Astronomers Take “Baby Picture” of an Incredibly Distant Galaxy

False-color image of galaxy LAEJ095950.99+021219.1 (Credit: James Rhoads/ASU)

[/caption]

Astronomers from Arizona State University have grabbed an image of a dim, distant galaxy, seeing it as it looked only 800 million years after the birth of the Universe. Visible above as a green blob in the center of a false-color image acquired with the Magellan Telescopes at the Las Campanas Observatory in Chile, the galaxy is seen in its infancy and, at 13 billion light-years away, is one of the ten most distant objects ever discovered.

The galaxy, designated LAEJ095950.99+021219.1, was detected by light emitted by ionized hydrogen using the Magellan Telescopes’ IMACS (Inamori-Magellan Areal Camera & Spectrograph) instrument, built at the Carnegie Institute in Washington. In order to even find such a remote object — whose existence had already been suspected — the team had to use a special narrow-band filter on the IMACS instrument designed to isolate specific wavelengths of light.

“Young galaxies must be observed at infrared wavelengths and this is not easy to do using ground-based telescopes, since the Earth’s atmosphere itself glows and large detectors are hard to make,” said team leader Sangeeta Malhotra, an associate professor at ASU who helped develop the technique.

“As time goes by, these small blobs which are forming stars, they’ll dance around each other, merge with each other and form bigger and bigger galaxies. Somewhere halfway through the age of the universe they start looking like the galaxies we see today – and not before.”

– Sangeeta Malhotra, ASU professor 

LAEJ095950.99+021219.1 is seen at a redshift of 7, putting it farther away than any other objects previously discovered using the narrow-band technique.

(What is redshift? Watch “How To Measure The Universe” here.)

“We have used this search to find hundreds of objects at somewhat smaller distances. We have found several hundred galaxies at redshift 4.5, several at redshift 6.5, and now at redshift 7 we have found one,” said James Rhoads, associate professor at ASU and research team leader.

“This image is like a baby picture of this galaxy, taken when the universe was only 5 percent of its current age. Studying these very early galaxies is important because it helps us understand how galaxies form and grow.”

So why does LAEJ095950.99+021219.1 not look much like the galaxies we’re used to seeing in images?

Malhotra explains: “Somewhere halfway through the age of the universe they start looking like the galaxies we see today – and not before. Why, how, when, where that happens is a fairly active area of research.”

The team’s NSF-funded research was published in Astrophysical Journal Letters. Read more on Phys.Org News here.

A Tribute to Hubble… and Humanity

Here’s a excellent video compilation featuring images from the Hubble Space Telescope, along with music by Kanye West and quotes from astronomers Neil deGrasse Tyson, Lawrence Krauss and Carl Sagan reflecting on our place in the Universe… and the Universe’s place within each of us.

Uploaded to YouTube by video editor Brandon Fibbs, this is a reminder of how Hubble has opened our eyes to the wonders of the cosmos. Enjoy.

“The cosmos is also within us. We’re made of star stuff… we are a way for the cosmos to know itself.”
– Carl Sagan

How To Measure the Universe

The Royal Observatory Greenwich is giving free presentations of "Measuring the Universe: from the Transit of Venus to the Edge of the Cosmos" from now until September 1.


Measuring distance doesn’t sound like a very challenging thing to do — just pick your standard unit of choice and corresponding tool calibrated to it, and see how the numbers add up. Use a meter stick, a tape measure, or perhaps take a drive, and you can get a fairly accurate answer. But in astronomy, where the distances are vast and there’s no way to take measurements in person, how do scientists know how far this is from that and what’s going where?

Luckily there are ways to figure such things out, and the methods that astronomers use are surprisingly familiar to things we experience every day.

[/caption]The video above is shared by the Royal Observatory Greenwich and shows how geometry, physics and things called “standard candles” (brilliant!) allow scientists to measure distances on cosmic scales.

Just in time for the upcoming transit of Venus, an event which also allows for some important measurements to be made of distances in our solar system, the video is part of a series of free presentations the Observatory is currently giving regarding our place in the Universe and how astronomers over the centuries have measured how oh-so-far it really is from here to there.

Video credits:
Design and direction: Richard Hogg
Animation: Robert Milne, Ross Philips, Kwok Fung Lam
Music and sound effects: George Demure
Narration and Astro-smarts: Dr. Olivia Johnson
Producer: Henry Holland

Dark Matter Makes a Comeback

The Milky Way an moonrise over ESO's Paranal observatory (ESO/H.H. Heyer)

[/caption]

Recent reports of dark matter’s demise may be greatly exaggerated, according to a new paper from researchers at the Institute for Advanced Study.

