1st Recycled SpaceX Dragon Blasts Off for Space Station on 100th Flight from Pad 39A with Science Rich Cargo and Bonus Booster Landing: Gallery

Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After threatening stormy skies over the Florida Space Coast miraculously parted just in the nick of time, the first ever recycled SpaceX Dragon cargo freighter blasted off on the 100th flight from historic pad 39A on the Kennedy Space Center (KSC) late Saturday afternoon June 3 – bound for the International Space Station (ISS) loaded with a science rich cargo from NASA for the multinational crew.

Nearly simultaneously the first stage booster accomplished another heart stopping and stupendous ground landing back at the Cape accompanied by multiple shockingly loud sonic booms screeching out dozens of miles (km) in all directions across the space coast region.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, after a predicted downpour held off just long enough for the SpaceX launch team to get the rocket safely off the ground.

The launch took place after a 48 hour scrub from Thursday June 1 forced by stormy weather and lightning strikes came within 10 miles of pad 39A less than 30 minutes from the planned liftoff time.

The backup crew of 40 new micestonauts are also aboard for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The 40 originally designated mice lost their coveted slot and were swapped out Friday due to the scrub.

The 213-foot-tall (65-meter-tall) SpaceX Falcon 9 roared to life off pad 39A upon ignition of the 9 Merlin 1 D first stage engines generating 1.7 million pounds of liftoff thrust and successfully delivered the Dragon bolted on top to low Earth orbit on course for the space station and jam packed with three tons of essential cargo.

Loading of the densified liquid oxygen and RP-1 propellants into the Falcon 9 first and second stages starting about 70 minutes prior to ignition. Everything went off without a hitch.

Final descent of the SpaceX Falcon 9 1st stage landing as seen from the NASA Causeway under heavily overcast skies after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. The booster successfully soft landed upright at Landing Zone-1 (LZ-1) accompanied by multiple sonic booms at Cape Canaveral Air Force Station, Florida, about 8 minutes after launch to the International Space Station (ISS). Note SpaceX logo lettering visible on booster skin. Credit: Ken Kremer/kenkremer.com

Dragon reached its preliminary orbit 10 minutes after launch and deployed its power generating solar arrays. It now set out on a carefully choreographed series of thruster firings to reach the space station Monday morning.

Following stage separation at 2 min 25 sec after liftoff, the first stage began a series of three burns (boostback, entry and landing) to carry out a precision propulsive ground landing back at Cape Canaveral Air Force Station, FL at Landing Zone-1 (LZ-1).

SpaceX Falcon 9 booster starts landing leg deployment moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely eight minutes after liftoff from pad 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The 156-foot-tall (47-meter-tall) first stage successfully touched down upright at LZ-1 some 8 minutes after liftoff as I witnessed from the NASA Causeway and seen in photos from myself and colleagues herein.

LZ-1 is located about 9 miles (14 kilometers) south of the starting point at pad 39A.

Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek

Thus overall SpaceX has now successfully recovered 11 boosters; 5 by land and 6 by sea, over the past 18 months – in a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by SpaceX billionaire CEO and founder Elon Musk.

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

The recycled Dragon has undergone some refurbishments to requalify it for flight but most of the structure is intact, according to SpaceX VP for Mission Assurance Hans Koenigsmann.

The 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. This will support over 62 of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

See detailed CRS-11 cargo mission cargo below.

Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Falcon 9 streaked to orbit in spectacular fashion darting in and out of clouds for the hordes of onlookers and spectators who had gathered from around the globe to witness the spectacle of a rocket launch and booster landing first hand.

Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon is loaded with “major experiments that will look into the human body and out into the galaxy.”

The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

The unpressurized trunk of the spacecraft also will transport 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Roll Out Solar Array (ROSA) is among the science investigations launching on the next SpaceX commercial resupply flight to the International Space Station, targeted for June 1, 2017.
Credits: Deployable Space Systems, Inc.

If all goes well, Dragon will arrive at the ISS 2 days after launch and be grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm.

They will berth Dragon at the Earth-facing port of the Harmony module.

NASA TV will begin covering the Dragon rendezvous and grappling activities starting at 8:30 a.m. Monday.

