spectacular aerial fireball just above the launch pad 0A at NASA’s Wallops Flight Facility on the doomed Orb-3 mission carrying the Cygnus resupply module to the International Space Station (ISS).

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital’s privately developed Cygnus pressurized cargo freighter was loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on the Orb-3 mission. The module and all its contents were destroyed.

Orbital established an independent accident investigation review board immediately following the launch failure.

“We are about four months now into the recovery from the failure,’ said Thompson.

A turbopump failure in one of the rockets Soviet-era first stage engines has been identified as the most likely cause of the Antares destruction, according to official statements from David Thompson.

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33. They were refurbished and “Americanized” by Aerojet Rocketdyne.

Credit: Ken Kremer – kenkremer.com
Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

“The next Cygnus will be launched on the upgraded Antares from Wallops Island. The target date for that is the 1st of March next year.”

After the launch failure Orbital, decided to ditch the trouble plagued AJ-26 and “re-engineered” the vehicle with new engines.

The Antares first stage had been powered by a pair of the aging AJ26 engines. These will now be replaced by a pair of newly manufactured Russian RD-181 engines, assembled and purchased from NPO Energomash.

“The first launch of the re-engineered vehicle in March of next year … will have a full cargo load on board.”

Thompson said the March 2016 launch target date will be preceded by a hot fire test of the first stage engines, which is currently planned to take place in January 2015. They will not conduct a demonstration launch and have opted for a full up space station resupply flight.

“We’re going to go with the cargo load on the first launch. What we are going to do in advance of that, in January of next year, is we’re going to take the first stage of Antares out to the launch pad with the new engines and do a flight readiness firing, somewhat similar to what we did back in early 2013, in advance of the first Antares flight,” said Thompson.

“But other than that, unless something came up there that was surprising, we should then be able to proceed pretty expeditiously to the first launch of the re-engineered vehicle in March of next year, and that will have a full cargo load on board.”

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Thompson also reiterated that Orbital will fully meet its resupply services contarct with NASA and make up for the lost cargo.

The Orbital-3, or Orb-3, mission that ended in disaster on Oct 28, was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion. Under the CRS program Orbital is to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

“The focus all along has been to do everything we can to fulfill our commitments to delivering cargo to the space station for NASA, and to minimize any disruption that we can to the delivery schedules.”

Towards that end Orbital ATK has contracted with United Launch Alliance (ULA) to launch at least one and up to two Cygnus cargo missions to the International Space Station (ISS) under NASA’s Commercial Resupply Services (CRS) program.

The first Cygnus mission would liftoff sometime late in the fourth quarter of 2015 aboard an Atlas V 401 vehicle from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.

I watched the unfolding disaster first hand from the media viewing site about 1.8 miles away and filed eyewitness reports at the time. Several of my launch pad remote cameras were set up at the pad. They were impounded and the images were used by investigators during the initial investigation. They were returned to me about a month later and are featured here and in my earlier Antares reports.

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Credit: Ken Kremer – kenkremer.com

Here’s a Better Use for Fighter Jets: Launching Satellites

Artist's impression of the ALASA being deployed by a USAF fighter jet. Credit: DARPA

For decades, the human race has been deploying satellites into orbit. And in all that time, the method has remained the same – a satellite is placed aboard a booster rocket which is then launched from a limited number of fixed ground facilities with limited slots available. This process not only requires a month or more of preparation, it requires years of planning and costs upwards of millions of dollars.

On top of all that, fixed launch sites are limited in terms of the timing and direction of orbits they can establish, and launches can be delayed by things as simple as bad weather.  As such, DARPA has been working towards a new method of satellite deployment, one which eliminates rockets altogether. It’s known as the Airborne Launch Assist Space Access (ALASA), a concept which could turn any airstrip into a spaceport and significantly reduce the cost of deploying satellites.

What ALASA comes down to is a cheap, expendable dispatch launch vehicle that can be mounted onto the underside of an aircraft, flown to a high altitude, and then launched from the craft into low earth orbit. By using the aircraft as a first-stage, satellite deployment will not only become much cheaper, but much more flexible.

DARPA’s aim in creating ALASA was to ensure a three-fold decrease in launch costs, but also to create a system that could carry payloads of up to 45 kg (100 lbs) into orbit with as little as 24 hours’ notice. Currently, small satellite payloads cost roughly $66,000 a kilogram ($30,000 per pound) to launch, and payloads often must share a launcher. ALASA seeks to bring that down to a total of $1 million per launch, and to ensure that satellites can be deployed more precisely.

