SpaceX Picks Up Launch Pace; Sets April 27 Commercial Launch and May 5 Crew Dragon Pad Abort Test

SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX

SpaceX Dragon V2 test flight vehicle set for May 5, 2015 pad abort test. Credit: SpaceX
See below SpaceX live launch webcast link[/caption]

As promised, SpaceX is picking up its launch pace in 2015 with a pair of liftoffs from the Florida space coast slated for the next week and a half. They follow closely on the heels of a quartet of successful blastoffs from Cape Canaveral, already accomplished since January.

If all goes well, a commercial satellite launch and a human spaceflight related pad abort test launch for NASA are scheduled for April 27 and May 5 respectively.

Mondays launch of a communications satellite for Thales Alenia Space takes place just 13 days after SpaceX successfully launching the Dragon CRS-6 resupply freighter to the International Space Station (ISS) for NASA on April 14.

The 13 day turnaround time will mark a new launch cadence record for SpaceX if the weather and rocket cooperate, eclipsing the 14 day turnaround record set last September.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

The 224 foot tall SpaceX Falcon 9 rocket is scheduled to launch at approximately 6:14 p.m. EDT (2214 GMT) on April 27 from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. It will deliver the TurkmenÄlem52E/MonacoSat satellite to a geosynchronous transfer orbit.

This first satellite ever for Turkmenistan will be deployed approximately 32 minutes after liftoff of the fifth Falcon 9 rocket this year.

The outlook is currently 60 percent GO for favorable weather conditions at launch time.

You can watch the launch live via a SpaceX webcast that begins about 20 minutes before launch at: spacex.com/webcast

The May 5 pad abort test for NASA is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil to the space station.

The test will simulate an emergency abort from a test stand and will also take place from the Cape’s Space Launch Complex 40 in Florida.

SpaceX has a four hour launch window in which to conduct the test. The test window opens at 9:30 a.m. EDT (1330 GMT) on May 5. There is a backup opportunity on May 6.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency.

First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014.  Credit: SpaceX.
First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014. Credit: SpaceX.

The purpose is to test the ability of the abort system to save astronauts lives in the event of a real emergency.

The SuperDraco engines are located in four jet packs around the base. Each enigne can produce up to 120,000 pounds of axial thrust to carry astronauts to safety, according to a SpaceX description.

Here is a SpaceX video of SuperDraco’s being hot fire tested in Texas.

Video caption: Full functionality of Crew Dragon’s SuperDraco jetpacks demonstrated with hotfire test in McGregor, TX. Credit: SpaceX

The pad abort test is being done under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA.

The initial pad abort test will test the ability of the full-size Dragon to safely push away and escape in case of a failure of its Falcon 9 booster rocket in the moments around launch, right at the launch pad.

“The purpose of the pad abort test is to demonstrate Dragon has enough total impulse (thrust) to safely abort,” SpaceX spokeswoman Emily Shanklin informed me.

For that test, Dragon will use its pusher escape abort thrusters to lift the Dragon safely away from the failing rocket.

The vehicle will be positioned on a structural facsimile of the Dragon trunk in which the actual Falcon 9/Dragon interfaces will be represented by mockups. The test will not include an actual Falcon 9 booster.

A second Dragon flight test follow later in the year. It involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure at about T plus 1 minute, to save astronauts lives. The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted landing into the Atlantic Ocean.

The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP), as the worlds privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).

Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.

During the Sept. 16, 2014 news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.

There will be no attempt to soft land the Falcon 9 first stage during the April 27 launch. The next landing attempt is set for mid-June.

Up close view of the SpaceX Falcon 9 rocket landing legs prior to launch on April 14, 2015 on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
Up close view of the SpaceX Falcon 9 rocket landing legs prior to launch on April 14, 2015 on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Prepares for Crucial Crew Dragon Capsule Pad Abort Test

SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX

SpaceX is preparing for the first of two critical abort tests for the firm’s next generation human rated Dragon V2 capsule as soon as March.

The purpose of the pair of abort tests is to demonstrate a crew escape capability to save the astronauts’ lives in case of a rocket failure, starting from the launch pad and going all the way to orbit.

The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP) as the world’s privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).

Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.

During the Sept. 16, 2014, news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.

The first abort test involving the pad abort test is currently slated to take place soon from the company’s launch pad on Cape Canaveral Air Force Station in Florida, according to Gwynne Shotwell, president of SpaceX.

“First up is a pad abort in about a month,” said Shotwell during a media briefing last week at NASA’s Johnson Space Center in Houston, Texas.

SpaceX engineers have been building the pad abort test vehicle for the unmanned test for more than a year at their headquarters in Hawthorne, California.

Dragon V2 builds on and significantly upgrades the technology for the initial cargo version of the Dragon which has successfully flown five operational resupply missions to the ISS.

“It took us quite a while to get there, but there’s a lot of great technology and innovations in that pad abort vehicle,” noted Shotwell.

First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014.  Credit: SpaceX.
First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014. Credit: SpaceX.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a simulated emergency.

The SuperDraco engines are located in four jet packs around the base. Each engine can produce up to 120,000 pounds of axial thrust to carry astronauts to safety, according to a SpaceX description.

Here is a SpaceX video of SuperDraco’s being hot fire tested in Texas:

Video caption: Full functionality of Crew Dragon’s SuperDraco jetpacks demonstrated with hotfire test in McGregor, TX. Credit: SpaceX

For the purpose of this test, the crew Dragon will sit on top of a facsimile of the unpressurized trunk portion of the Dragon. It will not be loaded on top of a Falcon 9 rocket for the pad abort test.

The second abort test involves a high altitude abort test launching atop a SpaceX Falcon 9 rocket from Vandenberg Air Force Base in California.

“An in-flight abort test [follows] later this year,” said Shotwell.

“The Integrated launch abort system is critically important to us. We think it gives incredible safety features for a full abort all the way through ascent.”

“It does also allow us the ultimate goal of fully propulsive landing.”

Both tests were originally scheduled for 2014 as part of the firm’s prior CCiCAP development phase contract with NASA, SpaceX CEO Elon Musk told me in late 2013.

“Assuming all goes well, we expect to conduct [up to] two Dragon abort tests next year in 2014,” Musk explained.

Last year, NASA granted SpaceX an extension into 2015 for both tests under SpaceX’s CCiCAP milestones.

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during a prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The SpaceX Dragon V2 will launch atop a human rated Falcon 9 v1.1 rocket from Space Launch Complex 40 at Cape Canaveral.

“We understand the incredible responsibility we’ve been given to carry crew. We should fly over 50 Falcon 9’s before crewed flight,” said Shotwell.