Dragon CRS-11 is SpaceX’s second contracted resupply mission to launch this year for NASA.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Overall CRS-11 marks the 100th launch from pad 39A and the sixth SpaceX launch from this pad.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011. To date this is the sixth SpaceX launch from this pad.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

June 3, 2017 liftoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Jeff Seibert

Cargo Manifest for CRS-11:

TOTAL CARGO: 5970.1 lbs. / 2708 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3761.1 lbs. / 1665 kg
• Science Investigations 2356.7 lbs. / 1069 kg
• Crew Supplies 533.5 lbs. / 242 kg
• Vehicle Hardware 438.7 lbs. / 199 kg
• Spacewalk Equipment 123.4 lbs. / 56 kg
• Computer Resources 59.4 lbs. / 27 kg

UNPRESSURIZED 2209.0 lbs. / 1002 kg
• Roll-Out Solar Array (ROSA) 716.5 lbs. / 325 kg
• Neutron Star Interior Composition Explorer (NICER) 820.1 lbs. / 372 kg
• Multiple User System for Earth Sensing (MUSES) 672.4 lbs. / 305 kg

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 booster starts landing leg deployment moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely eight minutes after liftoff from pad 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com
Launch of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017 as seen from the Countdown clock at the KSC Press Site. Credit: Jean Wright
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com

Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer
NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Mysterious Flashes Coming From Earth That Puzzled Carl Sagan Finally Have An Explanation

Sun glints off atmospheric ice crystals (circled in red) in this view captured by NASA's EPIC instrument on NOAA's DISCOVR satellite. Image Credit: NASA's Goddard Space Flight Center
Sun glints off atmospheric ice crystals (circled in red) in this view captured by NASA's EPIC instrument on NOAA's DISCOVR satellite. Image Credit: NASA's Goddard Space Flight Center

Back in 1993, Carl Sagan encountered a puzzle. The Galileo spacecraft spotted flashes coming from Earth, and nobody could figure out what they were. They called them ‘specular reflections’ and they appeared over ocean areas but not over land.

The images were taken by the Galileo space probe during one of its gravitational-assist flybys of Earth. Galileo was on its way to Jupiter, and its cameras were turned back to look at Earth from a distance of about 2 million km. This was all part of an experiment aimed at finding life on other worlds. What would a living world look like from a distance? Why not use Earth as an example?

Fast-forward to 2015, when the National Oceanographic and Atmospheric Administration (NOAA) launched the Deep Space Climate Observatory (DSCOVER) spacecraft. DSCOVER’s job is to orbit Earth a million miles away and to warn us of dangerous space weather. NASA has a powerful instrument on DSCOVER called the Earth Polychromatic Imaging Camera (EPIC.)

Every hour, EPIC takes images of the sunlit side of Earth, and these images can be viewed on the EPIC website. (Check it out, it’s super cool.) People began to notice the same flashes Sagan saw, hundreds of them in one year. Scientists in charge of EPIC started noticing them, too.

One of the scientists is Alexander Marshak, DSCOVR deputy project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. At first, he noticed them only over ocean areas, the same as Sagan did 25 years ago. Only after Marshak began investigating them did he realize that Sagan had seen them too.

Back in 1993, Sagan and his colleagues wrote a paper discussing the results from Galileo’s examination of Earth. This is what they said about the reflections they noticed: “Large expanses of blue ocean and apparent coastlines are present, and close examination of the images shows a region of [mirror-like] reflection in ocean but not on land.”

Marshak surmised that there could be a simple explanation for the flashes. Sunlight hits a smooth part of an ocean or lake, and reflects directly back to the sensor, like taking a flash-picture in a mirror. Was it really that much of a mystery?

When Marshak and his colleagues took another look at the Galileo images showing the flashes, they found something that Sagan missed back in 1993: The flashes appeared over land masses as well. And when they looked at the EPIC images, they found flashes over land masses. So a simple explanation like light reflecting off the oceans was no longer in play.

“We found quite a few very bright flashes over land as well.” – Alexander Marshak, DSCOVR Deputy Project Scientist

“We found quite a few very bright flashes over land as well,” he said. “When I first saw it I thought maybe there was some water there, or a lake the sun reflects off of. But the glint is pretty big, so it wasn’t that.”

But something was causing the flashes, something reflective. Marshak and his colleagues, Tamas Varnai of the University of Maryland, Baltimore County, and Alexander Kostinski of Michigan Technological University, thought of other ways that water could cause the flashes.

The primary candidate was ice particles high in Earth’s atmosphere. High-altitude cirrus clouds contain tiny ice platelets that are horizontally aligned almost perfectly. The trio of scientists did some experiments to find the cause of the flashes, and published their results in a new paper published in Geophysical Research Letters.

