SpaceShipTwo Pilot’s Survival is Miraculous

SpaceShipTwo, SS Enterprise, as seen during its second powered test flight, Septemer 5, 2013. (Photo Credit: Virgin Galactic)

In this reporter’s initial article for Universe Today on the SpaceShipTwo accident, it was already clear that the survival of one of the two pilots was remarkable. How did the SpaceShipTwo pilot Peter Siebold survive while co-pilot Michael Alsbury did not? The SpaceShipTwo test pilots do not wear pressure suits. There are no ejection seats like in a jet fighter but they do wear parachutes.

During the powered test flight of SpaceShipTwo on October 31st, at the moment that the vehicle broke up, its altitude was approximately 50,000 feet (15,240 meters) and it was traveling at mach 1.0  (1225 kph, 761 mph). Sudden decompression at that altitude leaves a pilot a few seconds before losing consciousness. To understand how Siebold survived, consider how this breakup compares to the Space Shuttle Challenger disaster. Challenger was at 48,000 feet (14,600 meters) and SpaceShipTwo was at 50,000 feet (15,240 meters) when their breakups occurred. Both were within the same speed regime – between mach 1 and mach 2.

Scaled Composites test pilot Michael Alsbury perished in the powered test flight of the SS Enterprise, October 31, 2014.
Scaled Composites test pilot Michael Alsbury perished in the powered test flight of the SS Enterprise, October 31, 2014.

I was a graduate student stationed at the Space Science Lab at Marshall Space Flight Center on that winter day in 1986. The NASA research researchers and professors, students from the University of Alabama, Huntsville, were sitting together in a conference room. The presenter concluded his final remarks on his research work then said, thank you and we can now turn around (to the NASA TV monitor) and watch Challenger launch. The countdown was at about T-20 seconds and so we watched, then a cloud appeared that with each passing moment did not seem normal. I recall watching and thinking, come on out, come on, you can make it. Challenger never did. There was no miraculous recovery with the Shuttle pilots steering it out of the cloud and back down to the Cape to cheers and a heroes welcome. We all filed out of the room in silence knowing what had happened but not wanting to believe it. Months later, experts concluded that the Challenger crew, most likely, survived the plunge back to Earth only to perish when the cabin impacted the ocean surface at over 200 mph (321 kph).

That was the first of two Space Shuttle accidents. The other, the Columbia disaster, occurred at a much higher altitude and velocity. That was a Saturday morning. Sleeping in after a long week of analyzing design documents and source code for the Mars Rovers, my girlfriend at the time nudged me awake to say, Tim, something is wrong with the Space Shuttle. I grudgingly got up, not wanting to see anything bad on a pleasant Saturday morning, but CNN was showing it break up over Texas.

I never worked in the Space Shuttle program but Shuttle was larger than life and every NASA employee took its triumphs and tragedies personally. For all those working on SpaceShipTwo and friends and family and those at the Mojave Air and Space Port on that day, it is no different. The tragedy and the moments surrounding the incident stay with you forever.

The Pilot of SpaceShiptTwo, Peter Siebold, survived the catastrophic breakup of the vehicle at Mach 1.0 and an altitude of 50,000 feet (15,240 m). (Photo Credit: Virgin Galactic)
The Pilot of SpaceShiptTwo, Peter Siebold, survived the catastrophic breakup of the vehicle at Mach 1.0 and an altitude of 50,000 feet (15,240 m). (Photo Credit: Virgin Galactic)

With all this in mind, I consider the question of how one man survived and the other did not with SpaceShipTwo. Both pilots were wearing only simple jump suits. No pressurization. They had supplemental oxygen through masks just like a fighter pilot has during flight. SpaceShipTwo did not afford them ejection seats like a fighter jet. Fighter jet pilots can eject at supersonic speeds but chances of surviving the shock of ejection rapidly falls with speed.

SpaceShipTwo is equipped with an escape hatch but once SpaceShipTwo disintegrated, the hatch was of no use. Both pilots were suddenly exposed to open air and a supersonic slipstream. So how did Siebold survive?

When the vehicle broke up, the sudden decompression surrounding them stripped objects from the interior. They were surrounded by lethal projectiles. It was a matter of chance whether one or both were struck by debris and lost consciousness. In the case of Shuttle Challenger, the astronauts experienced a sudden 20 G force at break up, however, analysts concluded that they likely survived the initial breakup. Challenger astronauts had helmets and a supplemental oxygen supply. One or two of the oxygen supplies had actually been activated and drained by their respective astronaut as the cabin was falling back to Earth. The Shuttle cabin survived the breakup largely intact and protected the astronauts from the supersonic slipstream outside.

SpaceShipTwo’s breakup likely exposed both pilots to the slipstream at still over mach 1. Flying debris was their first challenge. Second, the sudden decompression and then deceleration forces struck them. According to an anonymous source within Scaled Composites, the Washington Post reported yesterday that both pilots remained buckled into their seats. Alsbury never separated from the seat and cabin, and information reaching the public reveals that he impacted at high speed still within some fraction of the remaining cabin.