To accomplish the first manned test flight to the ISS by 2017, the US Congress must agree to fully fund the commercial crew program.

“To do this we need for Congress to approve full funding for the Commercial Crew Program,” Bolden said at last week’s JSC media briefing.

Severe budget cuts by Congress forced NASA into a two year delay in the first commercial crew flights to the ISS from 2015 to 2017 – and also forced NASA to pay hundreds of millions of more dollars to the Russians for crews seats aboard their Soyuz instead of employing American aerospace workers.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA
Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA

Obama Administration Proposes $18.5 Billion Budget for NASA – Bolden

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address at NASA's televised fiscal year 2016 budget rollout event with Kennedy Space Center Director Bob Cabana looking on, at right. NASA's Orion, SpaceX Dragon and Boeing CST-100 spacecraft were on display. Photo credit: NASA/Gianni Woods

The Obama Administration today (Feb. 2) proposed a NASA budget allocation of $18.5 Billion for the new Fiscal Year 2016, which amounts to a half-billion dollar increase over the enacted budget for FY 2015, and keeps the key manned capsule and heavy lift rocket programs on track to launch humans to deep space in the next decade and significantly supplements the commercial crew initiative to send our astronauts to low Earth orbit and the space station later this decade.

NASA Administrator Charles Bolden formally announced the rollout of NASA’s FY 2016 budget request today during a “state of the agency” address at the Kennedy Space Center (KSC), back dropped by the three vehicles at the core of the agency’s human spaceflight exploration strategy; Orion, the Boeing CST-100 and the SpaceX Dragon.

“To further advance these plans and keep on moving forward on our journey to Mars, President Obama today is proposing an FY 2016 budget of $18.5 billion for NASA, building on the significant investments the administration has made in America’s space program over the past six years,” Administrator Bolden said to NASA workers and the media gathered at the KSC facility where Orion is being manufactured.

“These vehicles are not things just on paper anymore! This is tangible evidence of what you [NASA] have been doing these past few years.”

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA's televised fiscal year 2016 budget rollout event.   Photo credit: NASA/Gianni Woods
In the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA’s televised fiscal year 2016 budget rollout event. Photo credit: NASA/Gianni Woods

Bolden said the $18.5 Billion budget request will enable the continuation of core elements of NASA’s main programs including first launch of the new commercial crew vehicles to orbit in 2017, maintaining the Orion capsule and the Space Launch System (SLS) rocket to further NASA’s initiative to send ‘Humans to Mars’ in the 2030s, extending the International Space Station (ISS) into the next decade, and launching the James Webb Space Telescope in 2018. JWST is the long awaited successor to NASA’s Hubble Space Telescope.

“NASA is firmly on a journey to Mars. Make no mistake, this journey will help guide and define our generation.”

Funding is also provided to enable the manned Asteroid Redirect Mission (ARM) by around 2025, to continue development of the next Mars rover, and to continue formulation studies of a robotic mission to Jupiter’s icy moon Europa.

“That’s a half billion-dollar increase over last year’s enacted budget, and it is a clear vote of confidence in you – the employees of NASA – and the ambitious exploration program you are executing,” said Bolden.

Overall the additional $500 million for FY 2016 translates to a 2.7% increase over FY 2015. That compares to about a 6.4% proposed boost for the overall US Federal Budget amounting to $4 Trillion.

The Boeing CST-100 and the SpaceX Dragon V2 will restore the US capability to ferry astronauts to and from the International Space Station (ISS).

In September 2014, Bolden announced the selections of Boeing and SpaceX to continue development and certification of their proposed spaceships under NASA’s Commercial Crew Program (CCP) and Launch America initiative started back in 2010.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

Since the retirement of the Space Shuttle program in 2011, all NASA astronauts have been totally dependent on Russia and their Soyuz capsule as the sole source provider for seats to the ISS.

“The commercial crew vehicles are absolutely critical to our journey to Mars, absolutely critical. SpaceX and Boeing have set up operations here on the Space Coast, bringing jobs, energy and excitement about the future with them. They will increase crew safety and drive down costs.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

CCP gets a hefty and needed increase from $805 Million in FY 2015 to $1.244 Billion in FY 2016.

To date the Congress has not fully funded the Administration’s CCP funding requests, since its inception in 2010.

The significant budget slashes amounting to 50% or more by Congress, have forced NASA to delay the first commercial crew flights of the private ‘space taxis’ from 2015 to 2017.

As a result, NASA has also been forced to continue paying the Russians for crew flights aboard the Soyuz that now cost over $70 million each under the latest contract signed with Roscosmos, the Russian Federal Space Agency.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

Bolden has repeatedly stated that NASA’s overriding goal is to send astronauts to Mars in the 2030s.

To accomplish the ‘Journey to Mars’ NASA is developing the Orion deep space crew capsule and mammoth SLS rocket.

However, both programs had their budgets cut in the FY 2016 proposal compared to FY 2015. The 2015 combined total of $3.245 Billion is reduced in 2016 to $2.863 Billion, or over 10%.

The first test flight of an unmanned Orion atop the SLS is now slated for liftoff on Nov. 2018, following NASA’s announcement of a launch delay from the prior target of December 2017.

Since the Journey to Mars goal is already underfunded, significant cuts will hinder progress.

Orion just completed its nearly flawless maiden unmanned test flight in December 2014 on the Exploration Flight Test-1 (EFT-1) mission.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

There are some losers in the new budget as well.

Rather incomprehensibly funding for the long lived Opportunity Mars Exploration Rover is zeroed out in 2016.

This comes despite the fact that the renowned robot just reached the summit of a Martian mountain at Cape Tribulation and is now less than 200 meters from a science goldmine of water altered minerals.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater's western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge.  This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Funding for the Lunar Reconnaissance Orbiter (LRO) is also zeroed out in FY 2016.

Both missions continue to function quite well with very valuable science returns. They were also zeroed out in FY 2015 but received continued funding after a senior level science review.

So their ultimate fate is unknown at this time.

Overall, Bolden was very upbeat about NASA’s future.

“I can unequivocally say that the state of NASA is strong,” Bolden said.

He concluded his remarks saying:

“Because of the dedication and determination of each and every one of you in our NASA Family, America’s space program is not just alive, it is thriving! Together with our commercial and international partners, academia and entrepreneurs, we’re launching the future. With the continued support of the Administration, the Congress and the American people, we’ll all get there together.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA, Boeing, and SpaceX to Launch 1st Commercial Crew Ships to Space Station in 2017

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA

After a hiatus of six long years, US astronauts will finally launch to space in a revolutionary new pair of private crew capsules under development by Boeing and SpaceX, starting in 2017, that will end our sole source reliance on the Russians for launching our astronauts to the International Space Station (ISS).