“Lightning doesn’t care about the sun and EPIC’s location.” – Alexander Marshak, DSCOVR Deputy Project Scientist

As their study details, they first catalogued all of the reflective glints that EPIC found over land; 866 of them in a 14 month period from June 2015 to August 2016. If these flashes were caused by reflection, then they would only appear on locations on the globe where the angle between the Sun and Earth matched the angle between the DSCOVER spacecraft and Earth. As the catalogued the 866 glints, they found that the angle did match.

This ruled out something like lightning as the cause of the flashes. But as they continued their work plotting the angles, they came to another conclusion: the flashes were sunlight reflecting off of horizontal ice crystals in the atmosphere. Other instruments on DSCOVR confirmed that the reflections were coming from high in the atmosphere, rather than from somewhere on the surface.

“The source of the flashes is definitely not on the ground. It’s definitely ice, and most likely solar reflection off of horizontally oriented particles.” -Alexander Marshak, DSCOVR Deputy Project Scientist

Mystery solved. But as is often the case with science, answering one question leads to a couple other questions. Could detecting these glints be used in the study of exoplanets somehow? But that’s one for the space science community to answer.

As for Marshak, he’s an Earth scientist. He’s investigating how common these horizontal ice particles are, and what effect they have on sunlight. If that impact is measurable, then it could be included in climate modelling to try to understand how Earth retains and sheds heat.

Sources:

SpaceX Blasts First Surveillance Satellite to Orbit – Launch and Landing Photo/Video Gallery

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – This week SpaceX blasted their first top secret surveillance satellite to orbit for America’s spy chiefs at National Reconnaissance Office (NRO) – affording magnificent viewing and imagery from the Florida Space Coast. Updated with more photos/videos – plus distinctly hear the sonic booms from pad 39A sending birds fleeing!

Liftoff of the classified NROL-76 payload for the NRO occurred soon after sunrise Monday morning, May 1, at 7:15 a.m. EDT (1115 GMT), from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Less than nine minutes later, Space engineers managed to again recover the 15 story tall first stage booster by accomplishing a precise ground landing by perfectly targeting the vehicle for a propulsive soft landing at Cape Canaveral several miles south of the launch pad.

Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek

The stunning events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

Landing legs unfurl and lock in place mere seconds before soft landing via propulsive firing of SpaceX Falcon 9 first stage booster engines at Landing Zone 1 on Canaveral Air Force Station only 9 minutes after launch from pad 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida as seen from Exploration Tower at Port Canaveral, FL. Credit: Dawn Leek

The milestone SpaceX mission to launch the first satellite in support of US national defense was apparently a complete success.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
Up close view of engine exhaust flames whipping around SpaceX Falcon 9 first stage booster during propulsive descent Merlin 1 D engines fire with 4 grid fins deployed after successful NROL-76 spysat launch for the NRO on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage descent culminated seconds later in successful ground landing at the Cape’s LZ-1 nine minutes later. Credit: Ken Kremer/Kenkremer.com
Flames whip around booster darting in and out of clouds during propulsive descent of the SpaceX Falcon 9 first stage firing Merlin 1 D engines with 4 grid fins deployed after successful NROL-76 spysat launch for the NRO on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage descent culminated seconds later in successful ground landing at the Cape’s LZ-1 nine minutes later. Credit: Ken Kremer/Kenkremer.com

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad, Cape Canaveral media viewing site and public viewing locations off base.

Video Caption: SpaceX Falcon 9 liftoff with NROL-76 on 1 May 2017. This is the first launch of an NRO satellite on a SpaceX Falcon 9 rocket and the 4th launch from Pad 39A this year. Credit: Jeff Seibert

In this cool video you can distinctly hear the Falcon 9 sonic booms eminating at LZ-1 from pad 39A sending birds fleeing aflutter in fright!

Video Caption: Falcon 9 sonic booms heard from Pad 39A. These two cameras recorded the launch of the NROL-76 satellite at https://youtu.be/kkKTe_61jk0
Nine minutes after launch, they recorded the sonic booms caused by the booster landing at LZ-1, 9.5 miles south of Launch Pad 39A on 1 May 2017. Credit: Jeff Seibert

Video Caption: SpaceX Launch and Best Landing – NROL76 05-01-2017. Best landing for spectators. Watch the nitrogen thruster’s steer the 16 story booster. Hear double sonic boom at the end. Audio is delayed from podcast. We can not match SpaceX and NASA tracking telescope coverage. Was really awesome for all who witnessed. Credit: USLaunchReport

NROL-76 marks the fifth SpaceX launch of 2017 and the fourth from pad 39A.

