SpaceX Commercial Rocket Poised for March 1 Blast Off to ISS

SpaceX Falcon 9 rocket before May 2012 blast off from Cape Canaveral Air Force Station, Florida on historic maiden private commercial launch to the ISS. Credit: Ken Kremer/www.kenkremer.com

Kennedy Space Center – All systems are GO and the weather outlook looks spectacular for the March 1 blast off of the privately developed SpaceX Falcon 9 rocket to the International Space Station (ISS).

The Falcon 9 is slated to lift off at 10:10 AM EST with a Dragon capsule loaded with fresh supplies and science gear to continued full up operation and utilization of the ISS.

Right now the weather forecast is at 80% GO on March 1 – with superbly beautiful, clear blue skies here in sunny and comfortably warm Florida from Space Launch Complex 40 at Cape Canaveral Air Force Station.

Large crowds of eager tourists, sightseers and space enthusiasts are already gathering in local hotels – most are sold out including at my hotel where I have been holding well attended ISS star parties during excellent evening viewing opportunities this week.

NASA TV will provide live launch coverage starting at 8 30 AM. SpaceX will also provide a separate feed starting about 40 minutes prior to launch.

The two stage Falcon 9 rocket was rolled out horizontally to the pad late this afternoon (Thursday, Feb. 28) in anticipation of a Friday morning launch. Myself and Dave Dickinson are on-site for Universe Today

The mission dubbed CRS-2 will be only the 2nd commercial resupply mission ever to the ISS.

There are no technical concerns at this time. Saturday March 2 is the back-up launch date in case of a last second scrub. Weather is projected as 80% favorable.

SpaceX President Gwynne Shotwell and NASA officials told me that additional launch opportunities are available Sunday, Monday and Tuesday, if needed, and later until about March 11. After that, the launch team would have to stand down to make way for the next eventual departure of a docked Soyuz and launch of a manned Russian Soyuz capsule with a new three man crew.

SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station.  Credit: Ken Kremer
SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. Credit: Ken Kremer

The SpaceX Dragon capsule is carrying about 1,200 pounds of vital supplies and research experiments for the six man international crew living aboard the million pound orbiting outpost.

SpaceX is under contract to NASA to deliver over 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.

The capsule is fully loaded Shotwell told me. An upgraded Falcon 9 will be used in the next launch that will allow for a significant increase in the cargo up mass, Shotwell elaborated.

The Dragon is due to dock with the ISS in record time some 20 hours after blast off.

Ken Kremer

Tito Wants to Send Married Couple on Mars Flyby Mission

An artist's concept of how the spacecraft for the Inspiration Mars Foundation's "Mission for America" might be configured. Credit: Inspiration Mars.

Millionaire and space tourist Dennis Tito announced his plans for funding a commercial mission to Mars, and the mission will send two professional crew members – one man and one woman who will likely be a married couple – flying as private citizens on a “fast, free-return” mission, passing within 100 miles of Mars before swinging back and safely returning to Earth. The spacecraft will likely be tinier than a small Winnebago recreational vehicle. Target launch date is Jan. 5, 2018.

That date was picked because of the unique window of opportunity when the planets align for a 501-day mission to Mars and back.

“If we don’t seize the moment we might miss the chance to become a multi-planet species,” said journalist Miles O’Brien, who introduced the Inspiration Mars team at a webcast announcing the mission, “and if we don’t do that, one day humanity might cease to exist.”

Tito said there are lots of reasons to not to do a mission like this, “but sometimes you just have to lift anchor shove off. We need to stop being timid… Our goal is to send two people but take everyone along for the ride.”

Tito has started a new nonprofit organization, the Inspiration Mars Foundation, “to pursue the audacious to provide a platform for unprecedented science, engineering and education opportunities, while reaching out to American youth to expand their visions of their own futures in space exploration,” said a statement released by the Foundation.

Tito said this will be an American mission, not international.

The mission will be built around “proven, existing space transportation systems and technologies derived from industry, NASA and the International Space Station that can be available in time to support the launch date.”

Inspiration Mars has signed a Space Act Agreement with NASA, specifically the Ames Research Center (Ames), to conduct thermal protection system and technology testing and evaluation, as well as tapping into NASA’s knowledge, experience and technologies.

“We went to NASA and said we don’t want money, but want to partner with you for certain technologies,” said said Taber MacCallum, chief technology officer for Inspiration Mars. MacCallum is also CEO/CTO of Paragon Space Development Corporation, and was a member of the Biosphere 2 Design, Development, Test & Operations team, and a crew member in the first two-year mission. “NASA had a tremendous can-do spirit about this, and we are thrilled to be working with them.”