Two years from now, crews will start flying to space aboard the first US commercial spaceships, launching atop US rockets from US soil, said officials from Boeing, SpaceX, and NASA at a joint news conference on Monday, Jan. 26. The human rated spaceships – also known as “space taxis” – are being designed and manufactured under the auspices of NASA’s Commercial Crew Program (CCP).

A two person mixed crew of NASA astronauts and company test pilots will fly on the first test flights going to the space station in 2017.

The goal of NASA’s Commercial Crew Program, underway since 2010, has been to develop safe, reliable, and cost-effective spaceships that will ferry astronauts to and from the massive orbiting lab complex.

“It’s an incredible testament to American ingenuity and know-how, and an extraordinary validation of the vision we laid out just a few years ago as we prepared for the long-planned retirement of the space shuttle,” said NASA Administrator Charlie Bolden during the briefing at the agency’s Johnson Space Center in Houston. Bolden is a four time veteran space shuttle astronaut.

“This work is part of a vital strategy to equip our nation with the technologies for the future and inspire a new generation of explorers to take the next giant leap for America.”

NASA's Stephanie Schierholz introduces the panel of Johnson Space Center Director Dr. Ellen Ochoa, seated, left, NASA Administrator Charles Bolden, Commercial Crew Program Manager Kathy Lueders, Boeing's John Elbon, SpaceX's Gwynne Shotwell and NASA astronaut Mike Fincke.  Credit:  NASA TV
NASA’s Stephanie Schierholz introduces the panel of Johnson Space Center Director Dr. Ellen Ochoa, seated, left, NASA Administrator Charles Bolden, Commercial Crew Program Manager Kathy Lueders, Boeing’s John Elbon, SpaceX’s Gwynne Shotwell, and NASA astronaut Mike Fincke at Jan. 26 commercial crew new conference. Credit: NASA TV

“We have been working overtime to get Americans back to space from US soil and end US reliance on Russia,” Bolden added. “My job is to ensure we get Americans back to space as soon as possible and safely.”

“We have been in-sourcing space jobs back to the US.”

“To do this we need for Congress to approve full funding for the Commercial Crew Program!”

“This and the ISS are a springboard to going beyond Earth. All this we are doing will enable us to get Humans to Mars!”

However – severe budget cuts by Congress forced NASA into a two year delay in the first commercial crew flights from 2015 to 2017 – and also forced NASA to pay hundreds of millions of more dollars to the Russians for crews seats instead of employing American aerospace workers.

On Sept. 16, 2014, Administrator Bolden announced that Boeing and SpaceX had won the high stakes and history making NASA competition to build the first ever private “space taxis” to launch American and partner astronauts to the ISS and restore America’s capability to launch our crews from American soil for the first time since 2011.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

During the Sept. 16 briefing at the Kennedy Space Center, Bolden announced at that time that contracts worth a total of $6.8 Billion were awarded to Boeing to build the manned CST-100 and to SpaceX to build the manned Dragon V2.

Boeing was awarded the larger share of the crew vehicle contract valued at $4.2 Billion while SpaceX was awarded a lesser amount valued at $2.6 Billion.

For extensive further details about Boeing’s CST-100 manned capsule, be sure to read my exclusive 2 part interview with Chris Ferguson, NASA’s final shuttle commander and now Boeing’s Commercial Crew Director: here and here.

And read about my visit to the full scale CST-100 mockup at its manufacturing facility at KSC – here and here.

B8SsB9UCQAElkbJ.jpg large

But the awards were briefly put on hold when the third bidder, Sierra Nevada Corp, protested the decision and thereby prevented NASA from discussing the awards until the issue was resolved by the General Accounting Office (GAO) earlier this month in favor of NASA.

Everyone involved is now free to speak about the awards and how they were decided.

Each company must successfully achieve a set of 10 vehicle and program milestones agreed to with NASA, as well as meeting strict certification and safety standards.

“There are launch pads out there already being upgraded and there is hardware already being delivered,” said Kathy Lueders, manager of the Kennedy Space Center-based Commercial Crew Program.

“Both companies have already accomplished their first milestones.”

Every American astronaut has been totally reliant on the Russians and their three person Soyuz capsules for seats to launch to the ISS since the forced retirement of NASA’s Space Shuttle program in July 2011 following the final blastoff of orbiter Atlantis on the STS-135 mission.

Under the latest crew flight deal signed with Roscosmos [the Russian Federal Space Agency], each astronaut seat costs over $70 million.

“I don’t ever want to have to write another check to Roscosmos after 2017, hopefully,” said Bolden.

Under NASA’s commercial crew contracts, the average cost to fly US astronauts on the Dragon and CST-100 is $58 million vs. over $70 million on the Russian Soyuz.

At the briefing, Bolden indicated he was hopeful Congress would be more supportive of the program in the coming 2016 budget cycle than in the past that has already resulted in a 2 year delay in the first flights.

“Congress has started to understand the critical importance of commercial crew and cargo. They’ve seen, as a result of the performance of our providers, that this is not a hoax, it’s not a myth, it’s not a dream,” said Bolden.

“It’s something that’s really happening. I am optimistic that the Congress will accept the President’s proposal for commercial crew for 2016.”

The first unmanned test flights of the SpaceX Dragon V2 and Boeing CST-100 could take place by late 2016 or early 2017 respectively. Manned flights to the ISS would follow soon thereafter by the spring and summer of 2017.

Asked at the Jan. 26 briefing if he would fly aboard the private space ships, Administrator Bolden said:

“Yes. I can tell you that I would hop in a Dragon or a CST-100 in a heartbeat.”

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Boeing’s plans for the CST-100 involve conducting a pad abort test in February 2017, followed by an uncrewed orbital flight test in April 2017, and then a crewed flight with a Boeing test pilot and a NASA astronaut in July 2017, as outlined at the briefing by John Elbon, vice president and general manager of Boeing’s Space Exploration division.

“It’s a very exciting time with alot in development on the ISS, SLS, and Commercial Crew. Never before in the history of human spaceflight has there been so much going on all at once,” said John Elbon. “NASA’s exploring places we didn’t even know existed 100 years ago.”

“We are building the CST-100 structural test article.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014, for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

SpaceX’s plans for the Dragon V2 were outlined by Gwynne Shotwell, president of SpaceX.

“The Dragon V2 builds on the cargo Dragon. First up is a pad abort in about a month [at Cape Canaveral], then an in-flight abort test later this year [at Vandenberg to finish up development work from the prior CCiCAP phase],” said Shotwell.