The NRO is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation, according to the NRO.

SpaceX Falcon 9 begins to deploy quartet of landing legs spreading out from the top down mere moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

SpaceX Stages Stupendous NRO Spysat Sunrise Liftoff and Land Landing

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX today staged the stupendously successful Falcon 9 rocket launch at sunrise of a mysterious spy satellite in support of U.S. national defense for the National Reconnaissance Office (NRO) while simultaneously accomplishing a breathtaking pinpoint land landing of the boosters first stage that could eventually dramatically drive down the high costs of spaceflight.

Liftoff of the classified NROL-76 payload for the NRO took place shortly after sunrise this morning, Monday, May 1, at 7:15 a.m. EDT (1115 GMT), from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The weather was near perfect and afforded a spectacular sky show for all those who descended on the Florida Space Coast for an up close eyewitness view of the rockets rumbling thunder.

The rocket roared off pad 39A after ignition of the nine Merlin 1D first stage engines generated some 1.7 million pounds of thrust.

The Falcon sped skyward darting in and out of wispy white clouds and appeared to head in a northeasterly direction from the space coast.

“A National Reconnaissance Office (NRO) payload was successfully launched aboard a SpaceX Falcon 9 rocket from Launch Complex 39A (LC-39A), Kennedy Space Center (KSC), Florida, at 7:15 a.m. EDT, on May 1, 2017,” the NRO said in a post launch statement.

“Thanks to the SpaceX team for the great ride, and for the terrific teamwork and commitment they demonstrated throughout. They were an integral part of our government/industry team for this mission, and proved themselves to be a great partner,” said Betty Sapp, Director of the National Reconnaissance Office.

The launch of the two stage 229 foot tall Falcon 9 was postponed a day after a last moment scrub was suddenly called on Sunday by the launch director at just about T minus 52 seconds due to a sensor issue in the first stage.

SpaceX engineers were clearly able to fully resolve the issue in time for today’s second launch attempt of the super secret NROL-76 for the NRO customer.

Barely nine minutes after the launch, the 156 foot tall first stage of the SpaceX Falcon 9 rocket made an incredibly precise and thrilling soft touchdown on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 39A.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The quartet of landing legs attached to the base of the first stage deployed only moments before touchdown – as can be seen in my eyewitness photos herein.

Multiple sonic booms screamed across the space coast as the 15 story first stage plummeted back to Earth and propulsively slowed down to pass though the sound barrier and safely came to rest fully upright.

This counts as SpaceX’s first ever launch of a top secret US surveillance satellite. It also counts as the fourth time SpaceX landed a first stage fully intact on the ground.

As is typical for NRO missions, nothing is publically known about the satellite nor has the NRO released any details about this mission in support of national security other than the launch window.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Overall SpaceX has now recovered 10 first stages via either land or at sea on an oceangoing platform.

NROL-76 marks the fifth SpaceX launch of 2017 and the 33rd flight of a Falcon 9.

Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek

NROL-76 is the second of five launches slated for the NRO in 2017. The next NRO launch is on schedule for August 14 from Vandenberg Air Force Base (VAFB), California by competitor ULA.

Until now launch competitor United Launch Alliance (ULA) and its predecessors have held a virtual monopoly on the US military’s most critical satellite launches.

The NRO is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation, according to the NRO.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Surveillance Sat Set for Sunday Sunrise SpaceX Blastoff and Landing Apr. 30 – Watch Live

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – A classified surveillance for the nation’s spymasters is set for blastoff shortly after sunrise on Sunday, Apr. 30 by SpaceX in a space first by the firm founded by billionaire entrepreneur Elon Musk that also features a ground landing attempt by the booster. Update: Scrub reset to May 1

Liftoff of the still mysterious NROL-76 classified payload for the National Reconnaissance Office, or NRO, is slated Sunday morning, April 30 from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The Falcon 9 rocket and NROL-76 payload have been mated and rolled about a quarter mile up the ramp at pad 39A.

The 229-foot-tall (70-meter) Falcon 9/NROL-76 were raised erect this morning, Saturday, April 29 and are poised for liftoff and undergoing final prelaunch preparations.

The breakfast time launch window on Sunday, April 30 opens at 7 a.m. EDT (1100 GMT). It extends for two hours until 9.a.m. EDT.