Astronomers with the European Southern Observatory announced in April a surprising lack of dark matter in the galaxy within the vicinity of our solar system.

The ESO team, led by Christian Moni Bidin of the Universidad de Concepción in Chile, mapped over 400 stars near our Sun, spanning a region approximately 13,000 light-years in radius. Their report identified a quantity of material that matched what could be directly observed: stars, gas, and dust… but no dark matter.

“Our calculations show that it should have shown up very clearly in our measurements,” Bidin had stated, “but it was just not there!”

But other scientists were not so sure about some assumptions the ESO team had based their calculations upon.

Researchers Jo Bovy and Scott Tremaine from the Institute for Advanced Study in Princeton, NJ, have submitted a paper claiming that the results reported by Moni Biden et al are “incorrect”, and based on an “invalid assumption” of the motions of stars within — and above — the plane of the galaxy.

(Read: Astronomers Witness a Web of Dark Matter)

“The main error is that they assume that the mean azimuthal (or rotational) velocity of their tracer population is independent of Galactocentric cylindrical radius at all heights,” Bovy and Tremaine state in their paper. “This assumption is not supported by the data, which instead imply only that the circular speed is independent of radius in the mid-plane.”

The researchers point out the stars within the local neighborhood move slower than the average velocity assumed by the ESO team, in a behavior called asymmetric drift. This lag varies with a cluster’s position within the galaxy, but, according to Bovy and Tremaine, “this variation cannot be measured for the sample [used by Moni Biden’s team] as the data do not span a large enough range.”

When the IAS researchers took Moni Biden’s observations but replaced the ESO team’s “invalid” assumptions on star movement within and above the galactic plane with their own “data-driven” ones, the dark matter reappeared.

Artist's impression of dark matter surrounding the Milky Way. (ESO/L. Calçada)

“Our analysis shows that the locally measured density of dark matter is consistent with that extrapolated from halo models constrained at Galactocentric distances,” Bovy and Tremaine report.

As such, the dark matter that was thought to be there, is there. (According to the math, that is.)

And, the two researchers add, it’s not only there but it’s there in denser amounts than average — at least in the area around our Sun.

“The halo density at the Sun, which is the relevant quantity for direct dark matter detection experiments, is likely to be larger because of gravitational focusing by the disk,” Bovy and Tremaine note.

When they factored in their data-driven calculations on stellar velocities and the movement of the halo of non-baryonic material that is thought to envelop the Milky Way, they found that “the dark matter density in the mid-plane is enhanced… by about 20%.”

So rather than a “serious blow” to the existence of dark matter, the findings by Bovy and Tremaine — as well as Moni Biden and his team — may have not only found dark matter, but given us 20% more!

Now that’s a good value.

Read the IAS team’s full paper here.

(Tip of the non-baryonic hat to Christopher Savage, post-doctorate researcher at the Oskar Klein Centre for Cosmoparticle Physics at Stockholm University for the heads up on the paper.)

We Are In This Universe; The Universe Is In Us

The latest installment of the excellent Symphony of Science series is out, and like every one of them it’s a fun, inspirational and educational trip through the cosmos with voiceovers by leading astronomers and physicists. These are great, and if you haven’t seen the others be sure to check them out on creator John Boswell’s YouTube channel here.

Read more on the Symphony of Science website.

“We are part of this universe
We are in this universe
The universe is in us
Yes, the universe is in us”

– Neil deGrasse Tyson

Intelligent Alien Dinosaurs?

I for one welcome our alien dinosaur overlords…maybe.

Dinosaurs once roamed and ruled the Earth. Is it possible that similar humongous creatures may have evolved on another planet – a world that DIDN’T get smacked by an asteroid – and later they developed to have human-like, intelligent brains? A recent paper discussing why the biochemical signature of life on Earth is so consistent in orientation somehow segued into the possibility that advanced versions of T. Rex and other dinosaurs may be the life forms that live on other worlds. The conclusion? “We would be better off not meeting them,” said scientist Ronald Breslow, author of the paper.

The building blocks of terrestrial amino acids, sugars, and the genetic materials DNA and RNA have two possible orientations, left or right, which mirror each other in what is called chirality. On Earth, with the exception of a few bacteria, amino acids have the left-handed orientation. Most sugars have a right-handed orientation. How did that homochirality happen?

If meteorites carried specific types of amino acids to Earth about 4 billion years, that could have set the pattern the left-handed chirality in terrestial proteins.

“Of course,” Breslow said in a press release, “showing that it could have happened this way is not the same as showing that it did. An implication from this work is that elsewhere in the universe there could be life forms based on D-amino acids and L-sugars. Such life forms could well be advanced versions of dinosaurs, if mammals did not have the good fortune to have the dinosaurs wiped out by an asteroidal collision, as on Earth.”