“An uncrewed flight test is planned for late 2016 followed by a crewed flight test in early 2017.”

“We understand the incredible responsibility we’ve been given to carry crew. We should fly over 50 Falcon 9’s before crewed flight.”

Both the Boeing CST 100 and SpaceX Dragon V2 will launch from the Florida Space Coast, home to all US astronaut flights since the dawn of the space age.

The Boeing CST-100 will launch atop a human rated United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.

The SpaceX Dragon will launch atop a human rated Falcon 9 v1.1 rocket from neighboring Space Launch Complex 40 at the Cape.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing’s commercial CST-100 'Space Taxi' will carry a crew of five astronauts to low Earth orbit and the ISS from US soil.   Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida.  Credit: Ken Kremer - kenkremer.com
Boeing’s commercial CST-100 “Space Taxi” will carry a crew of five astronauts to low Earth orbit and the ISS from US soil. Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014, at its planned manufacturing facility at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis

Boeing Completes All CST-100 Commercial Crew CCiCAP Milestones on Time and on Budget for NASA – Ahead of Competitors

Boeing unveiled full scale mockup of their commercial CST-100 'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer - kenkremer.com

In the ‘new race to space’ to restore our capability to launch Americans to orbit from American soil with an American-built commercial ‘space taxi’ as rapidly and efficiently as possible, Boeing has moved to the front of the pack with their CST-100 spaceship by completing all their assigned NASA milestones on time and on budget in the current phase of the agency’s Commercial Crew Program (CCP).

Boeing is the first, and thus far only one of the three competitors (including Sierra Nevada Corp. and SpaceX) to complete all their assigned milestone task requirements under NASA’s Commercial Crew Integrated Capability (CCiCap) initiative funded under the auspices of the agency’s Commercial Crew Program.

The CST-100 is a privately built, man rated capsule being developed with funding from NASA via the commercial crew initiative in a public/private partnership between NASA and private industry.

The overriding goal is restart America’s capability to reliably launch our astronauts from US territory to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Private space taxis are the fastest and cheapest way to accomplish that and end the gap in indigenous US human spaceflight launches.

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

Boeing announced that NASA approved the completion of the final two commercial crew milestones contracted to Boeing for the CST-100 development.

These last two milestones are the Phase Two Spacecraft Safety Review of its Crew Space Transportation (CST)-100 spacecraft and the Critical Design Review (CDR) of its integrated systems.

The CDR milestone was completed in July and comprised 44 individual CDRs including propulsion, software, avionics, landing, power and docking systems.

The Phase Two Spacecraft Safety Review included an overall hazard analysis of the spacecraft, identifying life-threatening situations and ensuring that the current design mitigated any safety risks, according to Boeing.

“The challenge of a CDR is to ensure all the pieces and sub-systems are working together,” said John Mulholland, Boeing Commercial Crew program manager, in a statement.

“Integration of these systems is key. Now we look forward to bringing the CST-100 to life.”

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Passing the CDR and completing all the NASA milestone requirements is a significant step leading to the final integrated design for the CST-100 space taxi, ground systems and Atlas V launcher that will boost it to Earth orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

The Sierra Nevada Dream Chaser and SpaceX Dragon V2 and are also receiving funds from NASA’s commercial crew program.

All three American aerospace firms vying for the multibillion dollar NASA contract to build an American ‘space taxi’ to ferry US astronauts to the International Space Station and back as soon as 2017.

NASA’s Commercial Crew Program office is expected to announce the winner(s) of the high stakes, multibillion dollar contract to build America’s next crew vehicles in the next program phase, known as Commercial Crew Transportation Capability (CCtCap), “sometime around the end of August/September,” NASA News spokesman Allard Beutel confirmed to me.

“We don’t have a scheduled date for the commercial crew award(s).”

There will be 1 or more CCtCAP winners.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

On June 9, 2014, Boeing revealed the design of their CST-100 astronaut spaceliner by unveiling a full scale mockup of their commercial ‘space taxi’ at the new home of its future manufacturing site at the Kennedy Space Center (KSC) located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for assembly missions to the ISS.

The CST-100 crew transporter was unveiled at the invitation only ceremony and media event held inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.

The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight (STS-135) in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.

Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.

“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”

So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

“The first unmanned orbital test flight is planned in January 2017… and may go to the station,” Ferguson told me during our exclusive interview about Boeing’s CST-100 plans.

Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.

Boeing has received the largest share of funding in the current CCiCAP phase amounting to about $480 million. SpaceX received $460 million for the Dragon V2 and Sierra Nevada Corp. (SNC) has received a half award of $227.5 million for the Dream Chaser mini-shuttle.

SNC will be the next company to complete all of NASA’s milestones this Fall, SNC VP Mark Sirangelo told me in an exclusive interview. SpaceX will be the final company finishing its milestones sometime in 2015.

Stay tuned here for Ken’s continuing Boeing, Sierra Nevada, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

Airframe Structure for First Commercial Dream Chaser Spacecraft Unveiled

SNC's Dream Chaser® orbital structural airframe at Lockheed Martin in Ft. Worth, Texas. Credit: Lockheed Martin

The orbital airframe structure for the first commercial Dream Chaser mini-shuttle that will launch to Earth orbit just over two years from now has been unveiled by Sierra Nevada Corporation (SNC) and program partner Lockheed Martin.

Sierra Nevada is moving forward with plans for Dream Chaser’s first launch and unmanned orbital test flight in November 2016 atop a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral, Florida.

The winged Dream Chaser is being developed under NASA’s Commercial Crew Program aimed at restoring America’s indigenous human spaceflight access to low Earth orbit and the International Space Station (ISS).

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS
Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Lockheed Martin is fabricating the structural components for the Dream Chaser’s orbital spacecraft composite structure at the NASA’s Michoud Assembly Facility (MAF) in New Orleans, Louisiana.

MAF has played a long and illustrious history in human space flight dating back to Apollo and also as the site where all the External Tanks for NASA’s space shuttle program were manufactured. Lockheed Martin also builds the pressure vessels for NASA’s deep space Orion crew vehicle at MAF.

Each piece is thoroughly inspected to insure it meets specification and then shipped to Lockheed Martin’s Aeronautics facility in Fort Worth, Texas for integration into the airframe and co-bonded assembly.

Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

Sierra Nevada chose Lockheed Martin for this significant role in building Dream Chaser airframe based on their wealth of aerospace experience and expertise.

The composite airframe structure was recently unveiled at a joint press conference by Sierra Nevada Corporation and Lockheed Martin at the Fort Worth facility.