#NROL76 will carry a classified payload designed, built and operated by @NatReconOfc. @SpaceX @45thSpaceWing. Credit: NRO

The exact time of the spy satellite launch within the two hour window is classified at less than T Minus one day.

Spectators have been gathering from across the globe to witness the exciting launch and landing and area hotels are filling up.

A brand new Falcon 9 is being used for the launch unlike the recycled rocket utilized for the prior launch of the SES-10 mission involving history’s first reflown orbit class booster.

As is typical for NRO missions, nothing is publicly known about the satellite nor has the NRO released any details about this mission in support of national security other than the launch window.

We also know that this is the first launch of a spy satellite for the US governments super secret NRO spy agency by SpaceX and a source of pride for Musk and all SpaceX employees.

However you can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 7:00 am EDT opening of the window.

Watch the SpaceX broadcast live at: SpaceX.com/webcast

As is customary for all national security launches live coverage of the launch will cease approximately five minutes after liftoff as the secret payload makes it way to orbit.

However, SpaceX will continue their live webcast with complete coverage of the ground landing attempt back at the Cape which is a secondary objective of the launch.

#NROL76 Mission Patch depicts Lewis & Clark heading into the great unknown to discover and explore the newly purchased Louisiana Territory. Launch slated for 30 April 2017 from KSC pad 39A. Credit: NRO

Everything is on track for Sunday’s launch of the 229 foot tall SpaceX Falcon 9 on the NRO launch of NROL-76.

And the weather looks promising at this time.

Sunday’s weather outlook is currently forecasting an 80% chance of favorable conditions at launch time. The concerns are for cumulus clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

In case of a scrub for any reason on April 30, the backup launch opportunity Monday, May 1.

The path to launch was paved following a successful static hotfire test of the first stage booster on pad 39A which took place shortly after 3 p.m. Tuesday, April 25, as I reported here.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 25 Apr. 2017 as seen from Merritt Island National Wildlife Refuge, Titusville, FL. The Falcon 9 is slated to launch the NROL-76 super secret spy satellite for the U.S. National Reconnaissance Office (NRO) on 30 April 2017. Credit: Ken Kremer/Kenkremer.com

Until now launch competitor United Launch Alliance (ULA) and its predecessors have held a virtual monoploy on the US military’s most critical satellite launches.

The last first stage booster during the SES-10 launch of the first recycled rocket landed on a droneship barge at sea last month.

SpaceX will also attempt to achieve the secondary mission goal of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 39A.

This counts as the fourth time SpaceX will attempt a dramatic land landing potentially visible to hundreds of thousands of locals and tourists.

NROL-76 will be the fifth SpaceX launch of 2017.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX to Launch 1st NRO SpySat Sunday after Static Fire Success

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 25 Apr. 2017 as seen from Merritt Island National Wildlife Refuge, Titusville, FL. The Falcon 9 is slated to launch the NROL-76 super secret spy satellite for the U.S. National Reconnaissance Office (NRO) on 30 April 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 25 Apr. 2017 as seen from Merritt Island National Wildlife Refuge, Titusville, FL. The Falcon 9 is slated to launch the NROL-76 super secret spy satellite for the U.S. National Reconnaissance Office (NRO) on 30 April 2017. Credit: Ken Kremer/Kenkremer.com

MERRITT ISLAND NATIONAL WILDLIFE REFUGE, FL – Elon Musk’s SpaceX is primed for another significant space first; the firms first launch of a spy satellite for the US governments super secret spy agency; the National Reconnaissance Office, or NRO – following today’s successful static hotfire test of the Falcon 9 launchers first stage booster.

Tuesday’s hotfire test to took place shortly after 3 p.m. this afternoon, April 25, at SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

The successful test paves the path for launch of the NROL-76 classified payload for the NRO atop a SpaceX Falcon 9 rocket this Sunday morning, April 30 from pad 39A.

“Static fire test complete,” SpaceX confirmed via social media just minutes after finishing the brief test at 3:02 p.m. EDT (1902 GMT).

“Targeting Falcon 9 launch of NROL-76 on Sunday, April 30.”

The engine test is conducted using only the first two stages of the rocket – minus the expensive payload in case anything goes wrong as like occurred during the catastrophic AMOS-6 static fire disaster last September.

The test is routinely done so that SpaceX engineers can confirm the readiness of the rocket and all its systems to safely and successfully launch the specified payload to its intended orbit.

