Largest Dark Matter Detector is Narrowing Down Dark Matter Candidate

Technicians scanning for dust on the LUX-ZEPLIN (LZ) Dark Matter Detector. Credit: LZ Experiment

In 2012, two previous dark matter detection experiments—the Large Underground Xenon (LUX) and ZonEd Proportional scintillation in Liquid Noble gases (ZEPLIN)—came together to form the LUX-ZEPLIN (LZ) experiment. Since it commenced operations, this collaboration has conducted the most sensitive search ever mounted for Weakly Interacting Massive Particles (WIMPs) – one of the leading Dark Matter candidates. This collaboration includes around 250 scientists from 39 institutions in the U.S., U.K., Portugal, Switzerland, South Korea, and Australia.

On Monday, August 26th, the latest results from the LUX-ZEPLIN project were shared at two scientific conferences. These results were celebrated by scientists at the University of Albany‘s Department of Physics, including Associate Professors Cecilia Levy and Matthew Szydagis (two members of the experiment). This latest result is nearly five times more sensitive than the previous result and found no evidence of WIMPs above a mass of 9 GeV/c2. These are the best-ever limits on WIMPS and a crucial step toward finding the mysterious invisible mass that makes up 85% of the Universe.

Continue reading “Largest Dark Matter Detector is Narrowing Down Dark Matter Candidate”

Dark Matter Could Have Driven the Growth of Early Supermassive Black Holes

An image from the Event Horizon Telescope shows lines of polarization, a signature of magnetic fields, around the shadow of the Milky Way's central supermassive black hole. Astronomers want to know how massive black holes like this one formed early in cosmic history. (Credit: EHT Collaboration)
An image from the Event Horizon Telescope shows lines of polarization, a signature of magnetic fields, around the shadow of the Milky Way's central supermassive black hole. Astronomers want to know how massive black holes like this one formed early in cosmic history. (Credit: EHT Collaboration)

The James Webb Space Telescope (JWST) keeps finding supermassive black holes (SMBH) in the early Universe. They’re in active galactic nuclei seen only 500,000 years after the Big Bang. This was long before astronomers thought they could exist. What’s going on?

Continue reading “Dark Matter Could Have Driven the Growth of Early Supermassive Black Holes”

New Limits on Dark Matter

LZ’s central detector, the time projection chamber, in a surface lab clean room before delivery underground. Credit: Matthew Kapust/Sanford Underground Research Facility

As it’s name suggests, dark matter is dark! That means it’s largely invisible to us and only detectable through its interaction with gravity. One of the leading theories to explain the stuff that makes up the majority of the matter in the Universe are WIMPs, Weakly Interacting Massive Particles. They are just theories though and none have been detected. An exciting new experiment called LUX-ZEPLIN has just completed 280 days of collecting data but still, no WIMPs have been detected above 9 Gev/c2. There are plans though to narrow the search.

Continue reading “New Limits on Dark Matter”

Giant Collision Decouples Dark Matter from Regular Matter

This artist's concept shows what happened when two massive clusters of galaxies, collectively known as MACS J0018.5, collided: The dark matter in the galaxy clusters (blue) sailed ahead of the associated clouds of hot gas, or normal matter (orange). Both dark matter and normal matter feel the pull of gravity, but only the normal matter experiences additional effects like shocks and turbulence that slow it down during collisions. Credit: W.M. Keck Observatory/Adam Makarenko

Dark matter is a mysterious and captivating subject. It’s a strange concept and we don’t really have a handle on what it actually is. One of the strongest pieces of evidence that dark matter is a particle comes from cosmic collisions. These collisions chiefly occur when clusters of galaxies interact such as the famous Bullet Cluster. Gravitational lensing reveals how the dark matter component couples from gas and dust in the cluster but now, astronomers have found another galaxy cluster collision but it is different, showing the collision from a new angle. 

Continue reading “Giant Collision Decouples Dark Matter from Regular Matter”

A Solution to the “Final Parsec Problem?”

Simulation of merging supermassive black holes. Credit: NASA's Goddard Space Flight Center/Scott Noble
Simulation of merging supermassive black holes. New research shows how dark matter overcomes the Final Parsec Problem. Credit: NASA's Goddard Space Flight Center/Scott Noble

Supermassive Black Holes are Nature’s confounding behemoths. It’s difficult for Earth-bound minds to comprehend their magnitude and power. Astrophysicists have spent decades studying them, and they’ve made progress. But one problem still baffles even them: the Final Parsec Problem.