Here’s look at the mechanics of the free return trajectory:

The profile of the mission means once it launches, there’s no way to abort.

Tito said the mission will engage “the best minds in industry, government and academia to develop and integrate the space flight systems and to design innovative research, education and outreach programs for the mission. This low-cost, collaborative, philanthropic approach to tackling this dynamic challenge will showcase U.S. innovation at its best and benefit all Americans in a variety of ways.”
Inspiration Mars will also offer educational programs to inspire children.

“It is important that it is a man and a woman going on this mission because they represent humanity,” said Jane Poynter, also with Paragon and Inspiration Mars, who is married to MacCallum, and together they were part of the Biosphere-2 project. “But more importantly, it represents our children, because whether they are a boy or a girl, they will see themselves in this mission. Inspiration is the name of this mission and its mission.”

She said it would “challenge our children to live audacious lives,” and Inspiration Mars is partnering with several organizations to create educational programs.

Poynter said it would be important for the two astronauts to be married, to provide a “backbone of support for the crew psychologically.

“Imagine, it’s a really long road trip and you’re jammed into an RV and you can’t get out,” Poynter said. “There’s no microgravity … all you have to eat for over 500 days are 3,000 lbs of dehydrated food that they rehydrate with the same water over and over that will be recycled,” adding that the two crew will need the proven ability to be with each other for the long term.

But that segue ways into how the mission will be funded. While Tito will fund the mission exclusively for the next two years, beyond that it will be funded primarily through private, charitable donations, as well as government partners that can provide expertise, access to infrastructure and other technical assistance.

But media rights will be a big part of funding, Tito said. “I envision Dr. Phil talking to the husband-wife crew about marital problems on way to Mars,” he said.

But this is not a money-making endeavor, Tito said. “I won’t make any money on this – I’ll be a lot poorer after this mission.”

Speaking of money, one thing the Inspiration Mars team didn’t do at the briefing today was talk about how much the mission was going to cost. They said that whatever number they might quote today would probably end up being wrong. But they did say it would be a fraction of what the Curiosity rover mission cost, which is $2.5 billion.

The mission system will consist of a modified capsule launched out of Earth orbit using a single propulsive maneuver to achieve the Mars trajectory. An inflatable habitat module will be deployed after launch and detached prior to re-entry. Closed-loop life support and operational components will be located inside the vehicle, designed for simplicity and “hands-on” maintenance and repair.

Tito said the time is right for this mission, not only because of the orbital window of opportunity. “Investments in human space exploration technologies and operations by NASA and the space industry are converging at the right time to make this mission achievable,” he said.

Foundation officials are in talks with several U.S. commercial aerospace companies about prospective launch and crew vehicles and systems.

Asked about how they can possibly get a launch vehicle ready by 2018, Tito said, “The vehicles are there and we have time to get it together. I’m more concerned about the life support, the radiation and the re-entry systems.”

“Mars presents a challenging, but attainable goal for advancing human space exploration and knowledge, and as a result, we are committed to undertaking this mission,” MacCallum said. “Experts have reviewed the risks, rewards and aggressive schedule, finding that existing technologies and systems only need to be properly integrated, tested and prepared for flight.”

Tito explained that the “beauty of this mission is its simplicity.” The flyby architecture lowers risk, with no critical propulsive maneuvers after leaving Earth vicinity, no entry into the Mars atmosphere, no rendezvous and docking, and represents the shortest duration roundtrip mission to Mars. The 2018 launch opportunity also coincides with the 11-year solar minimum providing the lowest solar radiation exposure.

Find out more about the mission at the Inspiration Mars website.
. Here is a link to a fact sheet about this mission.

Spotting the Dragon: How to See SpaceX on Approach to the ISS This Weekend

Capture of the Dragon during the October 2012 CRS-1 mission. (Credit: NASA/ISS).

SpaceX’s Dragon spacecraft may be appearing in a backyard sky near you this weekend. Scheduled to launch this Friday on March 1st at 10:10 AM Eastern Standard Time (EST)/15:10 Universal Time (UT), this will be the 3rd resupply flight for the Dragon spacecraft to the International Space Station (ISS).  And the great news is, you may just be able to catch the spacecraft as it chases down the ISS worldwide.

The Space Shuttle and the ISS captured by the author as seen from Northern Maine shortly after undocking in June, 2007. 

Catching a satellite in low Earth orbit is an unforgettable sight. Satellites appear as moving “stars” against the background sky, shining steadily (unless they’re tumbling!) in the sunlight overhead in the dawn or dusk sky. Occasionally, you may catch a flare in brightness as a reflective panel catches the sunlight just right. The Hubble Space Telescope and the Iridium constellation of satellites can flare in this fashion.