But not everyone was impressed with the notion of dinosaurs from space. “None of this has anything to do with dinosaurs,” wrote science author Brian Switek in the Smithsonian blog Dinosaur Tracking. “As much as I’m charmed by the idea of alien dinosaurs, Breslow’s conjecture makes my brain ache. Our planet’s fossil record has intricately detailed the fact that evolution is not a linear march of progress from one predestined waypoint to another. Dinosaurs were never destined to be. The history of life on earth has been greatly influenced by chance and contingency, and dinosaurs are a perfect example of this fact.”

For further reading:
American Chemical Society paper
ACS press release
Dinosaur Tracking blog

Polar Telescope Casts New Light On Dark Energy And Neutrino Mass

The 10-meter South Pole Telescope in Antarctica at the Amundsen-Scott Station. (Daniel Luong-Van, National Science Foundation)

[/caption]

Located at the southermost point on Earth, the 280-ton, 10-meter-wide South Pole Telescope has helped astronomers unravel the nature of dark energy and zero in on the actual mass of neutrinos — elusive subatomic particles that pervade the Universe and, until very recently, were thought to be entirely without measureable mass.

The NSF-funded South Pole Telescope (SPT) is specifically designed to study the secrets of dark energy, the force that purportedly drives the incessant (and apparently still accelerating) expansion of the Universe. Its millimeter-wave observation abilities allow scientists to study the Cosmic Microwave Background (CMB) which pervades the night sky with the 14-billion-year-old echo of the Big Bang.

Overlaid upon the imprint of the CMB are the silhouettes of distant galaxy clusters — some of the most massive structures to form within the Universe. By locating these clusters and mapping their movements with the SPT, researchers can see how dark energy — and neutrinos — interact with them.

“Neutrinos are amongst the most abundant particles in the universe,” said Bradford Benson, an experimental cosmologist at the University of Chicago’s Kavli Institute for Cosmological Physics. “About one trillion neutrinos pass through us each second, though you would hardly notice them because they rarely interact with ‘normal’ matter.”

If neutrinos were particularly massive, they would have an effect on the large-scale galaxy clusters observed with the SPT. If they had no mass, there would be no effect.

The SPT collaboration team’s results, however, fall somewhere in between.

Even though only 100 of the 500 clusters identified so far have been surveyed, the team has been able to place a reasonably reliable preliminary upper limit on the mass of neutrinos — again, particles that had once been assumed to have no mass.

Previous tests have also assigned a lower limit to the mass of neutrinos, thus narrowing the anticipated mass of the subatomic particles to between 0.05 – 0.28 eV (electron volts). Once the SPT survey is completed, the team expects to have an even more confident result of the particles’ masses.

“With the full SPT data set we will be able to place extremely tight constraints on dark energy and possibly determine the mass of the neutrinos,” said Benson.

“We should be very close to the level of accuracy needed to detect the neutrino masses,” he noted later in an email to Universe Today.

The South Pole Telescope's unique position allows it to watch the night sky for months on end. (NSF)

Such precise measurements would not have been possible without the South Pole Telescope, which has the ability due to its unique location to observe a dark sky for very long periods of time. Antarctica also offers SPT a stable atmosphere, as well as very low levels of water vapor that might otherwise absorb faint millimeter-wavelength signals.

“The South Pole Telescope has proven to be a crown jewel of astrophysical research carried out by NSF in the Antarctic,” said Vladimir Papitashvili, Antarctic Astrophysics and Geospace Sciences program director at NSF’s Office of Polar Programs. “It has produced about two dozen peer-reviewed science publications since the telescope received its ‘first light’ on Feb. 17, 2007. SPT is a very focused, well-managed and amazing project.”

The team’s findings were presented by Bradford Benson at the American Physical Society meeting in Atlanta on April 1.

Read more on the NSF press release here.

Hubble Gets Best Look Yet At Messier 9

New Hubble image of Messier 9 cluster resolves individual stars (NASA/ESA)

[/caption]

First discovered by Charles Messier in 1764, the globular cluster Messier 9 is a vast swarm of ancient stars located 25,000 light-years away, close to the center of the galaxy. Too distant to be seen with the naked eye, the cluster’s innermost stars have never been individually resolved… until now.

This image from the Hubble Space Telescope is the most detailed view yet into Messier 9, capturing details of over 250,000 stars within it. Stars’ shape, size and color can be determined — giving astronomers more clues as to what the cluster’s stars are made of. (Download a large 10 mb JPEG file here.)

Hot blue stars as well as cooler red stars can be seen in Messier 9, along with more Sun-like yellow stars.