The anonymous sources within Scaled Composites revealed that Siebold was able to unbuckle from his seat and deploy his chute at 17,000 feet (5,181 m). It is very likely that even Siebold fell unconscious from the initial stresses of the breakup and from decompression at 50,000 feet (15,240 m). He would have fallen into an unconscious state at that height and only have woken up once near 17,000 feet (5,181 m) where the atmosphere is denser  and at which a human can survive, such as at mountain altitudes in the Andes and Himalayas. Whether he gave a thumbs up to a nearby chase plane is sensational but it would indicate that he was conscious and aware. With the parachute integrated into his test pilot suit, it was critical for Siebold to regain consciousness and unbuckle from his seat in order to give his parachute any chance of deploying. This is likely where the fate of the pilots differ.

Alsbury quite possibly was struck by debris or was injured by G forces and decompression more severely than Siebold. He either never regained consciousness or was somehow trapped in his seat and surrounding debris of the cabin. The circumstances for Siebold in his descent after the breakup were apparently fortuitous and gave him the chance to re-awaken and unbuckle. Comments in press reports from people around the incident or aware of the technology included that the pilots’ parachutes had automatic deployment mechanisms which activate at 10,000 feet (3048 m). In Alsbury’s or Siebold’s situation, without releasing themselves from their seats, the automatic deployment system would not have worked. If the chutes were to automatically deploy while the pilots were still strapped to their seats, the force from the deploying chute would have caused serious injury to the pilot. I’ve never jumped from a perfectly good flying airplane — as pilots often comment to jumpers — but I recall hearing that a deploying chute will knock a person on their backs with injury if they’re within 20 feet (6.1 meers) of it.

So, Siebold’s survival is miraculous or lucky, however you want to perceive it. For Michael Alsbury, godspeed. There are many factors that lead up to a powered test flight. Then, the moment — the rush of acceleration, the roar of the SpaceShipTwo engine — has some effect on the clarity of any pilot. NTSB analysis might reveal that the Human-Machine Interface (HMI) was also a factor in the actions that took place inside the cockpit. If only one of two necessary steps to execute the tail section’s feathering took place and yet it feathered, then again, something was beyond the control of the pilots.

References:

National Post Story

Washington Post Story

Christian Science Monitor

Soviet Era Engines Likely Caused Antares Catastrophic Rocket Failure

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Investigators probing last week’s catastrophic failure of an Antares commercial rocket moments after liftoff, are pointing the finger at the rocket’s Soviet-era built engines as the probable cause of the huge explosion that destroyed the booster and its NASA payload in a raging fireball after liftoff from NASA’s Wallops Flight Facility, VA, according to Orbital Sciences managers.

The Orbital Sciences privately developed Antares rocket was doomed by a sudden mid-air explosion some 15 seconds after liftoff from NASA’s Wallops Flight Facility, VA, at 6:22 p.m. EDT on Tuesday, October 28.

Antares’ first stage is powered by a pair of refurbished Aerojet Rocketdyne AJ26 engines originally manufactured some 40 years ago in the then Soviet Union and originally designated as the NK-33. Overall this was the 5th Antares launch using the AJ26 engines.

See my exclusive photos above and below showing the AJ26 engines with their original NK-33 stencil, during prelaunch processing and mating to the first stage inside Orbital’s Horizontal Integration Facility (HIF) at NASA Wallops.

The NK-33 was originally designed and manufactured in the 1960s by the Kuznetsov Design Bureau for the Soviet Union’s planned N1 rocket to propel cosmonauts to the moon during the space race with NASA’s hugely successful Apollo Moon Landing program.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences’ Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Rocket developer Orbital Sciences Corp. said today, Nov. 5, that the launch mishap was probably due to “a failure in one of the two Aerojet Rocketdyne AJ26 stage one main engines.”

Engineers assisting Orbital’s Accident Investigation Board (AIB) say that failure in the AJ26 turbopump is the likely cause. The AIB is chaired by David Steffy, Chief Engineer of Orbital’s Advanced Programs Group.

“While the work of the AIB continues, preliminary evidence and analysis conducted to date points to a probable turbopump-related failure in one of the two Aerojet Rocketdyne AJ26 stage one main engines,” Orbital said in a statement.

“As a result, the use of these engines for the Antares vehicle likely will be discontinued,” said Orbital.

“We will likely discontinue the use of AJ26 rocket engines that had been used on the first five Antares launch vehicles unless and until those engines can be conclusively shown to be flight worthy,” noted David Thompson, Orbital’s Chairman and Chief Executive Officer, during an investor conference call.

Orbital’s options for the way forward will be outlined in a separate story.

Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

The Oct. 28 launch disaster was just the latest in a string of serious problems with the AJ-26/NK-33 engines.

Earlier this year an AJ26 engine failed and exploded during pre launch acceptance testing on a test stand on May 22, 2014, at NASA’s Stennis Space Center in Mississippi.

Besides completely destroying the AJ26 engine, the explosion during engine testing also severely damaged the Stennis test stand. It has taken months of hard work to rebuild and restore the test stand and place it back into service.

An extensive engine analysis, recheck and test stand firings by Aerojet Rocketdyne and Orbital Sciences engineers was conducted to clear this new pair of engines for flight.

Aerojet Rocketdyne purchased approximately 40 NK-33 engines in the mid-1990s and ‘Americanized’ them with multiple modifications including a gimbal steering mechanism.

AJ26 engine failure was immediately suspected, though by no means certain, based on an inspection of numerous photos and videos from myself and many others that clearly showed a violent explosion emanating from the base of the two stage rocket.