Furthermore this launch is also notable because it features the next land landing by a SpaceX Falcon 9 first booster back at the Cape for only the fourth time in history – which also makes for an extremely thrilling experience – and unforgettable space enthusiasts event.

So by all means try to witness this launch from the Florida Space Coast in person, if at all possible.

The breakfast time launch window on Sunday, April 30 opens at 7 a.m. EDT. It extends for two hours until 9.a.m. EDT.

The long range weather outlook currently looks favorable with lots of sun and little rain. But that can change on a moment’s notice in the sunshine state.

The brief engine test lasting approximately three seconds took place at 3:02 p.m. today, Tuesday, April 25, with the sudden eruption of smoke and ash rushing out the flame trench to the north and into the air over historic pad 39A on NASA’s Kennedy Space Center during a picture perfect sunny afternoon – as I witnessed from the Merritt Island National Wildlife Refuge in Titusville, FL.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 25 Apr. 2017 as seen from Merritt Island National Wildlife Refuge, Titusville, FL. The Falcon 9 is slated to launch the NROL-76 super secret spy satellite for the U.S. National Reconnaissance Office (NRO) on 30 April 2017. Credit: Ken Kremer/Kenkremer.com

During today’s static fire test, the rocket’s first and second stages are fueled with densified liquid oxygen and RP-1 propellants like an actual launch, and a simulated countdown is carried out to the point of a brief engine ignition with the rocket firmly clamped down and held in place.

The hold down engine test with the erected rocket involved the ignition of all nine Merlin 1D first stage engines generating some 1.7 million pounds of thrust at pad 39A while the two stage rocket was restrained on the pad.

This is only the fourth Falcon 9 static fire test ever conducted on Pad 39A.

Pad 39A has been repurposed by SpaceX from its days as a NASA shuttle launch pad.

Watch this video of the April 25 static fire test from colleague Jeff Seibert:



Video Caption: Static fire test of the Falcon 9 core in preparation for NROL-76 launch scheduled for April 30, 2017. A Falcon 9 booster undergoes a captive static fire test as a step in the launch preparation for the first dedicated NRO launch by SpaceX. Credit: Jeff Seibert

Following the engine test, the propellants are drained and the rocket is rolled off the pad and back into the huge SpaceX processing hanger at the pad perimeter.

The NROL-76 classified surveillance satellite will be bolted on top. The rocket will be rolled back to pad 39A in advance of Sunday’s planned blastoff.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 25 Apr. 2017 as seen from Merritt Island National Wildlife Refuge, Titusville, FL. The Falcon 9 is slated to launch the NROL-76 super secret spy satellite for the U.S. National Reconnaissance Office (NRO) on 30 April 2017. Credit: Ken Kremer/Kenkremer.com

Until now launch competitor United Launch Alliance (ULA) and its predecessors have held a virtual monoploy on the US military’s most critical satellite launches.

Worlds 1st ever reflown SpaceX Falcon 9 soars to orbit with SES-10 telecomsat from historic Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

The last first stage booster during the SES-10 launch of the first recycled rocket landed on a droneship barge at sea last month.

NROL-76 will be the fifth SpaceX launch of 2017.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Astronaut Peggy Whitson Sets US Space Endurance Record, Speaks to President Trump

NASA astronaut Peggy Whitson, currently living and working aboard the International Space Station, broke the record Monday for cumulative time spent in space by a U.S. astronaut – an occasion that was celebrated with a phone call from President Donald Trump, First Daughter Ivanka Trump, and fellow astronaut Kate Rubins. Credits: NASA TV
NASA astronaut Peggy Whitson, currently living and working aboard the International Space Station, broke the record Monday for cumulative time spent in space by a U.S. astronaut – an occasion that was celebrated with a phone call from President Donald Trump, First Daughter Ivanka Trump, and fellow astronaut Kate Rubins. Credits: NASA TV

NASA Astronaut Peggy Whitson set the endurance record for time in space by a U.S, astronaut today, Monday, April 24, during her current stint of living and working aboard the International Space Station (ISS) along with her multinational crew of five astronauts and cosmonauts.

Furthermore Whitson received a long distance phone call of exuberant congratulations from President Donald Trump, First Daughter Ivanka Trump, and fellow astronaut Kate Rubins direct from the Oval Office in the White House to celebrate the momentous occasion.

“This is a very special day in the glorious history of American spaceflight!” said President Trump during the live phone call to the ISS broadcast on NASA TV.