At 109 metres in size, the ISS is the largest object ever constructed in orbit and is easily visible to the naked eye. It has an angular diameter of about 50” when directly overhead (about the visual size of Saturn plus rings near opposition). I can just make out a tiny box-like structure with binoculars when it passes overhead. If the orientation of the station and its solar panels is just right, it looks like a tiny luminous Star Wars TIE fighter as viewed through binoculars!

Dragon in the processing hangar at Cape Canaveral. (Credit: NASA/Kim Shiflett).
Dragon in the processing hangar at Cape Canaveral. (Credit: NASA/Kim Shiflett).

But what’s even more amazing is to watch a spacecraft rendezvous with the ISS, as diligent observers may witness this weekend. Your best bet will be to use predictions for ISS passes from your location. Heavens-Above, CALSky and Space Weather all have simple trackers for sky watchers. More advanced observers may want to use an application known as Orbitron which allows you to manually load updated Two-Line Element sets (TLEs) from Celestrak or NORAD’s Space-Track website for use in the field sans Internet connection. Note that Space-Track requires permission to access; they welcome amateur sat-spotters and educators, but they also want to assure that no “rogue entities” are accessing the site! Continue reading “Spotting the Dragon: How to See SpaceX on Approach to the ISS This Weekend”

Canadarm Ready to Ensnare Space Dragon after March 1 Blast Off

Canadarm pictured through a winow aboard the ISS will be used to grapple the SpaceX Dragon after planned March 1 liftoff. Credit: NASA/Thomas Mashburn

Wouldn’t you love to wake up to this gorgeous view of our home planet as a big hand waves a friendly good morning ?!

Well, having survived high speed wayward Asteroids and Meteors these past few days, the human crew circling Earth aboard the International Space Station (ISS) is game to snatch a flying Space Dragon before too long.

NASA will dispatch astronaut fun to orbit in the form of the privately built SpaceX Dragon in a tad less than two weeks time that the crew will ensnare with that robotic hand from Canada and join to the ISS.

On March 1 at 10:10 AM EST, a Space Exploration Technologies (SpaceX) Falcon 9 rocket is slated to blast off topped by the Dragon cargo vehicle on what will be only the 2nd commercial resupply mission ever to the ISS.

The flight, dubbed CRS-2, will lift off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying about 1,200 pounds of vital supplies and science experiments for the six man international crew living aboard the million pound orbiting outpost.

SpaceX, Dragon spacecraft stands inside a processing hangar at Cape Canaveral Air Force Station in Florida. Teams had just installed the spacecraft's solar array fairings. Credit: NASA/Kim Shiflett
SpaceX Dragon spacecraft stands inside processing hangar at Cape Canaveral Air Force Station in Florida. Teams had just installed the spacecraft’s solar array fairings. Credit: NASA/Kim Shiflett

The ISS would plummet from the sky like a flaming, exploding meteor and disintegrate without periodic and critical cargo and fueling resupply flights from the ISS partner nations.

There will be some heightened anticipation for the March 1 SpaceX launch following the premature shutdown of a 1st stage Merlin engine during the last Falcon 9 launch in 2012.

The solar powered Dragon capsule will rendezvous with the ISS a day later on March 2, when NASA astronauts Kevin Ford and Tom Marshburn will reach out with the Canadian built robotic marvel, grab the Dragon by the proverbial “tail” and attach it to the Earth-facing port of the station’s Harmony module.

The Dragon will remain docked to the ISS for about three weeks while the crew unloads all manner of supplies including food, water, clothing, spare parts and gear and new science experiments.

Then the astronauts will replace all that cargo load with numerous critical experiment samples they have stored during ongoing research activities, as well as no longer needed equipment and trash totaling about 2300 pounds, for the return trip to Earth and a Pacific Ocean splashdown set for March 25 – as things stand now.

SpaceX Falcon 9 rocket before May 2012 blast off from Cape Canaveral Air Force Station, Florida on historic maiden private commercial launch to the ISS. Credit: Ken Kremer/www.kenkremer.com
SpaceX Falcon 9 rocket before May 2012 blast off from Cape Canaveral Air Force Station, Florida on historic maiden private commercial launch to the ISS. Credit: Ken Kremer/www.kenkremer.com

SpaceX is under contract to NASA to deliver about 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.

SpaceX comprises one half of NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.

SpaceX also won a NASA contract to develop a manned version of the Dragon capsule and aims for the first crewed test flight in about 2 to 3 years – sometime during 2015 depending on the funding available from NASA.