“As a valued strategic partner on SNC’s Dream Chaser Dream Team, Lockheed Martin is under contract to manufacture Dream Chaser orbital structure airframes,” said Mark N. Sirangelo, corporate vice president of SNC’s Space Systems, in a statement.

“We competitively chose Lockheed Martin because they are a world leader in composite manufacturing, have the infrastructure, resources and quality control needed to support the needs of an orbital vehicle and have a proven track record of leading our nation’s top aviation and aerospace programs. Lockheed Martin’s diverse heritage coupled with their current work on the Orion program adds an extra element of depth and expertise to our program. SNC and Lockheed Martin continue to expand and develop a strong multi-faceted relationship.”

Dream Chaser measures about 29 feet long with a 23 foot wide wing span and is about one third the size of NASA’s space shuttle orbiters.

“We are able to tailor our best manufacturing processes, and our innovative technology from across the corporation to fit the needs of the Dream Chaser program,” said Jim Crocker, vice president of Lockheed Martin’s Space Systems Company Civil Space Line of Business.

Upon completion of the airframe manufacturing at Ft Worth, it will be transported to SNC’s Louisville, Colorado, facility for final integration and assembly.

Lockheed Martin will also process Dream Chaser between orbital flights at the Kennedy Space Center, FL in the recently renamed Neil Armstrong Operations and Checkout Building.

SNC announced in July that they successfully completed and passed a series of risk reduction milestone tests on key flight hardware systems under its Commercial Crew Integrated Capability (CCiCap) agreement with NASA that move the private reusable spacecraft closer to its critical design review (CDR) and first flight.

As a result of completing Milestones 9 and 9a, SNC has now received 92% of its total CCiCAP Phase 1 NASA award of $227.5 million.

“We are on schedule to launch our first orbital flight in November of 2016, which will mark the beginning of the restoration of U.S. crew capability to low-Earth orbit,” says Sirangelo.

The private Dream Chaser is a reusable lifting-body design spaceship that will carry a mix of cargo and up to a seven crewmembers to the ISS. It will also be able to land on commercial runways anywhere in the world, according to SNC.

Dream Chaser is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

The SpaceX Dragon and Boeing CST-100 ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around September 2014, NASA officials have told me.

Stay tuned here for Ken’s continuing Sierra Nevada, Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Rosetta, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

Tour Around Boeing’s CST-100 Spaceliner to LEO: Photos

Boeing’s commercial CST-100 'Space Taxi' will carry a crew of five astronauts to low Earth orbit and the ISS from US soil. Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – On Monday, June 9, Boeing revealed the design of their CST-100 astronaut spaceliner aimed at restoring Americas ability to launch our astronauts to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.

The full scale CST-100 mockup was unveiled at an invitation only ceremony for Boeing executives and media held inside a newly renovated shuttle era facility at the Kennedy Space Center where the capsule would start being manufactured later this year.

Universe Today was invited to tour the capsule for a first hand inspection of the CST-100’s interior and exterior and presents my photo gallery here.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

The CST-100 is a privately built manrated capsule being developed with funding from NASA under the auspices of the agency’s Commercial Crew Program (CCP) in a public/private partnership between NASA and private industry.

The vehicle will be assembled inside the refurbished processing hangar known during the shuttle era as Orbiter Processing Facility-3 (OPF-3). Boeing is leasing the site from Space Florida.

Boeing is one of three American aerospace firms vying for a NASA contract to build an American ‘space taxi’ to ferry US astronauts to the space station and back as soon as 2017.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

The SpaceX Dragon and Sierra Nevada Dream Chaser are also receiving funds from NASA’s commercial crew program.

NASA will award one or more contracts to build Americas next human rated spaceship in August or September.

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

Chris Ferguson, the final shuttle commander for NASA’s last shuttle flight (STS-135) now serves as director of Boeing’s Crew and Mission Operations.

Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Astronaut mannequin seated below pilot console inside Boeing’s commercial CST-100 'Space Taxi' mockup.  Credit: Ken Kremer - kenkremer.com
Astronaut mannequin seated below pilot console inside Boeing’s commercial CST-100 ‘Space Taxi’ mockup. Credit: Ken Kremer – kenkremer.com
Five person crews will fly Boeing CST-100 capsule to ISS. Credit: Ken Kremer - kenkremer.com
Five person crews will fly Boeing CST-100 capsule to ISS. Credit: Ken Kremer – kenkremer.com

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

US astronauts will eventually enter the ISS through this docking port. Credit: Ken Kremer - kenkremer.com
US astronauts will eventually enter the ISS through this docking port. Credit: Ken Kremer – kenkremer.com
US Senator Bill Nelson (FL) and NASA’s final space shuttle commander inside Boeing’s CST-100 manned capsule during unveiling ceremony at the Kennedy Space Center, Florida on June 9, 2014.  Nelson is seated below pilots console and receives CST-100 briefing from Ferguson who now directs Boeing’s crew efforts.  Nelson also flew in space aboard the Columbia shuttle in Jan. 1986.  Credit: Ken Kremer - kenkremer.com
US Senator Bill Nelson (FL) and NASA’s final space shuttle commander inside Boeing’s CST-100 manned capsule during unveiling ceremony at the Kennedy Space Center, Florida on June 9, 2014. Nelson is seated below pilots console and receives CST-100 briefing from Ferguson who now directs Boeing’s crew efforts. Nelson also flew in space aboard the Columbia shuttle in Jan. 1986. Credit: Ken Kremer – kenkremer.com
Boeing CST-100 spaceship unveiled at Kennedy Space Center FL on June 9, 2014 Posing from left to right; Frank DelBello, Space Florida, John Elbon, Boeing VP Space Exploration, US Sen. Bill Nelson (FL), final shuttle commander Chris Ferguson, Boeing Director of Crew and Mission Operations and John Mulholland, Boeing VP Commercial Space Exploration.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 spaceship unveiled at Kennedy Space Center FL on June 9, 2014 Posing from left to right; Frank DelBello, Space Florida, John Elbon, Boeing VP Space Exploration, US Sen. Bill Nelson (FL), final shuttle commander Chris Ferguson, Boeing Director of Crew and Mission Operations and John Mulholland, Boeing VP Commercial Space Exploration. Credit: Ken Kremer – kenkremer.com

US Senator Bill Nelson (FL) addresses crowd at unveiling ceremony for Boeing’s CST-100 manned capsule to the ISS at the Kennedy Space Center, Florida on June 9, 2014.  Credit: Ken Kremer - kenkremer.com
US Senator Bill Nelson (FL) addresses crowd at unveiling ceremony for Boeing’s CST-100 manned capsule to the ISS at the Kennedy Space Center, Florida on June 9, 2014. Credit: Ken Kremer – kenkremer.com

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

Boeing Unveils Commercial CST-100 ‘Space Taxi’ to Launch US Astronauts to Space from US Soil

Boeing unveiled full scale mockup of their commercial CST-100 'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer - kenkremer.com

Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.
Credit: Ken Kremer – kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER, FL – Boeing unveiled a full scale mockup of their CST-100 commercial ‘space taxi’ on Monday, June 9, at the new home of its future manufacturing site at the Kennedy Space Center located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for missions to the International Space Station (ISS).

