Due to a fast approaching solar storm, NASA has temporarily shut down surface operations of the Curiosity Mars Science Lab (MSL) rover.
NASA took the precautionary measure because ‘a big coronal mass ejection’ was predicted to hit Mars over the next few days starting March 7, or Martian Sol 207 of the mission, researchers said.
The rover team wants to avoid a repeat of the computer memory glitch that afflicted Curiosity last week, and caused the rover to enter a protective ‘safe mode’.
“The rover was commanded to go to sleep,” says science team member Ken Herkenhoff of the US Geological Survey (USGS).
“Space weather can by nasty!”
This is the 2nd shutdown of the 1 ton robot in a week. Curiosity had just been returned to active status over the weekend.
A full resumption of science operations had been anticipated for next week, but is now on hold pending the outcome of effects from the solar storm explosions.
“We are making good progress in the recovery,” said Mars Science Laboratory Project Manager Richard Cook, of NASA’s Jet Propulsion Laboratory, prior to the new solar flare.
“Storm’s a-comin’! There’s a solar storm heading for Mars. I’m going back to sleep to weather it out,” tweeted Curiosity.
Solar flares cause intense bursts of radiation that can damage spacecraft and also harm space faring astronauts, and require the installation of radiation shielding and hardening on space based assets.
Since Mars lacks a magnetic field, the surface is virtually unprotected from constant bombardment by radiation.
NASA’s other spacecraft exploring Mars were unaffected by the solar eruptions – including the long lived Opportunity rover and the orbiters; Mars Odyssey & Mars Reconnaissance Orbiter.
Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.
So far Curiosity has snapped over 48,000 images and traveled nearly 0.5 miles.
Curiosity’s goal is to assess whether the Gale Crater area on Mars ever offered a habitable zone conducive for Martian microbial life, past or present.
This short 60-second video explains organic molecules and what they can tell us about the history of Mars. It’s also a good segue to provide an update on how the Curiosity rover is doing following the computer problems we reported earlier this week.
Word is that the rover will resume its activities tonight. This is later than originally planned, as shortly after being recovered from safe mode back into active status following a memory issue with one of its on-board computers, engineers put Curiosity into sleep mode because of a rather large solar flare that was heading to Mars.
“Storm’s a-comin’!” the rover’s Twitter account announced. “There’s a solar storm heading for Mars. I’m going back to sleep to weather it out.”
But the CME has now passed and all appears to be well with the rover. Look for raw images to resume soon!
The Curiosity rover is now out of “safe mode” following a memory problem with its main computer, and the Mars Science Laboratory team expects the rover to resume full operations next week. Controllers switched the rover to a redundant onboard computer, the rover’s “B-side” computer, on Feb. 28 when the “A-side” computer that the rover had been using demonstrated symptoms of a corrupted memory location. The intentional computer swap put the rover, as anticipated, into minimal-activity safe mode.
“We are making good progress in the recovery,” said MSL Project Manager Richard Cook. “One path of progress is evaluating the A-side with intent to recover it as a backup. Also, we need to go through a series of steps with the B-side, such as informing the computer about the state of the rover — the position of the arm, the position of the mast, that kind of information.”
This is the first glitch of any kind the Curiosity rover has suffered since landing in August, 2012. NASA has indicated this is not a serious problem (as Emily Lakdawalla of the Planetary Society put it “not life-threatening, just really inconvenient.) It will just take time to make sure the computer switch-over is done correctly.
NASA says the cause for the A-side’s memory symptoms observed last week remains to be determined, but the most likely cause was that the computer memory was corrupted by a cosmic ray hit. These are subatomic particles traveling through space at extraordinary speeds. The origin of cosmic rays was recently determined to be distant supernovae.
Meanwhile, the rover has not done any surface operations or uploaded any new images to Earth since Sol 200, so for those of you going through withdrawal from not seeing any new raw images from Curiosity, we’ll keep you posted of when the flow of images resumes.
