President Obama gave a shout out to NASA Astronaut Scott Kelly and his upcoming 1 year mission to the International Space Station at the 2015 State of the Union address to the US Congress on Tuesday evening, Jan. 20, 2015.
Obama wished Kelly (pictured above in the blue jacket) good luck during his address and told him to send some photos from the ISS via Instagram. Kelly was seated with the First Lady, Michelle Obama, during the speech on Capitol Hill.
The TV cameras focused on Kelly and he was given a standing ovation by the Congress and the President.
Obama also praised Kelly’s flight and the recent Dec. 5, 2014, launch of NASA’s Orion deep space capsule as “part of a re-energized space program that will send American astronauts to Mars.”
Watch this video of President Obama hailing NASA and Scott Kelly:
Video Caption: President Obama recognizes NASA and Astronaut Scott Kelly at 2015 State of the Union Address. Credit: Congress/NASA
Here’s a transcript of President Obama’s words about NASA, Orion, and Scott Kelly’s 1 Year ISS mission:
“Pushing out into the Solar System not just to visit, but to stay. Last month, we launched a new spacecraft as part of a re-energized space program that will send American astronauts to Mars. In two months, to prepare us for those missions, Scott Kelly will begin a year-long stay in space. Good luck, Captain and make sure to Instagram it.”
In late March, Astronaut Scott Kelly will launch to the International Space Station and become the first American to live and work aboard the orbiting laboratory for a year-long mission.
Scott Kelly and Russian Cosmonaut Mikhail Kornienko, both veteran spacefliers, comprise the two members of the 1 Year Mission crew.
Normal ISS stays last for about a six month duration.
No American has ever spent anywhere near a year in space. 4 Russian cosmonauts conducted long duration stays of about a year or more in space aboard the Mir Space Station in the 1980s and 1990s.
Together with Russian cosmonaut Gennady Padalka, Kelly and Kornienko will launch on a Russian Soyuz capsule from the Baikonur Cosmodrome as part of Expedition 44.
Kelly and Kornienko will stay aboard the ISS until March 2016.
They will conduct hundreds of science experiments focusing on at least 7 broad areas of investigation including medical, psychological, and biomedical challenges faced by astronauts during long-duration space flight.
Kelly was just featured in a cover story at Time magazine.
Orion flew a flawless inaugural test flight when it thundered to space on Dec. 5, 2014, atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Orion launched on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that carried the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.
Kelly’s flight will pave the way for NASA’s goal to send astronaut crews to Mars by the 2030s. They will launch in the Orion crew vehicle atop the agency’s mammoth new Space Launch System (SLS) rocket, simultaneously under development.
Good luck to Kelly and Kornienko!!
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
A busy year of 13 space launches by rocket provider United Launch Alliance (ULA) in 2015 begins with a pair of blastoffs for the US Navy and NASA tonight and next week, emanating from both the US East and West Coasts.
The hefty manifest of 13 liftoffs in 2015 comes hot on the heels of ULA’s banner year in 2014 whereby they completed every one of the firm’s 14 planned launches in 2014 with a 100% success rate.
“What ULA has accomplished in 2014, in support of our customers’ missions, is nothing short of remarkable,” said ULA CEO Tory Bruno.
“When you think about every detail – all of the science, all of the planning, all of the resources – that goes into a single launch, it is hard to believe that we successfully did it at a rate of about once a month, sometimes twice.”
ULA’s stable of launchers includes the Delta II, Delta IV and the Atlas V. They are in direct competition with the Falcon 9 rocket from SpaceX founded by billionaire Elon Musk.
And ULA’s 2015 launch calendar begins tonight with a milestone launch for the US Navy that also marks the 200th launch overall of the venerable Atlas-Centaur rocket that has a renowned history dating back some 52 years to 1962 with multiple variations.
And tonight’s blastoff of the Multi-User Objective System (MUOS-3) satellite for the US Navy involves using the most powerful variant of the rocket, known as the Atlas V 551.
Liftoff of MUOS-3 is set for 7:43 p.m. EDT from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. The launch window extends for 44 minutes and the weather outlook is very favorable. It will be carried live on a ULA webcast.