Unlike our Sun, however, Messier 9’s stars are nearly ten billion years old — twice the Sun’s age — and are made up of much less heavy elements.

Since heavy elements (such as carbon, oxygen and iron) are formed inside the cores of stars and dispersed into the galaxy when the stars eventually go supernova, stars that formed early on were birthed from clouds of material that weren’t yet rich in such elements.

Zoom into the Messier 9 cluster with a video from NASA and the European Space Agency below:

The Hubble Space Telescope is a project of international cooperation between ESA and NASA. See more at www.spacetelescope.org.

Image credit: NASA & ESA. Video: NASA, ESA, Digitized Sky Survey 2, N. Risinger (skysurvey.org)

Can “Warp Speed” Planets Zoom Through Interstellar Space?

Artist’s conception of a runaway planet zooming through interstellar space. A glowing volcano on the planet’s surface hints at active plate tectonics that may keep the planet warm. Image Credit: David A. Aguilar (CfA)

[/caption]Nearly ten years ago, astronomers were stunned to discover a star that had been apparently flung from its own system and travelling at over a million kilometers per hour. Over the years, a question was brought up: If stars can be ejected at a high velocity, what about planets?

Avi Loeb (Harvard-Smithsonian Center for Astrophysics) states, “These warp-speed planets would be some of the fastest objects in our Galaxy. If you lived on one of them, you’d be in for a wild ride from the center of the galaxy to the Universe at large.”

Idan Ginsburg (Dartmouth College) adds, “Other than subatomic particles, I don’t know of anything leaving our galaxy as fast as these runaway planets.”

The mechanics responsible for the super-fast planets are similar to those responsible for “hypervelocity” stars. With stars, if a binary system drifts too closely to a supermassive black hole (such as the ones in the center of galaxies), the gravitational forces can separate the stars – sending one outward at incredible speeds, and the other in orbit around the black hole. Interestingly enough, “Warp Speed” planets can theoretically travel at a few percent of the speed of light – not quite as fast as Star Trek’s Enterprise, but you get the point.

The team, which includes Loeb and Ginsburg, created computer models to simulate the outcome if each star had planets orbiting it. The outcome of the model showed that the star shot into interstellar space would keep its planets, but the star “captured” into orbit around the black hole would have its planets stripped and sent outward at incredible speeds. Typical speeds for the planets range from 11-16 million kilometers per hour, but given the proper conditions could approach even higher velocities.

As of now, it’s impossible for astronomers to detect a wandering planet due to their small size, distance, and rarity. By detecting the dimming of light levels from a hypervelocity star as an orbiting planet crosses its face, astronomers could detect planets that orbit said star.

Ginsburg added, “With one-in-two odds of seeing a transit, if a hypervelocity star had a planet, it makes a lot of sense to watch for them.”

Loeb concluded with, “Travel agencies advertising journeys on hypervelocity planets might appeal to particularly adventurous individuals.”

If you’d like to learn more about hypervelocity planets, you can access a draft version of the upcoming paper at: http://arxiv.org/abs/1201.1446

Source(s): Harvard-Smithsonian Center for Astrophysics , Hypervelocity Planets and Transits Around Hypervelocity Stars

VISTA View Is Chock Full Of Galaxies

Mosaic of infrared survey images from ESO's VISTA reveal over 200,000 distant galaxies. (ESO/UltraVISTA team. Acknowledgement: TERAPIX/CNRS/INSU/CASU.)

[/caption]

See all those tiny points of light in this image? Most of them aren’t stars; they’re entire galaxies, seen by the European Southern Observatory’s VISTA survey telescope located at the Paranal Observatory in Chile.

This is a combination of over 6000 images taken with a total exposure time of 55 hours, and is the widest deep view of the sky ever taken in infrared light.

The galaxies in this VISTA image are only visible in infrared light because they are very far away. The ever-increasing expansion rate of the Universe shifts the light coming from the most distant objects (like early galaxies) out of visible wavelengths and into the infrared spectrum.

(See a full-size version — large 253 mb file.)

ESO’s VISTA (Visual and Infrared Survey Telescope for Astronomy) telescope is the world’s largest and most powerful infrared observatory, and has the ability to peer deep into the Universe to reveal these incredibly distant, incredibly ancient structures.

By studying such faraway objects astronomers can better understand how the structures of galaxies and galactic clusters evolved throughout time.

The region seen in this deep view is an otherwise “unremarkable” and apparently empty section of sky located in the constellation Sextans.

Read more on the ESO website here.

The VISTA telescope in its dome at sunset. Its primary mirror is 4.1 meters wide. G. Hüdepohl/ESO.