As of today, Whitson exceeded 534 cumulative days in space by an American astronaut, breaking the record held by NASA astronaut Jeff Williams.

“Today Commander Whitson you have broken the record for the most total time spent in space by an American astronaut. 534 days and counting,” elaborated President Trump.

“That’s an incredible record to break. And on behalf of the nation and frankly the world I would like to congratulate you. That is really something!”

“You’re an incredible inspiration to us all.”

Trump noted that thousands of school students were listening in to the live broadcast which also served to promote students to study STEM subjects.

“Peggy is a phenomenal role model for young women, and all Americans, who are exploring or participating in STEM education programs and careers,” said President Trump.

“As I have said many times before, only by enlisting the full potential of women in our society will we be truly able to make America great again. When I signed the INSPIRE Women Act in February, I did so to ensure more women have access to STEM education and careers, and to ensure America continues to benefit from the contributions of trailblazers like Peggy.”

How does it feel to break the endurance record? Trump asked Whitson.

“It’s actually a huge honor to break a record like this, but it’s an honor for me basically to be representing all the folks at NASA who make this spaceflight possible and who make me setting this record feasible,” Whitson replied from orbit to Trump.

“And so it’s a very exciting time to be at NASA. We are all very much looking forward, as directed by your new NASA bill — we’re excited about the missions to Mars in the 2030s. And so we actually, physically, have hardware on the ground that’s being built for the SLS rocket that’s going to take us there.”

“It’s a very exciting time, and I’m so proud of the team.”

“We have over 200 investigations ongoing onboard the space station, and I just think that’s a phenomenal part of the day.”

NASA astronaut Jack Fischer is also serving aboard the station on his rookie flight and also took part in the phone call with President Trump.

Whitson is currently serving as Space Station Commander of Expedition 51. She most recently launched to the ISS on Nov 17, 2016 aboard a Russian Soyuz capsule from the Baikonur Cosmodrome in Kazakhstan, as part of a three person crew.

At the time of her Soyuz launch she had accumulated 377 total days in space.

She holds several other prestigious records as well. Whitson is the first woman to serve twice as space station commander.

Indeed in 2008 Whitson became the first woman ever to command the space station during her prior stay on Expedition 16 a decade ago. Her second stint as station commander began earlier this month on April 9.

Whitson also holds the record for most spacewalks by a female astronaut. Altogether she has accumulated 53 hours and 23 minutes of EVA time over eight spacewalks.

Overall, Expedition 51 involved her third long duration stay aboard the massive orbiting laboratory complex.

Seen here on a spacewalk in March 2017, NASA astronaut Peggy Whitson holds the record for most spacewalks conducted by a female astronaut. Credits: NASA

“This is an inspirational record Peggy is setting today, and she would be the first to tell you this is a record that’s absolutely made to be broken as we advance our knowledge and existence as both Americans and humans,” said NASA acting Administrator Robert Lightfoot, in a statement.

“The cutting-edge research and technology demonstrations on the International Space Station will help us go farther into our solar system and stay there longer, as we explore the mysteries of deep space first-hand. Congratulation to Peggy, and thank you for inspiring not only women, but all Americans to pursue STEM careers and become leaders.”

When she returns to Earth in September she will have accumulated some 666 days in space.

On her 2007 mission aboard the International Space Station, NASA astronaut Peggy Whitson, Expedition 16 commander, worked on the Capillary Flow Experiment (CFE), which observes the flow of fluid, in particular capillary phenomena, in microgravity. Credits: NASA

Trump made note of the science and commercial industrial work being carried out aboard the station.

“Many American entrepreneurs are racing into space. I have many friends that are so excited about space. They want to get involved in space from the standpoint of entrepreneurship and business,” said President Trump.

“And I’m sure that every student watching wants to know, what is next for Americans in space.”

Indeed the private SS John Glenn Cygnus cargo freighter just arrived at the ISS on Saturday, April 22, carrying nearly 4 tons or science experiments, hardware, parts and provisions.

Whitson was one of two ISS astronauts involved in capturing Cygnus with the Canadian built robotic arm for attachment to the stations Unity node.

Trump also mentioned his strong support for sending humans on a mission to Mars in the 2030s and for NASA’s development of the SLS heavy lift rocket and Orion deep space capsule.

“I’m very proud that I just signed a bill committing NASA to the aim of sending America astronauts to Mars. So we’ll do that. I think we’ll do it a lot sooner than we’re even thinking.”

