Attempts to directly detect dark matter have come up empty. A team of physicists have proposed a brand new method: if dark matter exists in clumps that occasionally pass through the solar system, we may be able to detect their slight influence with ultra-sensitive gravitational waves detectors.
Continue reading “Gravitational Wave Telescopes Could Detect Clumps of Dark Matter Drifting Through the Solar System”Dark Stars: The First Stars in the Universe Could Have Been Powered by Annihilating Dark Matter
Dark matter doesn’t really do much of anything in the present-day universe. But in the early days of the cosmos there may have been pockets of dark matter with high enough density that they provided a source of heat for newly forming stars. Welcome to the strange and wonderful world of “dark stars.”
Continue reading “Dark Stars: The First Stars in the Universe Could Have Been Powered by Annihilating Dark Matter”Could we Detect Dark Matter’s Annihilation Within Globular Clusters?
A team of astronomers studied two nearby globular clusters, 47 Tucanae and Omega Centauri, searching for signals produced by annihilating dark matter. Those the searches turned up empty, they weren’t a failure. The lack of a detection placed strict upper limits on the mass of the hypothetical dark matter particle.
Continue reading “Could we Detect Dark Matter’s Annihilation Within Globular Clusters?”If Axions are Dark Matter, we've got new Hints About Where to Look for Them
If dark matter is out there, and it certainly seems to be, then what could it possibly be? That is perhaps the biggest mystery of dark matter. The only known particles that match the requirement of having mass and not interacting strongly with light are neutrinos. But neutrinos have low mass and zip through the cosmos at nearly the speed of light. They are a form of “hot” dark matter, so they don’t match the observed data that require dark matter to be “cold.” With neutrinos ruled out, cosmologists look toward various hypothetical particles we haven’t discovered, and perhaps the most popular of these are known as axions.
Continue reading “If Axions are Dark Matter, we've got new Hints About Where to Look for Them”A Detailed Simulation of the Universe Creates Structures Very Similar to the Milky Way and its Surroundings
In their pursuit of understanding cosmic evolution, scientists rely on a two-pronged approach. Using advanced instruments, astronomical surveys attempt to look farther and farther into space (and back in time) to study the earliest periods of the Universe. At the same time, scientists create simulations that attempt to model how the Universe has evolved based on our understanding of physics. When the two match, astrophysicists and cosmologists know they are on the right track!
In recent years, increasingly-detailed simulations have been made using increasingly sophisticated supercomputers, which have yielded increasingly accurate results. Recently, an international team of researchers led by the University of Helsinki conducted the most accurate simulations to date. Known as SIBELIUS-DARK, these simulations accurately predicted the evolution of our corner of the cosmos from the Big Bang to the present day.
Continue reading “A Detailed Simulation of the Universe Creates Structures Very Similar to the Milky Way and its Surroundings”How Dark Matter Could Be Measured in the Solar System
Dark matter has long been a mystery to astronomers, in no small part because it is so hard to measure directly. Its influence is plain when looking at its gravitational effects on objects such as far away galaxies, but measuring that influence directly has proved much trickier. But now, a team of scientists thinks they have a way to measure the influence of dark matter directly – all it would require is a specialized probe that sits really far away from Earth for a while.
Continue reading “How Dark Matter Could Be Measured in the Solar System”Finally, an Explanation for the Cold Spot in the Cosmic Microwave Background
According to our current Cosmological models, the Universe began with a Big Bang roughly 13.8 billion years ago. During the earliest periods, the Universe was permeated by an opaque cloud of hot plasma, preventing atoms from forming. About 380,000 years later, the Universe began to cool and much of the energy generated by the Big Bang converted into light. This afterglow is now visible to astronomers as the Cosmic Microwave Background (CMB), first observed during the 1960s.
One peculiar characteristic about the CMB that attracted a lot of attention was the tiny fluctuations in temperature, which could provide information about the early Universe. In particular, there is a rather large spot in the CMB that is cooler than the surrounding afterglow, known as the CMB Cold Spot. After decades of studying the CMB’s temperature fluctuations, a team of scientists recently confirmed the existence of the largest cold spots in the CMB afterglow – the Eridanus Supervoid – might be the explanation for the CMB Cold Spot that astronomers have been looking for!
Continue reading “Finally, an Explanation for the Cold Spot in the Cosmic Microwave Background”Missing Mass? Not on our Watch—Dr. Paul Sutter Explains Dark Matter
Do you have a few minutes to spare and a thirst for knowledge about one of the greater mysteries of the Universe? Then head on over to ArsTechnica and check out the new series they’re releasing titled Edge of Knowledge, starring none other than Dr. Paul Sutter. In what promises to be an enlightening journey, Dr. Sutter will guide viewers through an eight-episode miniseries that explores the mysteries of the cosmos, such as black holes, the future of climate change, the origins of life, and (for their premiere episode) Dark Matter!
As far as astrophysicists and cosmologists are concerned, Dark Matter is one of the most enduring, frustrating, and confusing mysteries ever! Then, one must wonder why scientists are working so tirelessly to track it down? The short answer is: the most widely accepted theories of the Universe don’t make sense without out. The long answer is… it’s both complicated and long! Luckily, Dr. Sutter manages to sum it all up in less than 15 minutes. As an accomplished physicist, he also explains why it is so important that we track Dark Matter down!
Continue reading “Missing Mass? Not on our Watch—Dr. Paul Sutter Explains Dark Matter”A Worldwide Search for Dark Matter Fails to Turn up a Signal for This Mysterious Particle
Axions are a popular candidate in the search for dark matter. There have been previous searches for these hypothetical particles, all of which have come up with nothing. But recently the results of a new search for dark matter axions have been published…and has also found nothing. Still, the study is interesting because of the nature and scale of the search.
Continue reading “A Worldwide Search for Dark Matter Fails to Turn up a Signal for This Mysterious Particle”Primordial Black Holes Could Explain Dark Matter and the Growth of Supermassive Black Holes at the Same Time
It’s that time again. Time to look at a possible model to explain dark matter. In this case, a perennial favorite known as primordial black holes. Black holes have long been proposed as the source of dark matter. In many ways, they are the perfect candidate because they only interact with light and matter gravitationally. But stellar-mass black holes have been ruled out observationally. There simply aren’t enough of them to account for dark matter.
Continue reading “Primordial Black Holes Could Explain Dark Matter and the Growth of Supermassive Black Holes at the Same Time”