During its “seven minutes of terror” landing on August 6, 2012, NASA’s Mars Science Laboratory dropped quite a few things down onto the Martian surface: pieces from the cruise stage, a heat shield, a parachute, the entry capsule’s backshell, a sky crane, one carefully-placed rover (obviously) and also eight tungsten masses — weights used for ballast and orientation during the descent process.
Two 75 kilogram (165 lb) blocks were released near the top of the atmosphere and six 25 kg (55 lb) weights a bit farther down, just before the deployment of the parachute. The image above, an enhanced-color image from the HiRISE camera aboard the Mars Reconnaissance Orbiter, shows the impact craters from four of these smaller tungsten masses in high resolution. This is part of a surface scan acquired on Jan. 29, 2013.
These four craters are part of a chain of six from all the 55 kg weights. See below for context:
Captured by MRO’s Context Camera shortly after the rover landed, the animation above shows the impact site of all six 55 kg masses. These impacted the Martian surface about 12 km (7.5 miles) from the Curiosity rover’s landing site.
A mosaic has been assembled showing potential craters from the larger ballast blocks as well as other, smaller pieces of the cruise stage. Check it out below or download the full 50mb image here.
A problem with the memory on the Curiosity rover’s main computer has caused engineers to switch the rover over to a redundant onboard computer. This caused the rover to go into “safe mode,” which was anticipated in the computer switch. And so now over the next few days, the team will be shifting the rover from safe mode to operational status. They are also troubleshooting the condition that affected operations yesterday.
The @MarsCuriosity Twitter feed posted: “Don’t flip out: I just flipped over to my B-side computer while the team looks into an A-side memory issue.”
JPL said the condition is related to a glitch in flash memory linked to the other, now-inactive, computer in response to a memory issue on the computer that had been active.
The intentional swap occurred at about 2:30 a.m. PST on Thursday, Feb. 28.
“We switched computers to get to a standard state from which to begin restoring routine operations,” said Richard Cook. .
Like many spacecraft, Curiosity carries a pair of redundant main computers in order to have a backup available if one fails. Each of the computers, A-side and B-side, also has other redundant subsystems linked to just that computer. Curiosity is now operating on its B-side, as it did during part of the flight from Earth to Mars. It operated on its A-side from before the August 2012 landing through Wednesday.
“While we are resuming operations on the B-side, we are also working to determine the best way to restore the A-side as a viable backup,” said JPL engineer Magdy Bareh, leader of the mission’s anomaly resolution team.
The spacecraft remained in communications at all scheduled communication windows on Wednesday, but it did not send recorded data, only current status information. The status information revealed that the computer had not switched to the usual daily “sleep” mode when planned. Diagnostic work in a testing simulation at JPL indicates the situation involved corrupted memory at an A-side memory location used for addressing memory files.
Scientific investigations by the rover were suspended Wednesday and today. Resumption of science investigations is anticipated within several days. This week, laboratory instruments inside the rover have been analyzing portions of the first sample of rock powder ever collected from the interior of a rock on Mars.
NASA’s Curiosity rover has eaten the 1st ever samples of gray rocky powder cored from the interior of a Martian rock.
The robotic arm delivered aspirin sized samples of the pulverized powder to the rover’s Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments this past weekend on Feb. 22 and 23, or Sols 195 and 196 respectively.
Both of Curiosity’s chemistry labs have already begun analyzing the samples – but don’t expect results anytime soon because of the complexity of the operation involved.
“Analysis has begun and could take weeks,’ NASA JPL spokesman Guy Webster told Universe Today.
The samples were collected from the rover’s 1st drilling site known as ‘John Klein’ – comprised of a red colored slab of flat, fine-grained, sedimentary bedrock shot through with mineral veins of Calcium Sulfate that formed in water.
“Data from the instruments have confirmed the deliveries,” said Curiosity Mission Manager Jennifer Trosper of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.