Up close view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Up close view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

The remainder of the first stage and Antares entire upper stage was clearly intact at the moment of the explosion in all the imagery.

Antares was carrying the unmanned Cygnus cargo freighter on a mission dubbed Orb-3 to resupply the six person crew living aboard the International Space Station (ISS) with science experiments and needed equipment.

The AIB is making rapid progress in assessing the accident’s cause based on an analysis of the rocket’s telemetry as well as the substantial amounts of debris collected from the rocket and the Cygnus cargo freighter at the Wallops launch site.

A preliminary review of telemetry and video data has been conducted and substantial debris from the Antares rocket and its Cygnus payload has been collected and examined.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

The 14 story Antares rocket is a two stage vehicle.

The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines that generate a combined 734,000 pounds (3,265kN) of sea level thrust.

The doomed mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply ship.

Antares rocket stand erect, reflecting off the calm waters the night before their first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Antares rocket stands erect, reflecting off the calm waters the night before the first night launch planned from NASA’s Wallops Flight Facility, VA, on Oct. 28, which ended in disaster. Credit: Ken Kremer – kenkremer.com

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site here.

Check out my raw video of the launch here.

Read my first hand account here.

Watch my interview at Universe Today’s Weekly Space Hangout on Oct 31, 2014, here.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Antares Explosion Investigation Focuses on First Stage Propulsion Failure

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Investigators probing the Antares launch disaster are focusing on clues pointing to a failure in the first stage propulsion system that resulted in a loss of thrust and explosive mid-air destruction of the commercial rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, at 6:22 p.m. EDT on Tuesday, October 28.

The highly anticipated first night launch of the Orbital Sciences Corp. privately developed Antares rocket blasted off nominally and ascended for about 15 seconds until a rapid fire series of sudden and totally unexpected loud explosions sent shock waves reverberating all around the launch site and surroundings for miles and the rocket was quickly consumed in a raging fireball.

Antares was carrying the unmanned Cygnus cargo freighter on a mission dubbed Orb-3 to resupply the six person crew living aboard the International Space Station (ISS) with science experiments and needed equipment.

The 14 story Antares rocket is a two stage vehicle. The liquid fueled first stage is filled with about 550,000 pounds (250,000 kg) of Liquid Oxygen and Refined Petroleum (LOX/RP) and powered by a pair of AJ26 engines originally manufactured some 40 years ago in the then Soviet Union and designated as the NK-33.

Earlier this year an AJ26 engine failed and exploded during acceptance testing on May 22, 2014, at NASA’s Stennis Space Center in Mississippi. An extensive analysis and recheck by Orbital Sciences was conducted to clear this pair for flight.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away from the launch complex.

Numerous photos and videos from myself (see herein) and many others clearly show a violent explosion emanating from the base of the two stage rocket. The remainder of the first stage and the entire upper stage was clearly intact at that point.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallops. These engines powered the successful Antares liftoff on Jan. 9, 2014, at NASA Wallops, Virginia, bound for the ISS. Credit: Ken Kremer – kenkremer.com

NASA announced that Orbital Sciences is leading the investigation into the rocket failure and quickly appointed an Accident Investigation Board (AIB) chaired by David Steffy, Chief Engineer of Orbital’s Advanced Programs Group.

The AIB is working under the oversight of the Federal Aviation Administration (FAA).

“Evidence suggests the failure initiated in the first stage after which the vehicle lost its propulsive capability and fell back to the ground impacting near, but not on, the launch pad,” Orbital said in a statement.

At the post launch disaster briefing at NASA Wallops, I asked Frank Culbertson, Orbital’s Executive Vice President and General Manager of its Advanced Programs Group, to provide any specifics of the sequence of events and failure, a timeline of events, and whether the engines failed.

“The ascent stopped, there was disassembly of the first stage, and then it fell to Earth. The way the accident investigation proceeds is we lock down all the data [after the accident]. Then we go through a very methodical process to recreate the data and evaluate it. We need time to look at what failed from both a video and telemetry standpoint,” Culbertson told Universe Today.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The rocket telemetry has now been released to the accident investigation board.

“Our engineers presented a very quick look assessment to the Accident Investigation Board at the end of the day. It appears the Antares vehicle had a nominal pre-launch and launch sequence with no issues noted,” Orbital said in a statement.

“All systems appeared to be performing nominally until approximately T+15 seconds at which point the failure occurred.”

Blastoff of the 14 story Antares rocket took place from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops situated on the eastern shore of Virginia.

After the failure occurred the rocket fell back to the ground near, but not on top of, the launch pad.

“Prior to impacting the ground, the rocket’s Flight Termination System was engaged by the designated official in the Wallops Range Control Center,” said Orbital.

Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com

Since the rocket impacted just north of the pad, that damage was not as bad as initially feared.

From a public viewing area about two miles away, I captured some side views of the pad complex and damage it sustained.

Check out the details of my assessment in my prior article and exclusive photos showing some clearly discernible damage to the Antares rocket launch pad – here.

Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences’ Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The doomed mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, and spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply ship bound for the International Space Station (ISS).

Among the top tasks of the AIB are “developing a ‘fault tree’ and a timeline of the important events during the launch sequence,” using the large volume of data available.

“We will analyze the telemetry. We have reams of data and telemetry that come down during launch and we will be analyzing that carefully to see if we can determine exactly the sequence of events, what went wrong, and then what we can do to fix it,” said Culbertson.