The US is now totally dependent on the Russians to loft American astronauts to the ISS on their Soyuz capsules for at least the next 3 to 5 years directly as a result of the shuttle shutdown.

Along with SpaceX, Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver some 44,000 pounds of cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule – launching 8 times from a newly constructed pad at NASA’s Wallops Island Facility in Virginia.

The maiden launch of Orbital’s Antares/Cygnus system has repeatedly been delayed – like SpaceX before them.

NASA hopes the first Antares/Cygnus demonstration test flight will now occur in March or April. However, the Antares 1st stage hot fire test scheduled for earlier this week on Feb. 13 had to be aborted at the last second due to a technical glitch caused by a low nitrogen purge pressurization.

For the SpaceX launch, NASA has invited 50 lucky social media users to apply for credentials for the March 1 launch

Watch for my upcoming SpaceX launch reports from the Kennedy Space Center and SpaceX launch facilities.

Ken Kremer

Workers lift a solar array fairing prior to installation on the company's Dragon spacecraft. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. Credit: NASA/Kim Shiflett
SpaceX technicians lift a solar array fairing prior to installation on the company’s Dragon spacecraft. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. Credit: NASA/Kim Shiflett

Lunar Exploration Company Offers the Public a Chance to Participate

Golden Spike: more human bootprints on the Moon, and you can help. Credit: Golden Spike.

Last December, when a private space exploration company named Golden Spike announced they are working to offer human expeditions to the Moon by 2020, they also said wanted to bring public along as an integral part of the company’s mission. Since their initial announcement, the Golden Spike team says they’ve been inundated with emails, letters and social media posts from people wanting to know how to take part, and how they could help speed the development of human lunar expeditions.

Today, The Golden Spike Company — which hopes to generate sustainable human lunar exploration with a series of commercial expeditions for nations, corporations, and individuals — began a 10-week Indiegogo crowdfunding campaign to enable a “participatory exploration program.” This isn’t funding the building of rockets and spaceships directly, but does allow the public to help the company accelerate their efforts.

“The funds will enable us to launch our participatory exploration program, which is more than just the perks people get for making a donation,” said Golden Spike President and CEO Dr. Alan Stern in an email to Universe Today. “It involves apps, membership, media productions, and more, and that effort is intended to become self-sustaining after we jump-start it with Indiegogo.”

Stern said funds from the Indiegogo campaign will also be used for other activities in Golden Spike.

“We’re building a program that is about connecting people to lunar exploration,” he said, “and when we had people keep telling us they want to help fund us to help get us to the Moon, we’re really excited about that. But while our major funding will, of course come from sales and investment, this gives people a sense of participation too.”

The company is looking to raise $240,000 – a dollar for every mile from the Earth to the Moon.

“The drive aims to raise awareness about Golden Spike, accelerate Golden Spike’s plans for innovative public participation in its activities, and give the global community of space enthusiasts and the general public a chance to help fuel Golden Spike’s human Lunar exploration mission,” says the Golden Spike team on their Indiegogo page.

“We hope that this campaign and all the projects it enables will generate a degree of participation in space exploration that has never existed before” said Gerry Griffin, former Apollo Flight Director and the Chairman of Golden Spike’s Board of Directors.

Those participating in the crowdfunding campaign will become Golden Spike ‘insiders,’ with an Olympics Movement-style membership program for children and adults. “We want to make it possible for people to follow Golden Spike’s development and space missions just like people follow Hollywood, NASCAR, and professional sports,” said Stern.

Some of the perks of donating include receiving reconnaissance images of potential landing sites, having the chance to vote on where missions should land on the Moon, and having your name and a short message left on the Moon. Big donors would receive trips to launches of missions to the Moon.

But to get the Moon yourself via Golden Spike, you’ll have to foot the $1.5 billion price tag for a two-person lunar mission.

The Golden Spike Company was started by a group of former NASA engineers and spaceflight experts, looks to provide services such as vehicles, mission planning, mission ops, and crew training to create a reliable and affordable lunar exploration system that will be U.S. based

Stern said they will not build new hardware but adapt crew capsules already in development and use existing infrastructure and launchers. However, they are looking to developing their own lunar spacesuits and lunar landers.

Their tentative plan is to use a series of launches where the first launch sends a lunar lander to orbit the Moon and a second launch brings the crew, which will then dock with the lander and head to the Moon.

Stern said their costs per flight are not much higher than some recent robotic lunar missions that have been flown and they will offset their costs with spaceship naming rights, media rights, and other enticements. They already have companies involved, such as United Launch Alliance, Armadillo Aerospace, Masten Space Systems, and have brought several investors on board.