The second ULA launch of 2015 comes just over 1 week later on January 29, lofting NASA’s SMAP Earth observation satellite on a Delta II rocket from Vandenberg Air Force Base in California.
MUOS is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move, according to ULA.
This is the third satellite in the MUOS series and will provide military users 10 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.
ULA’s second launch in 2015 thunders aloft from the US West Coast with NASA’s Soil Moisture Active Passive mission (SMAP). It is the first US Earth-observing satellite designed to collect global observations of surface soil moisture.
SMAP will blastoff from Space Launch Complex 2 at Vandenberg AFB at 9:20 a.m. EST (6:20 a.m. PST) on ULA’s Delta II rocket.
“It goes without saying: ULA had a banner year,” Bruno said. “As we look ahead to 2015, we could not be more honored to continue supporting our nation in one of the most technologically complex, critical American needs: affordable, reliable access to space.”
ULA began operations in December 2006 with the merger of the expendable launch vehicle operations of Boeing and Lockheed Martin.
ULA’s Delta IV Heavy is currently the world’s most powerful rocket and flawlessly launched NASA’s Orion capsule on Dec. 5, 2014 on its highly successful uncrewed maiden test flight on the EFT-1 mission.
Overall, the 14-mission launch manifest in 2014 included 9 national security space missions, 3 space exploration missions, including NASA’s Orion EFT-1 and 2 commercial missions.
Beyond MUOS-3 and SMAP, the launch manifest on tap for 2015 also includes additional NASA science satellites, an ISS commercial cargo resupply mission as well as more GPS satellites for military and civilian uses and top secret national security launches using the Delta II, Delta IV and the Atlas V boosters.
NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.
In March, June and September the GPS 2F-9, 2F-10 and 2F-11 navigation satellites will launch on Delta IV and Atlas V rockets from Cape Canaveral.
Two top secret NRO satellites are set to launch on a Delta IV and Atlas in April and August from Vandenberg.
An Air Force Orbital Test Vehicle (OTV) space plane may launch as soon as May atop an Atlas V from Cape Canaveral.
The MUOS-4 liftoff is set for August on another Atlas from the Cape.
The Morelos 3 communications satellite for the Mexican Ministry of Communications and Transportation is due to launch in October from the Cape.
The Orb-4 launch also marks ULA’s first launch to the ISS. It may be followed by another Cygnus launch atop an Atlas V in 2016 as Orbital works to bring the Antares back into service.
NASA’s goal of sending astronauts to deep space took a major step forward when the first engine of the type destined to power the mighty Space Launch System (SLS) exploration rocket blazed to life during a successful test firing at the agency’s Stennis Space Center near Bay St. Louis, Mississippi.
The milestone hot fire test conducted on Jan. 9, involved igniting a shuttle-era RS-25 space shuttle main engine for 500 seconds on the A-1 test stand at Stennis.
A quartet of RS-25s, formerly used to power the space shuttle orbiters, will now power the core stage of the SLS which will be the most powerful rocket the world has ever seen.
“The RS-25 is the most efficient engine of its type in the world,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center, in Huntsville, Alabama, where the SLS Program is managed. “It’s got a remarkable history of success and a great experience base that make it a great choice for NASA’s next era of exploration.”
The SLS is NASA’s mammoth heavy lift rocket now under development. It is intended to launch the Orion deep space crew capsule and propel astronauts aboard to destinations far beyond Earth and farther into space than ever before possible – beyond the Moon, to Asteroids and Mars.
The over eight minute RS-25 engine test firing provided NASA engineers with critical data on the engine controller unit, which is the “brain” of the engine providing communications between the engine and the vehice, and inlet pressure conditions.
“The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine’s health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture,” according to NASA.
This also marked the first test of a shuttle-era RS-25 since the conclusion of space shuttle main engine testing in 2009.
For the SLS, the RS-25 will be configured and operated differently from their use when attached as a trio to the base of the orbiters during NASA’s four decade long Space Shuttle era that ended with the STS-135 mission in July 2011.
“We’ve made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series,” said Wofford
“The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles.”