The accident team is also gathering and evaluating launch site debris.

“Over the weekend, Orbital’s Wallops-based Antares personnel continued to identify, catalogue, secure, and geolocate debris found at the launch site in order to preserve physical evidence and provide a record of the launch site following the mishap that will be useful for the AIB’s analysis and determination of what caused the Antares launch failure,” said Orbital.

Culberston expressed Orbital’s regret for the launch failure.

“We are disappointed we could not fulfill our obligation to the International Space Station program and deliver this load of cargo. And especially to the researchers who had science on board as well as to the people who had hardware and components on board for going to the station.”

“It’s a tough time to lose a launch vehicle and payload like this. Our team worked very hard to prepare it, with a lot of testing and analysis to get ready for this mission.”

Culbertson emphasized that Orbital will fix the problem and move forward.

“Something went wrong and we will find out what that is. We will determine the root cause and we will correct that. And we will come back and fly here at Wallops again. We will do all the things that are necessary to make sure it is as safe as we can make it, and that we solve the immediate problem of this particular mission.”

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Credit: Ken Kremer – kenkremer.com

Culbertson noted that the public should not touch any rocket debris found.

“The investigation will include evaluating the debris around the launch pad. The rocket had a lot of hazardous equipment and materials on board that people should not be looking for or wanting to collect souvenirs. If you find anything that washes ashore or landed you should call the local authorities and definitely not touch it.”

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

At this point the future is unclear.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NTSB Discovers Possible Pilot Error in SpaceShipTwo Investigation

NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)

In a press conference at the Mojave Air and Sport Port Sunday evening, acting NTSB Chairman Christopher Hart revealed preliminary findings in the investigation of the  Virgin Galactic SpaceShipTwo test flight accident. According to Hart, review of cockpit video during the flight showed that the co-pilot Michael Alsbury turned the tail feathering lock-unlock lever to the unlocked position too early. But Hart was quick to add that the NTSB has not concluded that this represents a cause and effect, and more analysis is necessary.

“I am not stating this was the cause of this mishap,” he said. “We have months and months of investigation to determine what the cause was.”

Feathering of the tail is an action taken during re-entry at high altitude in order to increase drag and accelerate the space vehicle’s descent. The apparently unscripted action by Alsbury was taken just seconds into the flight of SpaceShipTwo when the suborbital space vehicle had reached the speed of sound, Mach 1 in the denser atmosphere at roughly 50,000 feet. However, unlocking the feathering mechanism was not followed by the second step – moving of another lever which actually rotates the twin tail sections relative to the fuselage to increase the drag for the feathering, which is like a shuttlecock effect. Two seconds after Alsbury’s action and the feathering, SpaceShipTwo experienced a catastrophic breakup.

SpaceShipTwo is shown in the feathered configuration in an earlier unpowered test flight. While the test pilots tested the feathering in the lower, denser atmosphere, the vehicles was much slower and stresses on the vehicle remained well within safety margins. (Photo Credit: Virgin Galactic)
SpaceShipTwo is shown in the feathered configuration in an earlier unpowered test flight. While the test pilots tested the feathering in the lower, denser atmosphere, the vehicles was flying much slower and stresses on the vehicle remained within safety margins. (Photo Credit: Virgin Galactic)

Feathering of the twin tail section of SpaceShiptTwo requires the pilots to execute two steps. The co-pilot Alsbury executed the first step — unlocking. According to the NTSB investigators, the unlocking of the mechanism should not have been enough to cause the feathering during the ill-fated test flight. The lock-unlock mechanism represents a safety feature. The feathering should only occur after the pilot moves a second lever which is not unlike the lever in a conventional aircraft that lowers the landing flaps to increase lift, but as with feathering, at the expense of adding more drag.

Clearly this discovery by the NTSB is turning their focus away from the rocket engine which has posed so much difficulty for Scaled Composites project life cycle of SpaceShipTwo. The propulsion system has been primarily to blame for the delays which Virgin Group founder, Richard Branson has stated stands at five years; the project development now at the 10 year mark.

Discussions in the blogosphere involving aeronautic and propulsion experts and average citizens had quickly turned to criticism of the SpaceShipTwo rocket motor. However, review of the debris appeared to show the rocket motor intact. With this NTSB finding, there is likely to be a pause and change in the focus. However, if the NTSB investigation concludes that the feathering is the cause of the accident, this may not discharge the many concerns about safety of the SpaceShipTwo propulsion system design.

Virgin Galactic CEO Richard Branson responded harshly to the criticism of the propulsion system. “I’ve never seen such irresponsible innuendo and damaging innuendo,” he told Sky News television in the UK. “The fuel tanks and the engine were intact, showing there was no explosion, despite a lot of self-proclaimed experts saying that was the cause,” he said.

The SpaceShipTwo test flight accident occurred at 10:12 AM PDT on October 31st. One day later, NTSB agents had arrived in the Mojave desert to begin the investigation. During the first press conference, Hart stated that while the investigation is expected to last most of a year, he emphasized that the telemetry recorded during the flight was comprehensive and would be instrumental to uncovering a cause and effect.