On Feb. 8, 2013 (mission Sol 182), Curiosity used the rotary-percussion drill mounted on the tool turret at the end of the 7 foot (2.1 meter) long robotic arm to bore a circular hole about 0.63 inch (16 mm) wide and about 2.5 inches (64 mm) deep into ‘John Klein’ that produced a slurry of gray tailings
The gray colored tailings give a completely fresh insight into Mars that offers a stark contrast to the prevailing views of reddish-orange rusty, oxidized dust.
The eventual results from SAM and CheMin may give clues about what exactly does the color change mean. One theory is that it might be related to different oxidations states of iron that could potentially inform us about the habitability of Mars insides the rover’s Gale Crater landing site.
“The rock drilling capability is a significant advancement. It allows us to go beyond the surface layer of the rock, unlocking a time capsule of evidence about the state of Mars going back 3 or 4 Billion years,” said Louise Jandura of JPL and Curiosity’s chief engineer for the sampling system.
Additional portions of the first John Klein sample could be delivered to SAM and CheMin if the results warrant. The state-of-the-art instruments are testing the gray powder to elucidate the chemical composition and search for simple and complex organic molecules based on carbon, which are the building blocks of life as we know it.
The Curiosity science team believes that this work area inside Gale Crater called Yellowknife Bay, experienced repeated percolation of flowing liquid water long ago when Mars was warmer and wetter – and therefore was potentially more hospitable to the possible evolution of life.
Curiosity is nearly 7 months into her 2 year long primary mission. So far she has snapped over 45,000 images.
“The mission is discovery driven,” says John Grotzinger, the Curiosity mission’s chief scientist of the California Institute of Technology.
The rover will likely remain in the John Klein area for several more weeks to a month or more to obtain a more complete scientific characterization of the area which has seen repeated episodes of flowing water.
Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.
Newly received images from the surface of Mars confirm that NASA’sCuriosity rover successfully extracted the 1st ever samples collected by drilling down inside a rock on another planet and transferred the pulverized alien powder to the robots processing scoop, thrilled mission scientists announced just hours after seeing visual corroboration.
Collecting the 1st particles bored from the interior of a rock on a planet beyond Earth marks a historic feat in humankind’s exploration of the cosmos – and is crucial for achieving Curiosity’s goal to determine whether Mars ever could have supported microbial life, past or present.
The essential next step is to feed carefully sieved portions of the precious gray colored material into the high powered duo of miniaturized analytical chemistry labs (CheMin & SAM) inside the rover, for thorough analysis and scrutiny of their mineral content and to search for signatures of organic molecules – the building blocks of life as we know it.
Curiosity is drilling into ancient bedrock and hunting for clues to the planet’s habitability over the eons and that preserve the historical record – perhaps including organics.
The rover team believes that this work area inside Gale Crater called Yellowknife Bay, experienced repeated percolation of flowing liquid water long ago when Mars was warmer and wetter – and therefore was potentially more hospitable to the possible evolution of life. See our Yellowknife Bay worksite and drill hole photo mosaics below by Ken Kremer & Marco Di Lorenzo, created from rover raw images.
“We collected about a tablespoon of powder, which meets our expectations and is a great result,” said JPL’s Scott McCloskey, drill systems engineer for Curiosity, at a NASA media briefing on Feb. 20. “We are all very happy and relieved that the drilling was a complete success.”
The gray colored tailings from the rocky interior offer a startlingly fresh sight of Mars compared to the red-orangey veneer of rusty, oxidized dust we are so accustomed to seeing globally across what we humans have referred to for centuries as the “Red Planet”.
“For the first time we are examining ancient rocks that have not been exposed to the Martian surface environment, and weathering, and preserve the environment in which they formed,” said Joel Hurowitz, Curiosity sampling system scientist of JPL.