Watch this video of the RS-25 engine test:
Video Caption: The RS-25 engine that will drive NASA’s new rocket, the Space Launch System, to deep space blazed through its first successful test Jan. 9 at the agency’s Stennis Space Center near Bay St. Louis, Mississippi. Credit: NASA TV
The SLS core stage stores the cryogenic liquid hydrogen and liquid oxygen that fuel the RS-25 first stage engines.
“This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center’s A-1 test team,” said Ronald Rigney, RS-25 project manager at Stennis.
“Our technicians and engineers have been working diligently to design, modify and activate an extremely complex and capable facility in support of RS-25 engine testing.”
The Jan. 9 engine test was just the first of an extensive series planned. After an upgrade to the high pressure cooling system, an initial series of eight development tests will begin in April 2015 totaling 3,500 seconds of firing time.
The SLS core stage is being built at NASA’s Michoud Assembly Facility in New Orleans.
On Sept. 12, 2014, NASA Administrator Charles Bolden officially unveiled the world’s largest welder at Michoud, that will be used to construct the core stage, as I reported earlier during my on-site visit.
“This rocket is a game changer in terms of deep space exploration and will launch NASA astronauts to investigate asteroids and explore the surface of Mars while opening new possibilities for science missions, as well,” said NASA Administrator Charles Bolden during the ribbon-cutting ceremony at Michoud.
The core stage towers over 212 feet (64.6 meters) tall and sports a diameter of 27.6 feet (8.4 m).
The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.
NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.
The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Have you ever wondered what 51 million horsepower sounds like from 3 miles away? This past Friday, a Delta IV Heavy launched Orion spacecraft on the EFT-1 Test flight. The rocket weighed 1.6 million pounds at liftoff, produced close to 2 million pounds of thrust and consumed propellants at a rate of about 3 tons per second. Videographers David Gonzales and Kyle Johnson shot this film using 2 video cameras and a dedicated stereo high quality recorder to capture the ascent and thunder for Universe Today.
As the Delta IV Heavy ascended, the hydrogen and oxygen fuel combined to form water vapor which condensed into a cloud that evolved and took shape after liftoff.
Orion’s inaugural launch on Dec. 5, 2014 atop United Launch Alliance Delta 4 Heavy rocket at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station, Florida at 7:05 a.m. Credit: Alex Polimeni/Zero-G News/AmericaSpace
Expanded with a growing gallery![/caption]
KENNEDY SPACE CENTER, FL – After four decades of waiting, the dawn of a new era in space exploration finally began with the dawn liftoff of NASA’s first Orion spacecraft on Friday, Dec. 5, 2014.
The picture perfect liftoff of Orion on its inaugural unmanned test flight relit the path to send humans beyond low Earth orbit for the first time since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.
Orion soared to space atop a United Launch Alliance Delta IV Heavy rocket at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Enjoy the spectacular launch photo gallery from my fellow space journalists and photographers captured from various up close locations ringing the Delta launch complex.
Tens of thousands of spectators descended upon the Kennedy Space Center to be an eyewitness to history and the new space era – and they were universally thrilled.
Orion is the first human rated spacecraft to fly beyond low Earth orbit since Apollo 17 and was built by prime contractor Lockheed Martin.
The EFT-1 mission was a complete success.
The Orion program began about a decade ago.
America’s astronauts flying aboard Orion will venture farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System starting around 2020 or 2021 on Orion’s first crewed flight atop NASA’s new monster rocket – the SLS – concurrently under development.
Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
After years of effort, NASA’s pathfinding Orion spacecraft was rolled out to the launch pad early this morning, Wednesday, Nov. 12, and hoisted atop the rocket that will blast it to space on its history making maiden test flight in December.
Orion’s penultimate journey began late Tuesday, when the spacecraft was moved 22 miles on a wheeled transporter from the Kennedy Space Center assembly site to the Cape Canaveral launch site at pad 37 for an eight hour ride.
Watch a timelapse of the journey, below:
Technicians then lifted the 50,000 pound spacecraft about 200 feet onto a United Launch Alliance Delta IV Heavy rocket, the world’s most powerful rocket, in preparation for its first trip to space.
Orion’s promise is that it will fly America’s astronauts back to deep space for the first time in over four decades since the NASA’s Apollo moon landing missions ended in 1972.