The telemetry included several video recordings from the carrier aircraft WhiteKnightTwo, from ground video cameras, and also from inside the cockpit. It is a review of the latter that showed the releasing of the feathering safety lock mechanism by Alsbury. Co-pilot Alsbury died as a result of vehicle’s breakup while the pilot, Peter Siebold, escaped or was thrown from the vehicle and parachuted to the ground. Siebold is in serious condition but conscious and speaking to family and attending physicians.

Another point of comparison between the feathering of the SpaceShipTwo tail section with conventional aircraft flaps is that flaps are given a maximum speed at which they can be safely deployed. Deployment at beyond the maximum speed risks severe mechanical stress to the airframe. The feathering that occurred during the test flight at Mach 1 and at the low altitude of the early phase of powered flight by SpaceShipTwo would also have caused sudden and severe stress and potentially the breakup of the vehicle.

NTSB’s Christopher Hart stated that a follow-up press conference would be held on Monday, November 3rd, and will provide more details regarding the NTSB discovery. Hart, during the Sunday press conference, reiterated that despite this early discovery, the investigation is still expected to take a year to conclude. Universe Today will follow with an update after the completion of the Monday press conference.

Update: One Survivor, One Fatality in Virgin Galactic’s SpaceShipTwo Flight Accident

One of two tail sections (empennage) of SpaceShiipTwo lies on the Mojave desert moments after its breakup during test flight. (Credit: Mojave Rescue & Emergency Response Team)

Officials from Virgin Galactic and Scaled Composites have confirmed one of the pilots was killed and another was injured in a major anomaly during a test flight of SpaceShipTwo today (Friday, October 31). The names of the pilots have not yet been released. During a hastily-called press conference, officials said launch of the WhiteKnightTwo plane carrying SpaceShipTwo occurred at 9:20 am PDT this morning and at 10:10 am, SpaceShipTwo (SS2) was released for its test flight to the edge of the atmosphere and space. Two minutes into its flight, SpaceShipTwo encountered an anomaly. Officials had no immediate cause but the rocket motor is the first point of concern.

During the press conference, it was stated that the rocket motor called RocketMotorTwo (RM2) had itself been flown in four previous flights but this was the first flight of version 2 now using a nylon-type plastic called thermoplastic polyamide, replacing the rubber-based fuel used by SpaceShipOne; ultimately too problematic for the SS2 design. Participating in the press conference were executives Kevin Mickey, CEO of Scaled Composites, George Whitesides, CEO of Virgin Galactic and Stu Witt, chief executive of Mojave Air and Space Port. They emphasized that the nylon-based rocket fuel and engine had been thoroughly tested on the ground and they were confident of its readiness for in-flight testing.

WhiteKnightTwo and SpaceShipTwo in flight during test prior to release of the experimental space vehicle. (Photo Credit: Virgin Galactic)
WhiteKnightTwo and SpaceShipTwo in flight during test prior to release of the experimental space vehicle. (Photo Credit: Virgin Galactic)

Within seconds of release, SpaceShipTwo’s engine ignited for flight. Two minutes into the powered flight would have permitted considerable time for SpaceShipTwo to gain altitude and speed. The pilots were not wearing pressure suits, only masks providing supplemental oxygen. At 50,000 feet and more, conditions are equivalent to space, and fluids in the human body begin to boil – turn from liquid to gas. The velocity of the surrounding jetstream upon breakup or ejection would have caused loss of their masks and any oxygen possibly carried with them.

Scaled Composites did not state during the press conference at what altitude the accident occurred. Based on the time of the accident – 2 minutes into powered flight – the vehicle could have been anywhere from 40,000 feet (12 km) to as high as 200,000 feet (60 km). It is more likely that, for this first flight of the nylon-based propellant, the trajectory was left shallow or the full potential of the motor not tested.

SpaceShipTwo does not have ejection seats but is equipped with an escape hatch. The fuselage is fully pressurized for the pilots and planned paying customers. It is not yet determined if the test pilots escaped from the hatch or were thrown from the vehicle after its mid-air breakup.

It is standard practice for any test pilot in an experimental vehicle to be wearing a parachute. SpaceShipTwo would be no exception. Furthermore, being aware of the flight conditions and escaping from a vehicle at high altitude, the chutes very likely had automatic mechanisms to deploy, assuming unconsciousness.

The press conference did not provide further details. At noon time PST, it did not seem evident that the rescue teams knew the conditions of the crew. Rescue teams at the Mojave airport supporting Scaled Composites were prepared and were quickly dispatched. The debris field was located but some more time was required to find both test pilots.

“We do know one of the crew members was met by emergency responders, treated on the scene, and transported to Antelope Valley Hospital,” said Witt at the press conference. “We also know that we have one fatality.”

During the press conference, Scaled Composite and Virgin Galactic executives emphasized their grief and concern for the surviving pilot, the families and friends. The Mojave desert-based companies are a tight knit group and a loss is certainly extremely personal to every team member. The executives did also emphasize once again that “space is hard.” This was first stated by President Kennedy during his famous speech at Rice University. Those words were echoed earlier this week when Orbital Sciences Antares rocket exploded seconds into flight and the leaders of lost payloads were also quick to state the same. The Scaled Composites expressed during the press conference that they remain determined and committed and now in honor of a fallen test pilot and another fighting for his life.