This is a key point because subsequent oxidation reactions can destroy organic molecules and thereby potential signs of habitability and life.
“The tailings are gray. All things being equal it’s better to have a gray color than red because oxidation is something that can destroy organic compounds,” said John Grotzinger, the Curiosity mission’s chief scientist of the California Institute of Technology.
On Feb. 8, 2013 (mission Sol 182), Curiosity used the rotary-percussion drill mounted on the tool turret at the end of the 7 foot (2.1 meter) long robotic arm to bore a circular hole about 0.63 inch (16 mm) wide and about 2.5 inches (64 mm) deep into a red colored slab of flat, fine-grained, veiny sedimentary bedrock named “John Klein” that formed in water.
“Curiosity’s first drill hole at the John Klein site is a historic moment for the MSL mission, JPL, NASA and the United States. This is the first time any robot, fixed or mobile, has drilled into a rock to collect a sample on Mars,” said Louise Jandura, Curiosity’s chief engineer for the sampling system.
“In fact, this is the first time any rover has drilled into a rock to collect a sample anywhere but on Earth. In the five decade history of the space age this is indeed a rare event.”
“The rock drilling capability is a significant advancement. It allows us to go beyond the surface layer of the rock, unlocking a time capsule of evidence about the state of Mars going back 3 or 4 Billion years.”
“Using our roving geologist Curiosity, the scientists can choose the rock, get inside the rock and deliver the powdered sample to instruments on the rover for analysis.”
“We couldn’t all be happier as Curiosity drilled her first hole on Mars,” said Jandura.
Over the next few days, the powdery gray scoop material will be shaken and moved through Curiosity’s sample processing device known as CHIMRA, or Collection and Handling for In-Situ Martian Rock Analysis and sieved through ultra fine screens that filter out particles larger than 150 microns (0.006 inch) across – about the width of a human strand of hair.
Drilling goes to the heart of the mission. It is absolutely indispensable for collecting and conveying pristine portions of Martian rocks and soil to a trio of inlet ports on top of the rover deck leading into the Chemistry and Mineralogy (CheMin) instrument and Sample Analysis at Mars (SAM) instrument .
The sieving process is designed to prevent clogging downstream into the chemistry labs.
The pair of state-of-the-art instruments will then test the gray rocky powder for a variety of inorganic minerals as well as both simple and complex organic molecules.
Samples will be dropped off first to CheMin and then SAM over the next few days. Results are expected soon.
The data so far indicate the drilled rock is either siltstone or mudstone with a basaltic bulk composition, said Hurowitz. The CheMin and SAM testing will be revealing.
The high powered drill was the last of Curiosity 10 instruments still to be checked out and put into full operation and completes the robots commissioning phase.
“This is a real big turning point for us as we had a passing of the key for the rover [from the engineering team] to the science team,” said Grotzinger.
Curiosity has discovered that Yellowknife Bay is loaded with hydrated mineral veins of calcium sulfate that precipitated from interaction with aqueous environments.
I asked how was the drill target hole selected?
“We wanted to be well centered in a large plate of bedrock where we knew we could place the drill into a stable location on an interesting rock,” Hurowitz told Universe Today.
“The drill did not specifically target the veins or nodular features visible in this rock. But these rocks are so shot through with these features that it’s hard to imagine that we would have been missed them somewhere along the travel of the drill.”
“We will find out what’s in the material once we get the materials analyzed by SAM and CheMin.
“We will consider additional drill targets if we think we missed a component of the rock.”
“We believe the white vein material is calcium sulfate based on data from ChemCam and APXS but we don’t yet know the hydration state.” Hurowitz told me.
Regarding the prospects for conducting additional sample drilling and soil scooping at Yellowknife Bay, Grotzinger told me, “We have to take it one step at a time.”
“We have to see what we find in the first sample. We are discovery driven and that will determine what we do next here,” Grotzinger said. “We have no quotas.”