The overriding goal is restart our country’s capability to reliably launch Americans to space from US territory as rapidly and efficiently as possible.

The CST-100 crew transporter was revealed at an invitation only ceremony and media event held on Monday, June 9, inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.

The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.

Universe Today was invited to be on location at KSC for the big reveal ceremony headlining US Senator Bill Nelson (FL) and Boeing executives including shuttle commander Ferguson, for a first hand personal inspection of the private spaceship and also to crawl inside and sit in the seats of the capsule designed to carry American astronauts to the High Frontier as soon as 2017.

“Today we celebrate this commercial crew capsule,” said Sen. Nelson at the unveiling ceremony. “This vehicle is pretty fantastic and the push into space the CST-100 represents is historic.”

“We are at the dawn of a new Space Age. It’s complemented by the commercial activities going to and from the space station and then going outside low Earth orbit [with Orion], as we go to the ultimate goal of going to Mars. There is a bright future ahead.”

US Senator Bill Nelson and NASA’s final space shuttle commander inside Boeing’s CST-100 manned capsule during unveiling ceremony at the Kennedy Space Center, Florida on June 9, 2014.  Nelson is seated below pilots console and receives CST-100 briefing from Ferguson.  Nelson also flew in space aboard the Columbia shuttle in Jan. 1986.  Credit: Ken Kremer - kenkremer.com
US Senator Bill Nelson (FL) and NASA’s final space shuttle commander Chris Ferguson inside Boeing’s CST-100 manned capsule during unveiling ceremony at the Kennedy Space Center, Florida on June 9, 2014. Nelson is seated below pilots console and receives CST-100 briefing from Ferguson, who now directs Boeing’s crew effort. Nelson also flew in space aboard the Columbia shuttle in Jan. 1986. Credit: Ken Kremer – kenkremer.com

The purpose of developing and building the private CST-100 human rated capsule is to restore America’s capability to ferry astronauts to low-Earth orbit and the space station from American soil aboard American rockets, and thereby end our total dependency on the Russian Soyuz capsule for tickets to space and back.

Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.

“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”

So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.

US Senator Bill Nelson (FL) addresses crowd at unveiling ceremony for Boeing’s CST-100 manned capsule to the ISS at the Kennedy Space Center, Florida on June 9, 2014.  Credit: Ken Kremer - kenkremer.com
US Senator Bill Nelson (FL) addresses crowd at unveiling ceremony for Boeing’s CST-100 manned capsule to the ISS at the Kennedy Space Center, Florida on June 9, 2014. Credit: Ken Kremer – kenkremer.com

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

The stairway to America’s future human access to space is at last literally taking shape from coast to coast.

Sen. Nelson, a strong space exploration advocate for NASA and who also flew on a space shuttle mission on Columbia back in January 1986, was the first person to climb the steps and enter the hatch leading to Boeing’s stairway to the heavens.

“This is harder to get in than the shuttle. But the seats are comfortable,” Nelson told me as he climbed inside the capsule and maneuvered his way into the center co-pilots seat.

Nelson received a personal guided tour of the CST-100 spaceship from Ferguson.

The capsule measures 4.56 meters (175 inches) in diameter.

The media including myself were also allowed to sit inside the capsule and given detailed briefings on Boeing ambitious plans for building a simple and cost effective astronaut transporter.

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Boeing is among a trio of American aerospace firms, including SpaceX and Sierra Nevada Corp, vying for the next round of contracts to build America’s ‘space taxi’ in a public/private partnership with NASA using seed money under the auspices of the agency’s Commercial Crew Program (CCP).

Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.

Boeing has received approximately $600 million and is on target to complete all of NASA’s assigned CCP milestones in the current contract phase known as Commercial Crew Integrated Capability initiative (CCiCAP) by mid-2014.

Boeing’s CST-100 crew capsule reveal on June 9 comes just two weeks after SpaceX CEO Elon Musk’s Hollywoodesqe glitzy live show on May 29 – pulling the curtain off his firms ‘Dragon’ crew vehicle entry into NASA’s commercial crew program.

NASA officials say that the next round of contracts aims at building a human rated flight vehicle to dock at the ISS by late 2017.

The next contract phase known as Commercial Crew Transportation Capability (CCtCap) will result in one or more awards by NASA later this summer around August or September .

Sen. Nelson expressed his hope that the competition will continue since Congress appears likely to finally approve something near the President’s CCP funding request of over $800 million in the Fiscal 2015 NASA budget.

“With about $800 million, that’s enough money for NASA to do the competition for at least two and maybe more,” said Nelson. “That of course is up to NASA as they evaluate all the proposals.”

NASA had hoped to fly the first commercial crew missions in mid-2015.

But repeated CCP funding cuts by Congress since its inception in 2010 has already caused significant delays to the start of the space taxi missions for all three companies contending for NASA’s commercial crew contracts.

In fact the schedule has slipped already 18 months to the right compared to NASA’s initial plans thus forcing the agency to buy more Soyuz seats from the Russians at a cost of over $70 million each.

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

It was glorious to be seated inside America’s next spaceship destined to carry humans.

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

The next generation of US human spaceflight is finally coming to fruition after a long down time.

Read my exclusive new interview with NASA Administrator Charles Bolden explaining the importance of getting Commercial Crew online to expand our reach into space- here.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

It's 'Thumbs Up' for unveiling of Boeing's CST-100 Space Taxi at NASA's Kennedy Space Center on June 9, 2014.  Florida's US Sen. Bill Nelson (left), final shuttle commander Chris Ferguson (now Director of Boeing’s Crew and Mission Operations, center) and Ken Kremer/Universe Today pose in front of capsule with stairway leading to open hatch.  Credit: Ken Kremer - kenkremer.com
It’s ‘Thumbs Up’ for unveiling of Boeing’s CST-100 Space Taxi at NASA’s Kennedy Space Center on June 9, 2014. Florida’s US Sen. Bill Nelson (left), final shuttle commander Chris Ferguson (now Director of Boeing’s Crew and Mission Operations, center) and Ken Kremer/Universe Today pose in front of capsule with stairway leading to open hatch. Credit: Ken Kremer – kenkremer.com

World’s Largest Heat Shield Attached to NASA’s Orion Crew Capsule for Crucial Fall 2014 Test Flight

Lockheed Martin and NASA engineers are installing the largest heat shield ever built onto the Orion EFT-1 spacecraft’s crew module at the Kennedy Space Center. Liftoff is slated for late Fall 2014. Credit: Lockheed Martin

Lockheed Martin and NASA engineers are installing the largest heat shield ever built onto the Orion EFT-1 spacecraft’s crew module at the Kennedy Space Center. Liftoff is slated for late Fall 2014. Credit: Lockheed Martin
Story updated[/caption]

In a key milestone, technicians at the Kennedy Space Center (KSC) in Florida have attached the world’s largest heat shield to a pathfinding version of NASA’s Orion crew capsule edging ever closer to its inaugural unmanned test flight later this Fall on a crucial mission dubbed Exploration Flight Test-1 (EFT-1).