A SpaceShipTwo solid rocket motor is tested on a stand in the Mojave desert. Recent delays led Scaled Composites to swtich from a rubber-based fuel to one chemically similar to nylon. (Photo Credit: Virgin Galactic)
A SpaceShipTwo solid rocket motor is tested on a stand in the Mojave desert. Recent delays led Scaled Composites to swtich from a rubber-based fuel to one chemically similar to nylon. (Photo Credit: Virgin Galactic)

Now a accident investigation begins. The FAA and NSTB will be involved. The investigation of this type of accident will takes months. For Scaled Composites who is effectively responsible and the owner of the flight systems will be analyzing their telemetry and are now forced to consider if the new rocket fuel is worthy of flight or whether they will turn to another solid fuel for SpaceShiptTwo. Sir Richard Branson, owner of the Virgin Group including Galactic has stated that they are five years behind schedule and most of this is attributed to engine development troubles. Company executives stated during the press conference that Branson is expected in Mojave within 24 hours.

Correction: November 1, 2014

In the original article of October 31, 2014, released immediately after the first press conference in the aftermath of the fatal test flight accident, it was stated that the rocket engine in the test flight was using thermoset plastic similar to nylon. The article is now corrected. The rocket fuel of version 2 of RocketMotorTwo is a thermoplastic polyamide which is similar to nylon.

BREAKING: Virgin Galactic’s SpaceShipTwo Suffers ‘In-flight Anomaly,’ Crashes in Test Flight

Feathered Flight during Virgin Galactic's SpaceShipTwo's third powered flight on January 10, 2014 over the Mojave desert. This image was taken by MARS Scientific as part of the Mobile Aerospace Reconnaissance System optical tracking system.

According to reports on Twitter, Virgin Galactic’s SpaceShipTwo exploded in midflight, and debris was seen scattered on ground in the Mojave Desert in California. Virgin tweeted that the rocket plane suffered an “in-flight anomaly” during a powered test flight on Friday. Other witnesses said it involved a fatal explosion and crashed.

“The ship broke apart and started coming down in pieces over the desert,” tweeted Doug Messier (@spacecom), managing editor of the Parabolic Arc website.

The Associated Press is now reporting that the California Highway Patrol reports 1 fatality, 1 major injury after the SpaceShipTwo accident.

Virgin Galactic provided this statement via Twitter:

Virgin Galactic’s partner Scaled Composites conducted a powered test flight of #SpaceShipTwo earlier today. During the test, the vehicle suffered a serious anomaly resulting in the loss of SpaceShipTwo. WK2 (WhiteKnightTwo) landed safely. Our first concern is the status of the pilots, which is unknown at this time. We will work closely with relevant authorities to determine the cause of this accident and provide updates ASAP.

Virgin Galactic initially sent the news via this tweet:

News helicopters are now on site, providing views of the crash site, such as the one in this tweet:

The ABC News affiliate in California reported the rescue crew was seen “carrying person on stretcher to chopper.”

Doug Messier, who was onsite at Mojave for the test flight, also said via Twitter that he saw one of the crash sites and a “body still in seat.” Also that “Debris from the ship was scattered all over the road.”

SpaceShipTwo holds two pilots; they are each equipped with parachutes, but not ejection seats. Reports indicated at least one deployed parachute was sighted.

Other witnesses reported that SpaceShipTwo exploded after ignition of the engines. According to Spaceflightnow.com, SpaceShipTwo was making its first powered flight since January and was testing a redesigned nylon-based solid rocket motor. This was the 55th flight of SpaceShipTwo and its 35th free flight.

You can read a detailed look at this new engine, how and why it was developed, etc. in an article posted just yesterday by Doug Messier on Parabolic Arc.

Update: The FAA has now issued this statement:

Just after 10 a.m. PDT today, ground controllers at the Mojave Spaceport lost contact with SpaceShipTwo, an experimental space flight vehicle. The incident occurred over the Mojave Desert shortly after the space flight vehicle separated from WhiteKnightTwo, the vehicle that carried it aloft. Two crew members were on board SpaceShipTwo at the time of the incident. WhiteKnightTwo remained airborne after the incident. The FAA is investigating.

The National Transportation Safety Board (NTSB) tweeted that they are going “to send Go-Team to investigate Virgin Galactic test flight crash in Mojave, Calif.”

Update: According to the Kern County Sheriff’s spokesman, the co-pilot was killed, but pilot ejected and suffered moderate to major injuries in Virgin Galactic crash. Virgin Galactic did not provide information prior to the flight of who would be on board today’s test flight.

We’ll provide more updates as they become available.

Launch Pad Damage Discernible in Aftermath of Catastrophic Antares Launch Failure – Exclusive Photos

Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Damage is visible to Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Story updated with link to Ken Kremer interview with NBC Nightly News[/caption]

NASA WALLOPS FLIGHT FACILITY, VA – Some damage is clearly discernible to the Antares rocket launch pad in the aftermath of the sudden catastrophic explosion that completely consumed the rocket and its NASA contracted cargo just seconds after its liftoff NASA’s Wallops Flight Facility, Va, at 6:22 p.m. EDT on Tuesday, October 28.

From a public viewing area about two miles away, I captured some side views of the pad complex and surroundings.