Golden Spike’s website

The Indiegogo page for Golden Spike

A proposed Golden Spike lunar lander on the Moon. Credit: Golden Spike Company
A proposed Golden Spike lunar lander on the Moon. Credit: Golden Spike Company

Antares Rocket Critical Hotfire Engine Test Set for Feb. 12

Orbital Antares rocket at Wallops Island Pad. Credit: Orbital Sciences

Orbital Sciences Corporation has at last scheduled a critical engine test for the firm’s new commercially developed Antares medium class rocket for Feb. 12 at the Mid-Atlantic Regional Spaceport’s (MARS) Pad-0A.

NASA’s Wallops Flight Facility will provide launch range support for the Antares rocket test which is a key milestone on the path to a flight that is crucial for eventual resupply of the International Space Station (ISS).

The window for the 29 second long engine test is 6-9 p.m EST. There will be no live broadcast or formal viewing of the test since it is only operational in nature.

For this hot fire test only the first stage of the Antares rocket will be rolled out to the launch pad – the first of its kind constructed in America in several decades.

The first stage of the Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Orbital Sciences
The first stage of the Antares rocket stands on the pad at NASA’s Wallops Flight Facility. Credit: Orbital Sciences

During the test, the Antares’ dual AJ26 first stage rocket engines will generate a combined total thrust of 680,000 lbs. In a unique capability for its duration, the rocket will be held down on the pad and accounts for the huge water tower built nearby.

The goal of the hot fire test is a complete checkout of the rocket’s first stage and all the support systems at Pad-0A being utilized for the first time.

Antares is the launcher for Orbital’s unmanned commercial Cygnus cargo spacecraft that NASA’s hopes will further reestablish American resupply missions to the International Space Station (ISS) lost with the shuttle’s shutdown.

If successful, a full up test flight of the 131 foot tall Antares with a Cygnus mass simulator bolted on top is planned for the maiden launch in roughly 4 to 6 weeks later, perhaps by late March 2013.

Antares/Cygnus will provide a similar service to the Falcon 9/Dragon system developed by SpaceX Corporation – which has already docked twice to the ISS during historic linkups in 2012.

Both the Orbital and SpaceX systems were developed under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo capability previously tasked to NASA Space Shuttle’s.

A docking demonstration mission to the ISS would follow later in 2013 which would be nearly identical in scope to the SpaceX Falcon 9/Dragon demonstration flight successfully accomplished in May 2012.

SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station.  Orbital hopes to duplicate the SpaceX feat in 2013.  Credit: Ken Kremer
SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. Orbital hopes to duplicate the SpaceX feat in 2013. Credit: Ken Kremer

The Antares first stage is powered by a pair of Soviet era NK-33 engines built during the 1960 and 1970’s as part of Russia’s ill-fated N-1 manned moon program. The engines have since been upgraded and requalified by Aerojet Corp. and integrated into the Ukrainian built first stage rocket as AJ-26 engines.

Tens of millions of US East Coast residents in the Mid-Atlantic and Northeast regions have never seen anything as powerful as an Antares rocket launch in their neighborhood.

“Antares is the biggest rocket ever launched from Wallops,” NASA Wallops spokesman Keith Koehler told me.

Ken Kremer

NASA: Reaches for New Heights – Greatest Hits Video

Video Caption: At NASA, we’ve been a little busy: landing on Mars, developing new human spacecraft, going to the space station, working with commercial partners, observing the Earth and the Sun, exploring our solar system and understanding our universe. And that’s not even everything.Credit: NASA

Check out this cool action packed video titled “NASA: Reaching for New Heights” – to see NASA’s ‘Greatest Hits’ from the past year

The 4 minute film is a compilation of NASA’s gamut of Robotic Science and Human Spaceflight achievements to explore and understand Planet Earth here at home and the heavens above- ranging from our Solar System and beyond to the Galaxy and the vast expanse of the Universe.

Image caption: Planets and Moons in perspective. Credit: NASA

The missions and programs featured include inspiringly beautiful imagery from : Curiosity, Landsat, Aquarius, GRACE, NuSTAR, GRAIL, Dawn at Asteroid Vesta, SDO, X-48C Amelia, Orion, SLS, Apollo, SpaceX, Sierra Nevada Dream Chaser, Boeing CST-100, Commercial Crew, Hurricane Sandy from the ISS, Robonaut and more !

And even more space exploration thrills are coming in 2013 !