Artist's concept of the ALASA second stage firing (Credit: DARPA)
Artist’s concept of the ALASA second stage firing. Credit: DARPA

News of the agency’s progress towards this was made at the 18th Annual Commercial Space Transportation Conference (Feb 4th and 5th) in Washington, DC. Bradford Tousley, the director of DARPA’s Tactical Technology Office, reported on the progress of the agency’s program, claiming that they had successfully completed phase one, which resulted in three viable system designs.

Phase two – which began in March of 2014 when DARPA awarded Boeing the prime contract for development – will consist of DARPA incorporating commercial-grade avionics and advanced composites into the design. Once this is complete, it will involve launch tests that will gauge the launch vehicle’s ability to deploy satellites to desired locations.

“We’ve made good progress so far toward ALASA’s ambitious goal of propelling 100-pound satellites into low earth orbit (LEO) within 24 hours of call-up, all for less than $1 million per launch,” said Tousley in an official statement. “We’re moving ahead with rigorous testing of new technologies that we hope one day could enable revolutionary satellite launch systems that provide more affordable, routine and reliable access to space.”

These technologies include the use of a high-energy monopropellant, where fuel and oxidizer are combined into a single liquid. This technology, which is still largely experimental, will also cut the costs associated with satellite launches by both simplifying engine design and reducing the cost of engine manufacture and operation.

Artisti's concept of the ALASA deploying into orbit. Credit: DARPA
Artist’s concept of the ALASA vehicle deploying into orbit. Credit: DARPA

Also, the ability to launch satellites from runways instead of fixed launch sites presents all kinds of advantages. At present, the Department of Defense (DoD) and other government agencies require scheduling years in advance because the number of slots and locations are very limited. This slow, expensive process is causing a bottleneck when it comes to deploying essential space assets, and is also inhibiting the pace of scientific research and commercial interests in space.

“ALASA seeks to overcome the limitations of current launch systems by streamlining design and manufacturing and leveraging the flexibility and re-usability of an air-launched system,” said Mitchell Burnside Clapp, DARPA program manager for ALASA. “We envision an alternative to ride-sharing for satellites that enables satellite owners to launch payloads from any location into orbits of their choosing, on schedules of their choosing, on a launch vehicle designed specifically for small payloads.”

The program began in earnest in 2011, with the agency conducting initial trade studies and market/business case analysis. In November of that same year, development began with both system designs and the development of the engine and propellant technologies. Phase 2 is planned to last late into 2015, with the agency conducting tests of both the vehicle and the monopropellant.

Pending a successful run, the program plan includes 12 orbital launches to test the integrated ALASA prototype system – which is slated to take place in the first half of 2016. Depending on test results, the program would conduct up to 11 further demonstration launches through the summer of 2016. If all goes as planned, ALASA would provide convenient, cost-effective launch capabilities for the growing government and commercial markets for small satellites, which are currently the fastest-growing segment of the space launch industry.

And be sure to check out this concept video of the ALASA, courtesy of DARPA:

Further Reading: DARPA TTO, DARPA News

Space Weather Storm Monitoring Satellite Blasts off for Deep Space on SpaceX Rocket

NOAA's DSCOVR satellite launches from Cape Canaveral Air Force Station on Feb. 11, 2015. DSCOVR will provide NOAA space weather forecasters more reliable measurements of solar wind conditions, improving their ability to monitor potentially harmful solar activity. Credit: Alan Walters/AmericaSpace

After a 17 year long wait, a new American mission to monitor intense solar storms and warn of impeding space weather disruptions to vital power grids, telecommunications satellites and public infrastructure was launched atop a SpaceX Falcon 9 on Wednesday, Feb. 11, from Cape Canaveral, Florida, to start a million mile journey to its deep space observation post.

The third time proved to be the charm when the Deep Space Climate Observatory, or DSCOVR science satellite lifted off at 6:03 p.m. EST Wednesday from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The spectacular sunset blastoff came after two scrubs this week forced by a technical problem with the Air Force tracking radar and adverse weather on Sunday and Tuesday.

The $340 million DSCOVR has a critical mission to monitor the solar wind and aid very important forecasts of space weather at Earth at an observation point nearly a million miles from Earth. It will also take full disk color images of the sunlit side of Earth at least six times per day that will be publicly available and “wow” viewers.

Launch of NOAA DSCOVR satellite from Cape Canaveral Air Force Station on Feb. 11, 2015 to monitor solar storms and space weather.   Credit:  Julian Leek
Launch of NOAA DSCOVR satellite from Cape Canaveral Air Force Station on Feb. 11, 2015 to monitor solar storms and space weather. Credit: Julian Leek

The couch sized probe was targeted to the L1 Lagrange Point, a neutral gravity point that lies on the direct line between Earth and the sun located 1.5 million kilometers (932,000 miles) sunward from Earth. At L1 the gravity between the sun and Earth is perfectly balanced and the satellite will orbit about that spot just like a planet.