The long term mission goal remains to drive to the lower reaches of Mount Sharp some 6 miles away and look for habitable environments in the sedimentary layers.
Curiosity executed a flawless and unprecedented nail-biting, pinpoint touchdown on Aug. 5, 2012 to begin her 2 year long primary mission inside Gale Crater. So far she has snapped over 45,000 images, traveled nearly 0.5 miles, conducted 25 analysis with the APXS spectrometer and fired over 12,000 laser shots with the ChemCam instrument.
There’s an incredible new interactive panorama from the latest Curiosity rover’s self-portrait and surroundings at the “John Klein” drilling site. It was put together by photographer Andrew Bodrov and combines the recent self-portrait and other images to create a full 360-degree panorama created from hundreds of images. The mosaic stretches about 30,000 pixels width.
The pan includes the self-portrait, which consists of 66 different images (seen above) taken by the rover’s Mars Hand Lens Imager (MAHLI) during the 177th Martian sol, of Curiosity’s work on Mars (Feb. 3, 2013 here on Earth), along with 113 images taken on Sol 170 and an additional 17 images taken on Sol 176.
Here’s the full pan in a non-interactive view:
In the pan, you can see the holes in the rock named John Klein — in memory of a Mars Science Laboratory deputy project manager who died in 2011. The historic first drilling took place on Feb. 8, 2013, and by zooming around and in, you can also see the weird little shiny protuberance we’ve been talking about (look for the pile of rocks to the right of the rover.)
As we reported last week, images from the Curiosity rover showed what looked like a piece of shiny metal sticking out from a rock. Some of our readers suggested that it might be a handle or knob of some kind. It’s a knob, yes, says Ronald Sletten from the Mars Science Laboratory team, but a completely natural formation. Sletten, from the University of Washington, explained that, not surprisingly, it is actually a part of the rock that is different — harder and more resistant to erosion — than the rest of the rock it’s embedded in.
On Earth, as on Mars, “often you can see knobs or projections on surfaces eroded by the wind, particularly when a harder, less erodible rock is on top,” Sletten said, via an email to Universe Today from the Jet Propulsion Laboratory media relations office. “The rock on top of the projection is likely more resistant to wind erosion and protects the underlying rock from being eroded.”
As far as why it appears shiny, Sletten said, “The shiny surface suggests that this rock has a fine grain and is relatively hard. Hard, fine grained rocks can be polished by the wind to form very smooth surfaces.”
It also may be shiny because it is wind-blasted and therefore dust-free, Sletten said, “while the surfaces not directly being eroded by wind may have a fine layer of reddish dust or rock-weathering rind. The sandblasted surfaces may reveal the inherent rock color and texture.”
He added that the object is an interesting study in how wind and the natural elements cause erosion and other effects on various types of rocks.
In looking at a zoomed-in close-up of the “knob” or protuberance from the rock, Sletten said, “This knob has a different type of rock on the end of the projection. This rock may vary in composition or the rock grain size may be smaller.”
Because of the winds on Mars, there is quite a bit of erosion of rock, visible in the image above, as well as in many images from all the Mars rovers and landers. These type of surfaces are called “ventifacted” — wind-eroded surfaces caused by many fine particles of dust or sand impacting the surface over time. Areas of rocks may appear sculpted, as softer parts erode more easily or they may reflect small scale wind patterns, Sletten said.
In some ways, he added, it’s a lot like what happens to rocks in Antarctica. See the annotated images he provided below:
So, this weird shiny thing on Mars is nothing too out of the ordinary — not a door handle, hood ornament or not even Richard Hoagland’s bicycle, as was suggested by readers on our previous article.
But for one more look, here’s the 3-D version(make sure you use the red-green 3-D glasses):
The original raw image from the Curiosity rover can be seen here, and our thanks to Elisabetta Bonora, an image editing enthusiast from Italy, who originally pointed this image out to us.