Ken Kremer

IMG_3760a_SpaceX launch 22 May 2012

Image caption: SpaceX Falcon 9 rocket blasts off on May 22, 2012 with Dragon cargo capsule from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. The next launch is set for March 1, 2013. Credit: Ken Kremer

NASA to BEAM Up Inflatable Space Station Module

NASA Deputy Administrator Lori Garver and President and founder of Bigelow Aerospace Robert Bigelow talk while standing next to the Bigelow Expandable Activity Module (BEAM) during a media briefing on , Jan. 16, 2013. BEAM is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. Photo Credit: (NASA/Bill Ingalls)

More details have emerged on NASA’s plan to add the first commercial module to the International Space Station, an inflatable room built by Bigelow Aerospace. The Bigelow Expandable Activity Module (BEAM), which is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. It will be delivered by another commercial company, SpaceX, on what is planned to be the eighth cargo resupply mission too the ISS for Dragon and the Falcon 9 rocket. Astronauts will use the station’s robotic arm to install the module on the aft port of the Tranquility node. NASA Deputy Administrator Lori Garver announced Wednesday NASA has awarded a $17.8 million contract to Bigelow Aerospace for BEAM.

“Today we’re demonstrating progress on a technology that will advance important long-duration human spaceflight goals,” Garver said. “NASA’s partnership with Bigelow opens a new chapter in our continuing work to bring the innovation of industry to space, heralding cutting-edge technology that can allow humans to thrive in space safely and affordably.”

BEAM is a cylindrical module, like all other ISS modules, and is about somewhat similar in size to the US Harmony module, as BEAM is about 4 meters (13 feet) long and 3.2 meters (10.5 feet) wide; Harmony 7.2 meters (24 ft) in length, and it has a diameter of 4.4 meters (14 ft). But weight is where the two vastly differ: Harmony weighs in 14,288 kilograms (31,500 lb), while BEAM weighs roughly 1,360 kg (3,000 pounds). And that is the big advantage of inflatable structures for use in space: their mass and volume are relatively small when launched, reducing launch costs.

The Bigelow Expandable Activity Module (BEAM) is seen during a media briefing on January 16, 2013. Credit: NASA/Bill Ingalls
The Bigelow Expandable Activity Module (BEAM) is seen during a media briefing on January 16, 2013. Credit: NASA/Bill Ingalls

Leonard David reports on Space.com that the BEAM module should be much quieter than the other modules due to the non-metallic nature of the structure.

Read: Sounds of the Space Station

After the module is berthed to the Tranquility node, the station crew will activate a pressurization system to expand the structure to its full size using air stored within the packed module.

During the two-year test period, station crew members and ground-based engineers will gather performance data on the module, including its structural integrity and leak rate. An assortment of instruments embedded within module also will provide important insights on its response to the space environment. This includes radiation and temperature changes compared with traditional aluminum modules.

BEAM will also be assessed for future habitats for long-duration space missions, said Bill Gerstenmaier, associate administrator for human exploration and operations at NASA.

Watch how the BEAM module will be attached and inflated:

Astronauts periodically will enter the module to gather performance data and perform inspections. Following the test period, the module will be jettisoned from the station, and will burn up on re-entry.

Bigelow Aerospace says the BEAM 330 module can function as an independent space station, or several of the inflatable habitats can be connected together in a modular fashion to create an even larger and more capable orbital space complex.

Bigelow also lists their radiation shielding as equivalent to or better than the other modules on the International Space Station and substantially reduces the dangerous impact of secondary radiation, while their innovative Micrometeorite and Orbital Debris Shield “provides protection superior to that of the traditional ‘aluminum can’ designs, according to the Bigelow Aerospace website.

The BEAM module docked at the International Space Station. Credit: NASA.
The BEAM module docked at the International Space Station. Credit: NASA.

Find out how Bigelow Aerospace's BEAM expandable module will enhance the living area of the International Space Station, in this SPACE.com infographic.
Source SPACE.com.

Private Test Pilots to Fly 1st Commercial Crewed Space Flights for NASA

Dream Chaser from Sierra Nevada docks at ISS

[/caption]

Image Caption: Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Commercial test pilots, not NASA astronauts, will fly the first crewed missions that NASA hopes will at last restore America’s capability to blast humans to Earth orbit from American soil – perhaps as early as 2015 – which was totally lost following the forced shuttle shutdown.

At a news briefing this week, NASA managers at the Kennedy Space Center (KSC) said the agency is implementing a new way of doing business in human spaceflight and purposely wants private companies to assume the flight risk first with their crews before exposing NASA crews as a revolutionary new flight requirement. Both NASA and the companies strongly emphasized that there will be no shortcuts to flying safe.