Check out my before and after views of the launch pad to compare the scenery

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

View of Orbital Sciences Antares  rocket standing at Launch Pad 0A three hours prior to catastrophic failure following liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Note all 4 lighting suppression rods intact. Credit: Ken Kremer – kenkremer.com
View of Orbital Sciences Antares rocket standing at Launch Pad 0A three hours prior to catastrophic failure following liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Note all 4 lighting suppression rods intact. Credit: Ken Kremer – kenkremer.com

The aborted blastoff of the 14 story Antares rocket ended in a raging inferno that set the sky on fire in raging inferno starting barely 10 seconds after what appeared to be a normal liftoff.

Looking at the photos, its immediately apparent that two of the pads four lightning suppression rods have been blown away. Indeed in the photos one can see them being hurled away in the swirling inferno.

Close-up view reveal some damage to Antares transporter erector launcher and scorch mark at water deluge tower at Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Close-up view reveal some damage to Antares transporter erector launcher and scorch mark at water deluge tower at Launch Pad 0A following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

There is also some noticeable damage to the transporter erector launcher used to move transport and raise the rocket to its vertical launch position.

The good news is that the launch ramp leading to the launch ramp leading to the launch mount is still intact. The giant water deluge tower is still standing.

The outer structure of the Horizontal Integration Facility (HIF) appears intact following the Antares launch failure on Oct. 28, 2014. Final assembly and processing of the Antares rocket and Cygnus module takes place inside the HIF.   Credit: Ken Kremer – kenkremer.com
The outer structure of the Horizontal Integration Facility (HIF) appears intact following the Antares launch failure on Oct. 28, 2014. Final assembly and processing of the Antares rocket and Cygnus module takes place inside the HIF. Credit: Ken Kremer – kenkremer.com

Likewise the processing facility where the Antares rocket undergoes final assembly and integration with the Cygnus cargo module appears to have escaped damage, at least on the two sides visible to me.

The outer structure of the Horizontal Integration Facility (HIF) appears intact with no significant harm following the launch failure. The HIF is located about 1 mile north of pad 0A.

The most severe damage was suffered by the nearby sounding rocket launcher with the entire side facing the pad blown away.

Sounding rocket launcher suffered severe damage as seen in this close-up view following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Sounding rocket launcher suffered severe damage as seen in this close-up view following catastrophic failure of Orbital Sciences Antares rocket moments after liftoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

A History of Launch Failures: “Not Because They are Easy, but Because They are Hard”

The Rice Speech words hold especially true when the NASA's goals seem challenged and suddenly not so close at hand. (Photo Credit: NASA)

Over the 50-plus years since President John F. Kennedy’s Rice University speech, spaceflight has proven to be hard. It doesn’t take much to wreck a good day to fly.

Befitting a Halloween story, rocket launches, orbital insertions, and landings are what make for sleepless nights. These make-or-break events of space missions can be things that go bump in the night: sometimes you get second chances and sometimes not. Here’s a look at some of the past mission failures that occurred at launch. Consider this a first installment in an ongoing series of articles – “Not Because They Are Easy.”

A still image from one of several videos of the ill-fated Antares launch of October 28, 2014, taken by engineers at the Mid-Atlantic Regional Spaceport, Wallops, VA. (Credit: NASA)
A still image from one of several videos of the ill-fated Antares launch of October 28, 2014, taken by engineers at the Mid-Atlantic Regional Spaceport, Wallops, VA. (Credit: NASA)

The evening of October 28, 2014, was another of those hard moments in the quest to explore and expand humanity’s presence in space. Ten years ago, Orbital Sciences Corporation sought an engine to fit performance requirements for a new launch vehicle. Their choice was a Soviet-era liquid fuel engine, one considered cost-effective, meeting requirements, and proving good margins for performance and safety. The failure of the Antares rocket this week could be due to a flaw in the AJ-26 or it could be from a myriad of other rocket parts. Was it decisions inside NASA that cancelled or delayed engine development programs and led OSC and Lockheed-Martin to choose “made in Russia” rather than America?

Here are other unmanned launch failures of the past 25 years:

Falcon 1, Flight 2, March 21, 2007. Fairings are hard. There are fairings that surround the upper stage engines and a fairing covering payloads.  Fairings must not only separate but also not cause collateral damage. The second flight of the Falcon 1 is an example of a 1st stage separation and fairing that swiped the second stage nozzle. Later, overcompensation by the control system traceable to the staging led to loss of attitude control; however, the launch achieved most of its goals and the mission was considered a success. (View: 3:35)

Proton M Launch, Baikonur Aerodrome, July 2, 2013. The Proton M is the Russian Space program’s workhorse for unmanned payloads. On this day, the Navigation, Guidance, and Control System failed moments after launch. Angular velocity sensors of the guidance control system were installed backwards. Fortunately, the Proton M veered away from its launch pad sparing it damage.

Ariane V Maiden Flight, June 4, 1996. The Ariane V was carrying an ambitious ESA mission called Cluster – a set of four satellites to fly in tetrahedral formation to study dynamic phenomena in the Earth’s magnetosphere. The ESA launch vehicle reused flight software from the successful Ariane IV. Due to differences in the flight path of the Ariane V, data processing led to a data overflow – a 64 floating point variable overflowing a 16 bit integer. The fault remained undetected and flight control reacted in error. The vehicle veered off-course, the structure was stressed and disintegrated 37 seconds into flight. Fallout from the explosion caused scientists and engineers to don protective gas masks. (View: 0:50)

Delta II, January 17, 1997. The Delta II is one of the most successful rockets in the history of space flight, but not on this day. Varied configurations change up the number of solid rocket motors strapped to the first stage. The US Air Force satellite GPS IIR-1 was to be lifted to Earth orbit, but a Castor 4A solid rocket booster failed seconds after launch. A hairline fracture in the rocket casing was the fault. Both unspent liquid and solid fuel rained down on the Cape, destroying launch equipment, buildings, and even parked automobiles. This is one of the most well documented launch failures in history.