Earth’s most advanced planetary robot ever has successfully bored into the interior of Martian rock and collected fresh samples in a historic first time feat in humankinds exploration of the cosmos.
NASA’sCuriosity drilled a circular hole about 0.63 inch (16 mm) wide and about 2.5 inches (64 mm) deep into a red slab of fine-grained sedimentary rock rife with hydrated mineral veins of calcium sulfate – and produced a slurry of grey tailings surrounding the hole. The team believes this area repeatedly experienced percolation of flowing liquid water eons ago when Mars was warmer and wetter – and potentially more hospitable to the possible evolution of life.
The precision drilling took place on Friday, Feb. 8, 2013 on Sol 182 of the mission and images were just beamed back to Earth today, Saturday, Feb 9. The rover simultaneously celebrates 6 months on the Red Planet since the nail biting touchdown on Aug. 6, 2012 inside Gale Crater.
The entire rover team is overjoyed beyond compare after nearly a decade of painstakingly arduous efforts to design, assemble, launch and land the Curiosity Mars Science Laboratory (MSL) rover that culminated with history’s first ever drilling and sampling into a pristine alien rock on the surface of another planet in our Solar System.
“The most advanced planetary robot ever designed now is a fully operating analytical laboratory on Mars,” said John Grunsfeld, NASA associate administrator for the agency’s Science Mission Directorate.
“This is the biggest milestone accomplishment for the Curiosity team since the sky-crane landing last August, another proud day for America.”
Drilling goes to the heart of the mission. It is absolutely essential for collecting soil and rock samples to determine their chemical composition and searching for traces of organic molecules – the building blocks of life. The purpose is to elucidate whether Mars ever offered a habitable environment suitable for supporting Martian microbes, past pr present.
The high powered drill was the last of Curiosity’s 10 instruments still to be checked out and put into full operation.
The rover plunged the rotary-percussion drill located on the end of her 7 foot (2.1 m) robot arm into a flat outcrop of rocks named “John Klein”; where she is currently toiling away inside a shallow basin named Yellowknife Bay, and that witnessed many episodes of streaming water billions of years ago.
Ground controllers will now command the rover to pulverize and sieve the powdery rocky material through screens that will filter out any particles larger than six-thousandths of an inch (150 microns) across.
Thereafter comes the ultimate test – when the processed Martian powders are delivered by the robot arm to Curiosity’s miniaturized CheMin and SAM analytical labs though a trio of inlet ports located atop the rover deck for thorough analysis and scrutiny.
“We commanded the first full-depth drilling, and we believe we have collected sufficient material from the rock to meet our objectives of hardware cleaning and sample drop-off,” said Avi Okon, drill cognizant engineer at NASA’s Jet Propulsion Laboratory (JPL), Pasadena.
Rock tailings generated from the 5/8 inch (16 mm) wide drill bit traveled up narrow flutes on the bit and then inside the drill’s chambers for transfer to the process handling mechanisms on the arm’s tool turret.
“We’ll take the powder we acquired and swish it around to scrub the internal surfaces of the drill bit assembly,” said JPL’s Scott McCloskey, drill systems engineer. “Then we’ll use the arm to transfer the powder out of the drill into the scoop, which will be our first chance to see the acquired sample.”
A portion of the material will first be used to scour and cleanse the labyrinth of processing chambers of trace contaminants possibly brought from Earth before launch from Cape Canaveral, Florida back in Nov. 2011.
The rock Curiosity drilled is called “John Klein” in memory of a Mars Science Laboratory deputy project manager who died in 2011.
Curiosity represents a quantum leap in capability beyond any prior landed mission on the Red Planet. The car sized 1 ton rover sports 10 state-of-the-art science instruments from the US and collaborators in Europe.
The 1 ton robot will continue working for several additional weeks investigating Yellowknife Bay and the Glenelg area – which lies at the junction of three different types of geologic terrain.
Thereafter, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.