One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.

A trio of parachutes will then unfurl to slow Orion down for a splashdown in the Pacific Ocean.

Orion is NASA’s next generation human rated vehicle now under development to replace the now retired space shuttle. The state-of-the-art spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

“The Orion heat shield is the largest of its kind ever built. Its wider than the Apollo and Mars Science Lab heat shields,” Todd Sullivan told Universe Today. Sullivan is the heat shield senior manager at Lockheed Martin, Orion’s prime contractor.

The heat shield measures 16.5 feet (5 m) in diameter.

Lockheed Martin and NASA technicians mated the heat shield to the bottom of the capsule during assembly work inside the Operations and Checkout High Bay facility at KSC.

“Holes were drilled into the heat shield from the inside to the outside at the structural attached points at the underside of the crew module,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during a recent exclusive interview by Universe Today inside the Orion clean room at KSC.

“Then its opened up from the outside and bolted in place underneath. Closeout plugs made of Avcoat are then installed to close it up and seal the gaps,” Schneider explained.

The heat shield is constructed from a single seamless piece of Avcoat ablator, that was applied by engineers at Textron Defense System near Boston, Mass.

“They applied the Avcoat ablater material to the outside. That’s what protects the spacecraft from the heat of reentry,” Sullivan explained.

The ablative material will wear away as it heats up during the capsules atmospheric re-entry thereby preventing the 4000 degree F heat from being transferred to the rest of the capsule and saving it and the human crew from utter destruction.

Coming together! Orion's heat shield and crew module in position for mating operations at NASA KSC. Credit: NASA
Coming together! Orion’s heat shield and crew module in position for mating operations at NASA KSC. Credit: NASA

Orion EFT-1 is slated to launch in December 2014 atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket, currently the most powerful booster in America’s fleet.

The Delta IV Heavy is the only rocket with sufficient thrust to launch the Orion EFT-1 capsule and its attached upper stage to its intended orbit of 3600 miles altitude above Earth – about 15 times higher than the International Space Station (ISS) and farther than any human spacecraft has journeyed in 40 years.

At the conclusion of the two-orbit, four- hour EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

“The big reason to get to those high speeds during EFT-1 is to be able to test out the thermal protection system, and the heat shield is the biggest part of that.”

“Numerous sensors and instrumentation have been specially installed on the EFT-1 heat shield and the back shell tiles to collect measurements of things like temperatures, pressures and stresses during the extreme conditions of atmospheric reentry,” Wilson explained.

Orion heat shield attached to the bottom of the capsule by engineers during assembly work inside the  Operations and Checkout High Bay facility at KSC.  Credit: NASA
Orion heat shield attached to the bottom of the capsule by engineers during assembly work inside the Operations and Checkout High Bay facility at KSC. Credit: NASA

The heat shield arrived at KSC in December 2013 loaded inside NASA’s Super Guppy aircraft while I was onsite. Read my story – here.

The data gathered during the unmanned EFT-1 flight will aid in confirming. or refuting, design decisions and computer models as the program moves forward to the first flight atop NASA’s mammoth SLS booster in late 2017 on the EM-1 mission and more human crewed missions thereafter.

Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

Recently, the EFT-1 launch was postponed three months from its long planned slot in mid-September to December 2014 when NASA was ordered to make way for the accelerated launch of recently declassified US Air Force Space Surveillance satellites that were given a higher priority.

The covert Geosynchronous Space Situational Awareness Program, or GSSAP, satellites were only unveiled in Feb. 2014 during a speech by General William Shelton, commander of the US Air Force Space Command.

Despite the EFT-1 launch postponement, Kennedy Space Center Director Bob Cabana said technicians are pressing forward and continue to work around the clock at KSC in order to still be ready in time to launch by the original launch window that opens in mid- September 2014.

“The contractor teams are working to get the Orion spacecraft done on time for the December 2017 launch,” said Cabana.

“They are working seven days a week in the Operations and Checkout High Bay facility to get the vehicle ready to roll out for the EFT-1 mission and be mounted on top of the Delta IV Heavy.”

“I can assure you the Orion will be ready to go on time, as soon as we get our opportunity to launch that vehicle on its first flight test and that is pretty darn amazing.”

“Our plan is to have the Orion spacecraft ready because we want to get EFT-1 out so we can start getting the hardware in for Exploration Mission-1 (EM-1) and start processing for that vehicle that will launch on the Space Launch System (SLS) rocket in 2017,” Cabana told me

Concurrently, new American-made private crewed spaceships are under development by SpaceX, Boeing and Sierra Nevada – with funding from NASA’s Commercial Crew Program (CCP) – to restore US capability to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017.

Read my exclusive new interview with NASA Administrator Charles Bolden explaining the importance of getting Commercial Crew online – here.

Two of the three United Launch Alliance (ULA) Delta IV heavy boosters for NASA’s upcoming Orion Exploration Flight Test-1 (EFT-1) mission were unveiled during a media event inside the Horizontal Integration Facility at Launch Complex 37 at Cape Canaveral Air Force Station in Florida.  Kennedy Space Center Director Bob Cabana spoke to the media along with NASA Associate Administrator Robert Lightfoot and Tony Taliancich, ULA director of East Coast Launch Operations. Credit: Ken Kremer- kenkremer.com
Two of the three United Launch Alliance (ULA) Delta IV heavy boosters for NASA’s upcoming Orion Exploration Flight Test-1 (EFT-1) mission were unveiled during a media event inside the Horizontal Integration Facility at Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Kennedy Space Center Director Bob Cabana spoke to the media along with NASA Associate Administrator Robert Lightfoot and Tony Taliancich, ULA director of East Coast Launch Operations. Credit: Ken Kremer- kenkremer.com

Stay tuned here for Ken’s continuing Orion, Boeing, SpaceX, Orbital Sciences, commercial space, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken KremerDelta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com[/caption]

Why Commercial Crew is Critical for Future Exploration: One-on-One Interview with NASA Administrator Charles Bolden

NASA Administrator Charles Bolden discusses future of NASA human spaceflight at NASA Headquarters, Washington, DC. Credit: Ken Kremer- kenkremer.com

NASA Administrator Charles Bolden discusses future of NASA human spaceflight during exploration forum at NASA Headquarters, Washington, DC. Credit: Ken Kremer- kenkremer.com
Story updated[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MD – Why is NASA’s Commercial Crew Program to develop private human transport ships to low Earth orbit important?