Liftoff of the state-of-the-art Orion spacecraft on the unmanned Exploration Flight Test-1 (EFT-1) mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
“This is the next step on our journey to Mars, and it’s a big one,” said William Gerstenmaier, NASA’s associate administrator for human exploration and operations.
“In less than a month, Orion will travel farther than any spacecraft built for humans has been in more than 40 years. That’s a huge milestone for NASA, and for all of us who want to see humans go to deep space.”
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
The fully assembled Orion vehicle stack consists of the crew module, service module, launch abort system, and adapter that connect it to the Delta IV Heavy rocket. It was completed in October inside Kennedy’s Launch Abort System Facility.
Today’s move was completed without issue after a one day delay due to storms in the KSC area.
The triple barreled Delta IV Heavy booster became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program in 2011 and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
Orion will travel almost 60,000 miles into space during the uncrewed Dec. 4 test flight.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
And Orion is so big and heavy that she’s not launching on just any old standard rocket.
To blast the uncrewed Orion to orbit on its maiden mission requires the most powerful booster on Planet Earth – namely the United Launch Alliance Delta IV Heavy rocket.
Liftoff of the state-of-the-art Orion spacecraft on the unmanned Exploration Flight Test-1 (EFT-1) mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Just days ago, the launch team successfully completed a countdown and wet dress rehearsal fueling test on the rocket itself – minus Orion – at launch complex 37.
The high fidelity rehearsal included fully powering up the booster and loading the tanks with cryogenic fuel and oxidizer, liquid oxygen, and liquid hydrogen.
ULA technicians and engineers practiced the countdown on Nov. 5 which included fueling the core stages of the Delta IV Heavy rocket.
“Working in control rooms at Cape Canaveral Air Force Station in Florida, countdown operators followed the same steps they will take on launch day. The simulation also allowed controllers to evaluate the fuel loading and draining systems on the complex rocket before the Orion spacecraft is placed atop the launcher,” said NASA.
The next key mission milestone is attachment of the completed Orion vehicle stack on top of the rocket. Read more about the fully assembled Orion – here.
Today’s scheduled rollout of Orion to the launch pad for hoisting atop the rocket was scrubbed due to poor weather.
The triple barreled Delta IV Heavy booster became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program in 2011 and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.
The first stage of the mammoth Delta IV Heavy generates some 2 million pounds of liftoff thrust.
“The team has worked extremely hard to ensure this vehicle is processed with the utmost attention to detail and focus on mission success,” according to Tony Taliancich, ULA’s director of East Coast Launch Operations.
“The Delta IV Heavy is the world’s most powerful launch vehicle flying today, and we are excited to be supporting our customer for this critical flight test to collect data and reduce overall mission risks and costs for the program.”
From now until launch technicians will continue to conduct the final processing, testing, and checkout of the Delta IV Heavy booster.
The Delta IV Heavy first stage is comprised of a trio of three Common Booster Cores (CBCs).
Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.
The first CBC booster was attached to the center booster in June. The second one was attached in early August.
This fall I visited the ULA’s Horizontal Integration Facility (HIF) during a media tour after the three CBCs had been joined together as well as earlier this year after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville. See my photos herein.
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
“This mission is a stepping stone on NASA’s journey to Mars,” said NASA Associate Administrator Robert Lightfoot.
.
“The EFT-1 mission is so important to NASA. We will test the capsule with a reentry velocity of about 85% of what’s expected by [astronauts] returning from Mars.”
“We will test the heat shield, the separation of the fairing, and exercise over 50% of the eventual software and electronic systems inside the Orion spacecraft. We will also test the recovery systems coming back into the Pacific Ocean.”
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
Technicians at the Kennedy Space Center have completed the final major assembly work on NASA’s maiden Orion crew module slated to launch on its first unmanned orbital test flight this December, dubbed Exploration Flight Test-1 (EFT-1)
After first attaching the Launch Abort System (LAS) to the top of the capsule, engineers carefully installed a fairing composed of a set of four ogive panels over the crew module and the abort systems lower structural framework joining them together.
“The ogive panels smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future,” according to a NASA description.
Upon finishing the panel assembly work inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center, the teams cleared the last major hurdle before the Orion stack is rolled out to launch pad 37 in mid-November and hoisted to the top of the Delta IV Heavy rocket.