A trio of American aerospace firms – Boeing, SpaceX and Sierra Nevada Corp – are leading the charge to develop and launch the new commercially built human-rated spacecraft that will launch Americans to LEO atop American rockets from American bases.

The goal is to ensure the nation has safe, reliable and affordable crew transportation systems for low-Earth orbit (LEO) and International Space Station (ISS) missions around the middle of this decade.

The test launch schedule hinges completely on scarce Federal dollars from NASA for which there is no guarantee in the current tough fiscal environment.

The three companies are working with NASA in a public-private partnership using a combination of NASA seed money and company funds. Each company was awarded contracts under NASA’s Commercial Crew Integrated Capability Initiative, or CCiCap, program, the third in a series of contracts aimed at kick starting the development of the so-called private sector ‘space taxis’ to fly astronauts to and from the ISS.

MTF10-0014-01

Caption: Boeing CST-100 crew vehicle docks at the ISS

The combined value of NASA’s Phase 1 CCiCap contracts is about $1.1 Billion and runs through March 2014 said Ed Mango, NASA’s Commercial Crew Program manager. Phase 2 contract awards will follow and eventually lead to the actual flight units after a down selection to one or more of the companies, depending on NASA’s approved budget.

Since the premature retirement of NASA’s shuttle fleet in 2011, US astronauts have been 100% reliant on the Russians to hitch a ride to the ISS – at a price tag of over $60 Million per seat. This is taking place while American aerospace workers sit on the unemployment line and American expertise and billions of dollars of hi-tech space hardware rots away or sits idly by with each passing day.

Boeing, SpaceX and Sierra Nevada Corp seek to go where no private company has gone before – to low Earth orbit with their private sector manned spacecraft. And representatives from all three told reporters they are all eager to move forward.

All three commercial vehicles – the Boeing CST-100; SpaceX Dragon and Sierra Nevada Dream Chaser – are designed to carry a crew of up to 7 astronauts and remain docked at the ISS for more than 6 months.

“For well over a year now, since Atlantis [flew the last space shuttle mission], the United States of America no longer has the capability to launch people into space. And that’s something that we are not happy about,” said Garrett Reisman, a former space shuttle astronaut who is now the SpaceX Commercial Crew project manager leading their development effort. “We’re very proud to be part of the group that’s going to do something about that and get Americans back into space.”

IMG_3754a_SpaceX launch May 22 2012_Ken Kremer

Caption: Blastoff of SpaceX Cargo Dragon atop Falcon 9 from Cape Canaveral, Florida on May, 22, 2012, bound for the ISS. Credit: Ken Kremer

“We are the emotional successors to the shuttle,” said Mark Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman. “Our target was to repatriate that industry back to the United States, and that’s what we’re doing.”

Sierra Nevada is developing the winged Dream Chaser, a mini-shuttle that launches atop an Atlas V rocket and lands on a runway like the shuttle. Boeing and SpaceX are building capsules that will launch atop Atlas V and Falcon 9 rockets, respectively, and then land by parachute like the Russian Soyuz capsule.

SpaceX appears to be leading the pack using a man-rated version of their Dragon capsule which has already docked twice to the ISS on critical cargo delivery missions during 2012. From the start, the SpaceX Dragon was built to meet the specification ratings requirements for a human crew.

DragonApproachesStation_640

Caption: Dragon spacecraft approaches the International Space Station on May 25, 2012 for grapple and berthing . Photo: NASA

Reisman said the first manned Dragon test flight with SpaceX test pilots could be launched in mid 2015. A flight to the ISS could take place by late 2015. Leading up to that in April 2014, SpaceX is planning to carry out an unmanned in-flight abort test to simulate and test a worst case scenario “at the worst possible moment.”

Boeing is aiming for an initial three day orbital test flight of their CST-100 capsule during 2016, said John Mulholland, the Boeing Commercial Programs Space Exploration vice president and program manager. Mulholland added that Chris Ferguson, the commander of the final shuttle flight by Atlantis, is leading the flight test effort.

Boeing has leased one of NASA’s Orbiter Processing Facility hangers (OPF-3) at KSC. Mulholland told me that Boeing will ‘cut metal’ soon. “Our first piece of flight design hardware will be delivered to KSC and OPF-3 within 5 months.”

IMG_9198a_Boeing CST_Ken Kremer

Caption: Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer

Sierra Nevada plans to start atmospheric drop tests of an engineering test article of the Dream Chaser from a carrier aircraft in the next few months in an autonomous mode. The test article is a full sized vehicle.