L1 is a perfect place for the science because it lies outside Earth’s magnetic environment. The probe will measure the constant stream of solar wind particles from the sun as they pass by.

The DSCOVR spacecraft (3-axis stabilized, 570 kg) will be delivered to the Sun-Earth L1 point, 1.5 million km (1 million miles) from the Earth, directly in front of the Sun. A Halo (Lissajous) orbit will stabilize the craft's position around the L1 point while keeping it outside the radio noise emanating from the Sun. (Illustratin Credit: NASA)
The DSCOVR spacecraft (3-axis stabilized, 570 kg) will be delivered to the Sun-Earth L1 point, 1.5 million km (1 million miles) from the Earth, directly in front of the Sun. A Halo (Lissajous) orbit will stabilize the craft’s position around the L1 point while keeping it outside the radio noise emanating from the Sun. (Illustratin Credit: NASA)

DSCOVR is a joint mission between NOAA, NASA, and the U.S Air Force (USAF) that will be managed by NOAA. The satellite and science instruments are provided by NASA and NOAA. The rocket was funded by the USAF.

The mission is vital because its solar wind observations are crucial to maintaining accurate space weather forecasts to protect US infrastructure such as power grids, aviation, planes in flight, all types of Earth orbiting satellites for civilian and military needs, telecommunications, ISS astronauts and GPS systems.

It will take about 150 days to reach the L1 point and complete satellite and instrument checkouts.

DSCOVR will then become the first operational space weather mission to deep space and function as America’s primary warning system for solar magnetic storms.

It will replace NASA’s aging Advanced Composition Explorer (ACE) satellite which is nearly 20 years old and far beyond its original design lifetime.

“DSCOVR is the latest example of how NASA and NOAA work together to leverage the vantage point of space to both understand the science of space weather and provide direct practical benefits to us here on Earth,” said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate in Washington.

DSCOVR was first proposed in 1998 by then US Vice President Al Gore as the low cost ‘Triana’ satellite to take near continuous views of the Earth’s entire globe to feed to the internet as a means of motivating students to study math and science. It was eventually built as a much more capable Earth science satellite that would also conduct the space weather observations.

But Triana was shelved for purely partisan political reasons and the satellite was placed into storage at NASA Goddard and the science was lost until now.

DSCOVR mission logo.  Credit: NOAA/NASA/U.S. Air Force
DSCOVR mission logo. Credit: NOAA/NASA/U.S. Air Force

DSCOVR is equipped with a suite of four continuously operating solar science and Earth science instruments from NASA and NOAA.

It will make simultaneous scientific observations of the solar wind and the entire sunlit side of Earth.

The 750-kilogram (1250 pound) DSCOVR probe measures 54 inches by 72 inches.

Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014.  Credit: Ken Kremer/kenkremer.com/AmericaSpace
Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014. Credit: Ken Kremer/kenkremer.com/AmericaSpace

The two Earth science instruments from NASA are the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR).

EPIC will provide true color spectral images of the entire sunlit face of Earth at least six times per day, as viewed from an orbit around L1. They will be publically available within 24 hours via NASA Langley.

It will view the full disk of the entire sunlit Earth from sunrise to sunset and collect a variety of science measurements including on ozone, aerosols, dust and volcanic ash, vegetation properties, cloud heights and more.

Listen to my post launch interview with the BBC about DSCOVR and ESA’s successful IXV launch on Feb. 11.

A secondary objective by SpaceX to recover the Falcon 9 first stage booster on an ocean going barge had to be skipped due to very poor weather and very high waves in the Atlantic Ocean making a safe landing impossible. The stage did successfully complete a soft landing in the ocean.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER will launch in February 2015 atop SpaceX Falcon 9 rocket.  Credit: Ken Kremer/kenkremer.com/AmericaSpace
NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER will launch in February 2015 atop SpaceX Falcon 9 rocket. Credit: Ken Kremer/kenkremer.com/AmericaSpace
Launch of NOAA DSCOVR satellite from Cape Canaveral Air Force Station on Feb. 11, 2015 to monitor solar storms and space weather.   Credit:  John Studwell
Launch of NOAA DSCOVR satellite from Cape Canaveral Air Force Station on Feb. 11, 2015 to monitor solar storms and space weather. Credit: John Studwell
Prelaunch view of SpaceX rocket on Cape Canaveral launch pad taken from LC-39 at the Kennedy Space Center.  Credit: Chuck Higgins
Prelaunch view of SpaceX rocket on Cape Canaveral launch pad taken from LC-39 at the Kennedy Space Center. Credit: Chuck Higgins