The Orion stack is comprised of the LAS, crew module (CM) and service module (SM).
The maiden blastoff of the state-of-the-art Orion spacecraft on the EFT-1 mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida atop the triple barreled United Launch Alliance (ULA) Delta IV Heavy booster.
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.
The two-orbit, four and a half hour EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years. It will test the avionics and electronic systems inside the Orion spacecraft.
Then the spacecraft will travel back through the atmosphere at speeds approaching 20,000 mph and temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.
The LAS plays a critically important role to ensure crew safety.
In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts’ lives. The quartet of LAS abort motors would generate some 500,000 pounds of thrust to pull the capsule away from the rocket.
And don’t forget that you can fly your name on Orion and also print out an elegant looking “boarding pass.”
NASA announced that the public can submit their names for inclusion on a dime-sized microchip that will travel on Orion and succeeding spacecraft voyaging to destinations beyond low-Earth orbit, including Mars.
The deadline to submit your name is soon: Oct 31, 2014.
Click on this weblink posted online by NASA today: http://go.usa.gov/vcpz
“NASA is pushing the boundaries of exploration and working hard to send people to Mars in the future,” said Mark Geyer, Orion Program manager, in a NASA statement.
“When we set foot on the Red Planet, we’ll be exploring for all of humanity. Flying these names will enable people to be part of our journey.”
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
The emergency launch abort system (LAS) has been installed on NASA’s pathfinding Orion crew capsule to prepare for its first launch – now just under two months away.
Technicians and engineers working inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center in Florida joined the LAS to the top of the Orion EFT-1 crew module on Friday, Oct. 3, 2014.
Attaching the LAS is one of the final component assembly steps leading up to the inaugural uncrewed liftoff of the state-of-the-art Orion EFT-1 spacecraft in December.
The maiden blastoff of Orion on the EFT-1 mission is slated for December 4, 2014 from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida atop the triple barreled United Launch Alliance (ULA) Delta IV Heavy booster.
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.
Indeed last week and this past month has been an extremely busy time for Orion’s launch preparations. And I’ve been present at KSC reporting first hand on many Orion processing events over the past few years.
Assembly of the Orion EFT-1 capsule and stacking atop the service module was completed at KSC in September. I witnessed the rollout of the Orion crew module/service module (CM/SM) stack on Sept. 11, 2014 on a 36 wheeled transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building and transport to the Payload Hazardous Servicing Facility (PHFS) for fueling. Read my Orion move story – here.
Running in parallel to processing of the Orion spacecraft is the processing of the triple barreled United Launch Alliance Delta IV Heavy. The Delta rocket assembly was completed by late September and detailed from my visit to the ULA Horizontal Integration Facility (HIF)- here.
The Delta rocket was moved to its Cape Canaveral launch pad overnight Sept 30 and hoisted at the pad on Oct. 1. Read my story – here.
“We’ve been working toward this launch for months, and we’re in the final stretch,” says former shuttle commander and Kennedy Space Center Director Bob Cabana.
The LAS stands at the very top of the Orion launch stack, bolted above the crew module, and it plays a critically important role to ensure crew safety.
In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts lives. The quartet of LAS abort motors would generate some 500,000 pounds of thrust to pull the capsule away from the rocket.
For the EFT-1 mission, the LAS will be mostly inactive since no crew is aboard.
Thus the abort motors are inert and not filled with solid fuel propellant. However the jettison motors will be active in order to pull the LAS and Orion’s nose fairing away from the spacecraft just before Orion goes into orbit.
The LAS is one of the five primary components of the flight test vehicle for the EFT-1 mission and will be active on future Orion flights.
The Orion stack is scheduled to remain inside the LASF until mid-November. At that time when the Delta IV Heavy rocket is ready for integration with the spacecraft, Orion will be transported to pad 37 and hoisted atop the rocket.
The Delta IV Heavy became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.
The first stage generates some 2 million pounds of liftoff thrust.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
“This mission is a stepping stone on NASA’s journey to Mars,” said NASA Associate Administrator Robert Lightfoot during the boosters unveiling earlier this year at the Cape. “The EFT-1 mission is so important to NASA. We will test the capsule with a reentry velocity of about 85% of what’s expected by [astronauts] returning from Mars.”