Compilation of Early Launch Failures. Beginning with several of the early failures of Von Braun’s V2, this video compiles many failures over a 70 year period. The early US space program endured multiple launch failures as they worked at a breakneck speed to catch up with the Soviets after Sputnik. NASA did not yet exist. The Air Force and Army had competing designs, and it was the Army with the German rocket scientists, including Von Braun, that launched the Juno 1 rocket carrying Explorer 1 on January 31, 1958.

One must always realize that while spectacular to launch viewers, a rocket launch has involved years of development, lessons learned, and multiple revisions. The payloads carried involve many hundreds of thousands of work-hours. Launch vehicle and payloads become quite personal. NASA and ESA have offered grief counseling to their engineers after failures.

We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too.

Kennedy’s Rice University Speech, September 12, 1962

Antares Launch Calamity Unfolds – Dramatic Photo Sequence

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Story updated with link to Ken Kremer interview with NBC Nightly News[/caption]

NASA WALLOPS FLIGHT FACILITY, VA – The first night launch of Orbital Sciences’ commercial Antares rocket suddenly ended in total calamity some 10 seconds or so after liftoff when the base of the first stage exploded without warning over the launch pad at NASA’s Wallops Flight Facility, Va, at 6:22 p.m. EDT on Tuesday, October 28.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site.Check out my raw video of the launch – here. Read my first hand account- here.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away with a completely clear view to the launch complex.

A prime suspect in the disaster could be the pair Soviet-era built and US modified AJ26 engines that power the rocket’s first stage.

Another AJ26 engine failed and exploded during acceptance testing on May 22, 2014 at NASA’s Stennis Space Center in Mississippi. An extensive analysis and recheck by Orbital Scoences was conducted to clear this pair for flight.

See my exclusive photo of the AJ-26 engines below and a follow up story shortly.

Ignition of Orbital Sciences Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Ignition of Orbital Sciences’ Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

It was a picture perfect evening.

Blastoff of the 14 story Antares rocket took place from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops situated on the eastern shore of Virginia.

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back  after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The highly anticipated 1st night launch of Antares would have wowed tens of millions of spectators up and down the eastern seaboard from South Carolina to Maine. Overall it was the 5th Antares launch.

The doomed Orb-3 mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply flight dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The investigation into the launch failure will be led by Orbital Sciences.

“The root cause will be determined and corrective actions taken,” Frank Culbertson, Orbital’s Executive Vice President and General Manager of its Advanced Programs Group, said at a post launch briefing.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Releases Photos of Aftermath of Launchpad Explosion

An aerial view of the Wallops Island launch facilities taken by the Wallops Incident Response Team Oct. 29 following the failed launch attempt of Orbital Science Corp.'s Antares rocket Oct. 28. Credit: NASA/Terry Zaperach

NASA released images of the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia following the catastrophic failure of Orbital Science’s Antares rocket shortly after liftoff on Tuesday, Oct. 28. Visible is damage to the transporter erector launcher and lightning suppression rods, as well as debris around the pad. But given the spectacular secondary explosion when the rocket fell back to the pad, the damage – as viewed from the air – looks relatively minor.

Another aerial view of the Wallops Island launch facilities taken by the Wallops Incident Response Team Wednesday, Oct. 29, 2014 following the failed launch attempt of Orbital Science Corp.'s Antares rocket Oct. 28, Wallops Island, VA. Photo Credit: (NASA/Terry Zaperach)
Another aerial view of the Wallops Island launch facilities taken by the Wallops Incident Response Team Wednesday, Oct. 29, 2014, following the failed launch attempt of Orbital Science Corp.’s Antares rocket Oct. 28, Wallops Island, VA. Photo Credit: (NASA/Terry Zaperach)

NASA and Orbital have begun and initial assessment of the accident, but they said it will “take many more weeks to further understand and analyze the full extent of the effects of the event.”

NASA added that a number of support buildings in the immediate area have broken windows and imploded doors. What suffered the most damage were buildings nearest to pad 0A, where the launch took place, as well as a sounding rocket launcher adjacent to pad 0A.

“I want to praise the launch team, range safety, all of our emergency responders and those who provided mutual aid and support on a highly-professional response that ensured the safety of our most important resource — our people,” said Bill Wrobel, Wallops director. “In the coming days and weeks ahead, we’ll continue to assess the damage on the island and begin the process of moving forward to restore our space launch capabilities. There’s no doubt in my mind that we will rebound stronger than ever.”

NASA also said that environmental effects of the launch failure were largely contained within the southern third of Wallops Island, in the area immediately adjacent to the pad. Air sample were taken in the area and of nearby Chincoteague Island, and no hazardous substances were detected at the sampled locations.

You can see more imagery at NASA’s Flickr page.

Universe Today’s Ken Kremer was interviewed for NBC News, and you can view the feature below:

Source: NASA