New research might have solved the problem, and dark matter plays a role in the solution.

Continue reading “A Solution to the “Final Parsec Problem?””

Pulsars are the Ideal Probes for Dark Matter

This artist's concept shows a pulsar, which is like a lighthouse, as its light appears in regular pulses as it rotates. Pulsars are dense remnants of exploded stars, and are part of a class of objects called neutron stars. http://photojournal.jpl.nasa.gov/catalog/PIA21085 Credit NASA/JPL-Caltech

Pulsars are the remnants of the explosion of massive stars at the end of their lives. The event is known as a supernova and as they rapidly spin they sweep a high energy beam across the cosmos much like a lighthouse. The alignment of some pulsar beams mean they sweep across Earth predictably and with precise regularity. They can be, and often are used as timing gauges but a team of astronomers have found subtle timing changes in some pulsars hinting at unseen mass between pulsars and telescopes—possibly dark matter entities.

Continue reading “Pulsars are the Ideal Probes for Dark Matter”

Mapping the Stars in a Dwarf Galaxy to Reveal its Dark Matter

Draco Dwarf Spheroidal galaxy

Dark matter is curious stuff! As the name suggests, it’s dark making it notoriously difficult to study. Although it’s is invisible, it influences stars in a galaxy through gravity. Now, a team of astronomers have used the Hubble Space Telescope to chart the movements of stars within the Draco dwarf galaxy to detect the subtle gravitational pull of its surrounding dark matter halo. This 3D map required studying nearly two decades of archival data from the Draco galaxy. They found that dark matter piles up more in the centre, as predicted by cosmological models.

Continue reading “Mapping the Stars in a Dwarf Galaxy to Reveal its Dark Matter”

Dark Matter: Why study it? What makes it so fascinating?

Image from NASA’s Hubble Space Telescope of a galaxy cluster that could contain dark matter (blue-shaded region). (Credit: NASA, ESA, M. J. Jee and H. Ford et al. (Johns Hopkins Univ.))

Universe Today has had some incredible discussions with a wide array of scientists regarding impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, planetary geophysics, cosmochemistry, meteorites, radio astronomy, extremophiles, organic chemistry, black holes, cryovolcanism, and planetary protection, and how these intriguing fields contribute to our understanding regarding our place in the cosmos.

Here, Universe Today discusses the mysterious field of dark matter with Dr. Shawn Westerdale, who is an assistant professor in the Department of Physics & Astronomy and head of the Dark Matter and Neutrino Lab at the University of California, Riverside, regarding the importance of studying dark matter, the benefits and challenges, the most exciting aspects about dark matter he’s studied throughout his career, and advice for upcoming students who wish to pursue studying dark matter. So, what is the importance of studying dark matter?

Continue reading “Dark Matter: Why study it? What makes it so fascinating?”

Another Strike Against Primordial Black Holes as an Explanation for Dark Matter

An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to a black hole. Credit: Aaron Smith/TACC/UT-Austin.
An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to create black holes. Credit: Aaron Smith/TACC/UT-Austin.

The quest to understand dark matter has taken many twists and turns. It’s a scientific tale but also a human one. We know there’s a missing mass problem, but astrophysicists and cosmologists can’t figure out what the missing matter is. One of the most interesting potential solutions is primordial black holes (PBHs).

However, new research suggests that PBHs can only make up a small portion of dark matter if any at all.

Continue reading “Another Strike Against Primordial Black Holes as an Explanation for Dark Matter”

If Gravity Can Exist Without Mass, That Could Explain Dark Matter

Researchers are making progress mapping dark matter, but they don't know what it is. This is a 3D density map of dark matter in the local universe, with the Milky Way marked by an X. Dots are galaxies, and the arrows indicate the directions of motion derived from the reconstructed gravitational potential of dark matter. Image Credit: Hong et al., doi: 10.3847/1538-4357/abf040.

Dark Matter is Nature’s poltergeist. We can see its effects, but we can’t see it, and we don’t know what it is. It’s as if Nature is playing tricks on us, hiding most of its mass and confounding our efforts to determine what it is.

Continue reading “If Gravity Can Exist Without Mass, That Could Explain Dark Matter”