“We will test the heat shield, the separation of the fairing and exercise over 50% of the eventual software and electronic systems inside the Orion spacecraft. We will also test the recovery systems coming back into the Pacific Ocean.”
Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.
Learn more about Orion, Space Taxis and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations
Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM
Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA
The march towards first launch of NASA’s next generation Orion crew vehicle is accelerating rapidly.
The world’s most powerful rocket – the United Launch Alliance Delta IV Heavy – was moved to its Cape Canaveral launch pad overnight and raised at the pad today, Oct. 1, thereby setting in motion the final steps to prepare for blastoff of NASA’s new Orion capsule on its first test flight in just over two months.
All the pieces are ready and now it’s just a matter of attaching all those components together for the inaugural uncrewed liftoff of the state-of-the-art Orion spacecraft on its maiden mission dubbed Exploration Flight Test-1 (EFT-1) in December.
“We’ve been working toward this launch for months, and we’re in the final stretch,” said Kennedy Director Bob Cabana, in a NASA statement.
“Orion is almost complete and the rocket that will send it into space is on the launch pad. We’re 64 days away from taking the next step in deep space exploration.”
The triple barreled Delta IV Heavy topped by the Orion EFT-1 capsule is slated to blastoff on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
After a nearly two day delay due to drenching rain storms, the Delta IV Heavy integrated first and second stages were transported horizontally overnight Wednesday starting around 10 p.m. from the processing hanger inside ULA’s Horizontal Integration Facility (HIF) to the nearby launch complex and servicing gantry at Pad 37.
Early this morning, the rocket was hoisted up into its launch configuration. Several of my space photo-journalist colleagues were on hand. See their photos herein.
From now until launch technicians will conduct the final processing, testing and checkout of the Delta IV Heavy booster. They will also carry out “a high fidelity rehearsal to include fully powering up the booster and loading the tanks with fuel and oxidizer,” according to ULA.
“This is a tremendous milestone and gets us one step closer to our launch later this year,” said Tony Taliancich, ULA’s director of East Coast Launch Operations, in a ULA statement.
“The team has worked extremely hard to ensure this vehicle is processed with the utmost attention to detail and focus on mission success.”
“The Delta IV Heavy is the world’s most powerful launch vehicle flying today, and we are excited to be supporting our customer for this critical flight test to collect data and reduce overall mission risks and costs for the program,” said Taliancich.
NASA’s Orion Program manager Mark Geyer told me in a recent interview that the Orion spacecraft, built by prime contractor Lockheed Martin, will be transported to the pad around November 10 or 11. Then the Orion will be hoisted and attached to the top of the Delta IV Heavy rocket at the base of its service module.
The Delta IV Heavy first stage is comprised of a trio of three Common Booster Cores (CBCs).
Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.
The Delta IV Heavy became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program and is the only vehicle that is sufficiently powerful to launch the Orion EFT-1 spacecraft.
The first CBC booster was attached to the center booster in June. The second one was attached in early August.
I recently visited the HIF during a media tour after the three CBCs had been joined together as well as earlier this year after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville. See my photos herein.
I was also on hand at KSC when the Orion crew module/service module (CM/SM) stack was rolled out on Sept. 11, 2014, on a 36 wheeled transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building.
It was moved about 1 mile to the KSC fueling facility named the Payload Hazardous Servicing Facility (PHFS). Read my Orion move story – here.
Fueling of Orion was completed over the weekend and it has now been moved to the Launch Abort System Facility (LASF) for the installation of its last component – the Launch Abort System (LAS).
Orion’s next stop is SLC-37.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
NASA is simultaneously developing a monster heavy lift rocket known as the Space Launch System or SLS, that will eventually launch Orion on its deep space missions.
The maiden SLS/Orion launch on the Exploration Mission-1 (EM-1) unmanned test flight is now scheduled for no later than November 2018 – read my story here.
SLS will be the world’s most powerful rocket ever built and the assembly of its core stage has begun at NASA’s Michoud Assembly Facility in New Orleans. Read my story – here.
Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.