That’s the question I posed to NASA Administrator Charles Bolden when we met for an exclusive interview at NASA Goddard.

The Commercial Crew Program (CCP) is the critical enabler “for establishing a viable orbital infrastructure” in the 2020s, NASA Administrator Charles Bolden told Universe Today in an exclusive one-on-one interview at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Bolden, a Space Shuttle commander who flew four time to space, says NASA wants one of the new American-made private crewed spaceships under development by SpaceX, Boeing and Sierra Nevada – with NASA funding – to be ready to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017. Flights for other commercial orbital space ventures would follow later and into the next decade.

Since the shutdown of NASA’s space shuttle program following the final flight by STS-135 in 2011 (commanded by Chris Ferguson), America has been 100% dependent on the Russians to fly our astronauts to the space station and back.

“Commercial crew is critical. We need to have our own capability to get our crews to space,” Bolden told me, during a visit to the NASA Goddard cleanroom with the agency’s groundbreaking Magnetospheric Multiscale (MMS) science probes.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Administrator Bolden foresees a huge shift in how the US will conduct space operations in low earth orbit (LEO) just a decade from now. The future LEO architecture will be dominated not by NASA and the ISS but rather by commercial entrepreneurs and endeavors in the 2020s.

“There are going to be other commercial stations or other laboratories,” Bolden excitedly told me.

And the cash strapped Commercial Crew effort to build new astronaut transporters is the absolutely essential enabler to get that exploration task done, he says.

“Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration.”

“We have got to have a way to get our crews to space.”

“You know people try to separate stuff that NASA does into nice little neat packages. But it’s not that way anymore.”

Bolden and NASA are already looking beyond the ISS in planning how to use the new commercial crew spaceships being developed by SpaceX, Boeing and Sierra Nevada in a public- partnership with NASA’s Commercial Crew Program.

“Everything we do [at NASA] is integrated. We have to have commercial crew [for] a viable low Earth orbit infrastructure – a place where we can do testing – for example with what’s going on at the ISS today.”

“And in the out years you are going to be doing the same type of work.”

“But it’s not going to be on the ISS.”

“After 2024 or maybe 2028, if we extend it again, you are going to see the people on commercial vehicles. There are going to be other stations or other laboratories.”

“But there won’t be NASA operated laboratories. They will be commercially viable and operating laboratories.”

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Private NewSpace ventures represent a revolutionary departure from current space exploration thinking. But none of these revolutionary commercial operations will happen if we don’t have reliable and cost effective human access to orbit from American soil with American rockets on American spaceships.

“We need to have our own capability to get our crews to space – first of all. That’s why commercial crew is really, really, really important,” Bolden emphasized.

The ongoing crises in Ukraine makes development of a new US crew transporter to end our total reliance on Russian spaceships even more urgent.

“Right now we use the Russian Soyuz. It is a very reliable way to get our crews to space. Our partnership with Roscosmos is as strong as it’s ever been.”

“So we just keep watching what’s going on in other places in the world, but we continue to work with Roscosmos the way we always have,” Bolden stated.

The latest example is this week’s successful launch of the new three man Russian-US- German Expedition 40 crew to the ISS on a Soyuz.

Of course, the speed at which the US develops the private human spaceships is totally dependent on the funding level for the Commercial Crew program.

Unfortunately, progress in getting the space taxis actually built and flying has been significantly slowed because the Obama Administration CCP funding requests for the past few years of roughly about $800 million have been cut in half by a reluctant US Congress. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.

And every forced postponement to CCP costs US taxpayers another $70 million payment per crew seat to the Russians. As a result of the congressional CCP cuts more than 1 Billion US Dollars have been shipped to Russia instead of on building our own US crew transports – leaving American aerospace workers unemployed and American manufacturing facilities shuttered.

I asked Bolden to assess NASA’s new funding request for the coming fiscal year 2015 currently working its way through Congress.

“It’s looking better. It’s never good. But now it’s looking much better,” Bolden replied.

“If you look at the House markup that’s a very positive indication that the budget for commercial crew is going to be pretty good.”

The pace of progress in getting our crews back to orbit basically can be summed up in a nutshell.

“No Bucks, No Buck Rogers,” Chris Ferguson, who now leads Boeing’s crew effort, told me in a separate exclusive interview for Universe Today.

NASA Administrator Charles Bolden and Ken Kremer (Universe Today) inspect NASA’s Magnetospheric Multiscale (MMS) mated quartet of stacked spacecraft at the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden and Ken Kremer (Universe Today) inspect NASA’s Magnetospheric Multiscale (MMS) mated quartet of stacked spacecraft at the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

The Boeing CST-100, Sierra Nevada Dream Chaser and SpaceX Dragon ‘space taxis’ are all vying for funding in the next round of contracts to be awarded by NASA around late summer 2014 known as Commercial Crew Transportation Capability (CCtCap).

All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.

Altogether they have received more than $1 Billion in NASA funding under the current CCiCAP initiative. Boeing and SpaceX were awarded contracts worth $460 million and $440 million, respectively. Sierra Nevada was given what amounts to half an award worth $212.5 million.

SpaceX CEO Elon Musk just publicly unveiled his manned Dragon V2 spaceship on May 29.

Boeing’s Chris Ferguson told me that assembly of the CST-100 test article starts soon at the Kennedy Space Center.

NASA officials have told me that one or more of the three competitors will be chosen later this year in the next phase under CCtCAP to build the next generation spaceship to ferry astronauts to and from the ISS by 2017.

In order to certify the fitness and safety of the new crew transporters, the CCtCAP contracts will specify that “each awardee conduct at least one crewed flight test to verify their spacecraft can dock to the space station and all its systems perform as expected.”

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS
Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Concurrently, NASA is developing the manned Orion crew vehicle for deep space exploration. The state-of-the-art capsule will carry astronauts back to the Moon and beyond on journeys to Asteroids and one day to Mars.

“We need to have our own capability to get our crews to space. Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration,” that’s the bottom line message from my interview with NASA Administrator Bolden.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com