“It’s not outfitted for orbital flight; it is outfitted for atmospheric flight tests,” Sirangelo told me. “The best analogy is it’s very similar to what NASA did in the shuttle program with the Enterprise, creating a vehicle that would allow it to do significant flights whose design then would filter into the final vehicle for orbital flight.”

Now to the issue of using commercial space test pilots in place of NASA astronauts on the initial test flights.

At the briefing, Reisman stated, “We were told that because this would be part of the development and prior to final certification that we were not allowed, legally, to use NASA astronauts to be part of that test pilot crew.”

So I asked NASA’s Ed Mango, “Why are NASA astronauts not allowed on the initial commercial test flights?”

Mango replied that NASA wants to implement the model adopted by the military wherein the commercial company assumes the initial risk before handing the airplanes to the government.

“We would like them to get to a point where they’re ready to put their crew on their vehicle at their risk,” said Mango. “And so it changes the dynamic a little bit. Normally under a contract, the contractor comes forward and says he’s ready to go fly but it’s a NASA individual that’s going to sit on the rocket, so it becomes a NASA risk.

“What we did is we flipped it around under iCAP. It’s not what we’re going to do long term under phase two, but we flipped it around under iCAP and said we want to know when you’re ready to fly your crew and put your people at risk. And that then becomes something that we’re able to evaluate.”

“In the end all our partners want to fly safe. They’re not going to take any shortcuts on flying safe,” he elaborated. “All of us have the same initiative and it doesn’t matter who’s sitting on top of the vehicle. It’s a person, and that person needs to fly safely and get back home to their families. That’s the mission of all our folks and our partners – to go back home and see their family.”

Given the nations fiscal difficulties and lack of bipartisan cooperation there is no guarantee that NASA will receive the budget it needs to keep the commercial crew program on track.

Indeed, the Obama Administrations budget request for commercial crew has been repeatedly slashed by the US Congress to only half the request in the past two years. These huge funding cuts have already forced a multi-year delay in the inaugural test flights and increased the time span that the US has no choice but to pay Russia to launch US astronauts to the ISS.

“The budget is going to be an extremely challenging topic, not only for this program but for all NASA programs,” said Phil McAlister, NASA Commercial Spaceflight Development director.

NASA is pursuing a dual track approach in reviving NASA’s human spaceflight program. The much larger Orion crew capsule is simultaneously being developed to launch atop the new SLS super rocket and carry astronauts back to the Moon by 2021 and then farther into deep space to Asteroids and one day hopefully Mars.

Ken Kremer

Dream_Chaser_Atlas_V_Integrated_Launch_Configuration[1]

Caption: Dream Chaser awaits launch atop Atlas V rocket

Bigelow Inflatable Module Will be Added to Space Station

NASA Deputy Administrator Lori Garver is given a tour of the Bigelow Aerospace facilities in 2011 by the company’s President Robert Bigelow. Photo: NASA/Bill Ingalls

The next addition to the International Space Station will likely be an inflatable module from Bigelow Aerospace. NASA announced today they have awarded a $17.8 million contract to Bigelow to provide a new module for the ISS. “The Bigelow Expandable Activity Module will demonstrate the benefits of this space habitat technology for future exploration and commercial space endeavors,” NASA said in a press release. This would be the first privately built module to be added to the space station.

“The International Space Station is a unique laboratory that enables important discoveries that benefit humanity and vastly increase understanding of how humans can live and work in space for long periods,” NASA Deputy Administrator Lori Garver said. “This partnership agreement for the use of expandable habitats represents a step forward in cutting-edge technology that can allow humans to thrive in space safely and affordably, and heralds important progress in U.S. commercial space innovation.”

NASA will release more information about the agreement and the module next week, but previous reports have indicated the inflatable module would be used for adding additional storage and workspace, and the module would be certified to remain on-orbit for two years.
NASA has been in discussions with Bigelow for several years about using their inflatable technology.

In 2006 Bigelow launched their Genesis I inflatable test module into orbit and according to their website, it is still functioning and “continuing to produce invaluable images, videos and data for Bigelow Aerospace. It is now demonstrating the long-term viability of expandable habitat technology in an actual orbital environment.”

A second Genesis module was launched in 2007 and it, too, is still functioning in orbit.
Bigelow has said that even though the outer shell of their module is soft, as opposed to the rigid outer shell of current modules at the ISS, Bigelow’s inflatable modules are more resistant to micrometeoroid or orbital debris strikes. Bigelow uses multiple layers of Vectran, a material which is twice as strong as Kevlar. In ground tests, according to NASASpacefight.com, objects that would penetrate ISS modules only penetrated half-way through the skin of Bigelow’s modules.