“Well, we want to try and do it during my first term or, at worst, during my second term. So we’ll have to speed that up a little bit, okay?”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SS John Glenn Stellar Space Station Launch – Photo/Video Gallery

Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – This week’s blastoff of the ‘SS John Glenn’ Cygnus cargo freighter atop an Atlas V rocket on a critical mission delivering over 7000 pounds of science and gear to the International Space Station (ISS) yielded stellar imagery from all around the Florida Space Coast.

On the occasion of what amounts to a sentimental third journey to space for NASA astronaut John Glenn – the first American to orbit Earth – near perfect weather conditions enabled spectacular views of the lunchtime liftoff of the United Launch Alliance Atlas V carrying Orbital ATK’s commercial Cygnus supply ship named in honor of a true American hero.

The SS John Glenn blasted to orbit on time at 11:11 a.m. EDT Tuesday, April 18 atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The cargo ship safely reached the station early Saturday morning.

The stunning launch events were captured by journalists and tourists gathered from across the globe.

Liftoff of Orbital ATK SS John Glenn OA-7 mission atop ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL on April 18, 2017. Credit: Julian Leek

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

Watch this truly magnificent and unique video from space journalist Jeff Seibert positioned at a Playalinda Beach on the Atlantic Ocean – as excited vacationers and space enthusiasts frolic together in the waves and sands of this public beach.

Video Caption: Launch of Orbital ATK OA-7 Cygnus cargo vessel viewed from Playalinda Beach, FL on April 18, 2017. An Atlas 5 rocket launching a Cygnus cargo vessel, the “S.S. John Glenn” to the ISS loaded with 7452 pounds of science equipment, experiments, consumables and spare parts. Credit: Jeff Seibert

Playalinda is located just north of NASA’s Launch Complex 39A and offers the closest and clearest possible views of Atlas rocket launches from only about 5 miles away.

Orbital ATK’s seventh cargo delivery flight to the International Space Station – in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

Four days after liftoff the SS John Glenn finally arrived at the station as planned Saturday morning April 22 following a carefully choreographed series of thruster maneuvers this past week.

The private Cygnus resupply vessel is carrying nearly four tons of science and supplies crammed inside for the five person multinational Expedition 51 crew.

After reaching the vicinity of the space station overnight Saturday, Cygnus was successfully captured by astronaut crew members Thomas Pesquet of ESA (European Space Agency) and Expedition 51 Station Commander Peggy Whitson of NASA at 6:05 a.m. EDT using the space station’s 57.7-foot (17.6-meter) Canadian-built Canadarm2 robotic arm.

The SS John Glenn Cygnus vehicle counts as Orbital ATK’s seventh cargo delivery flight to the station.

The vehicle is also known alternatively as the Cygnus OA-7 or CRS-7 mission.

Cygnus OA-7 is loaded with 3459 kg (7626 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.

Blastoff of SS John Glenn on Orbital ATK OA-7 resupply mission bound for the ISS atop ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL on April 18, 2017. Credit: Julia Bergeron

The Orbital ATK SS John Glenn Cygnus is the 2nd US cargo ship to launch to the ISS this year following the SpaceX Dragon CRS-10 mission in February – as I reported here.

ULA Atlas V streaks aloft carrying Orbital ATK SS John Glenn OA-7 resupply mission to the ISS after April 18, 2017 liftoff from pad 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Blastoff of SS John Glenn on Orbital ATK OA-7 resupply mission bound for the ISS atop ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL on April 18, 2017. Credit: Julia Bergeron
ULA Atlas V soars to orbit with the Orbital ATK SS John Glenn OA-7 resupply mission to the ISS after April 18, 2017 liftoff from pad 41 on Cape Canaveral Air Force Station, FL. Credit: Julia Bergeron
Orbital ATK’s seventh cargo delivery flight to the International Space Station – in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s 7th cargo delivery flight to the International Space Station launched at 11:11 a.m. EDT April 18, 2017 carrying the SS John Glenn atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida, as seen from the VAB roof at KSC. Credit: Ken Kremer/kenkremer.com
Liftoff of Orbital ATK SS John Glenn OA-7 mission atop ULA Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station, FL on April 18, 2017, as seen from VAB roof at KSC. Credit: Julian Leek
ULA Atlas V soars to orbit with the Orbital ATK SS John Glenn OA-7 resupply mission to the ISS after April 18, 2017 liftoff from Cape Canaveral Air Force Station, FL – as seen from Titusville Kennedy Space Center Quality Inn. Credit: Gerald DeBose
Launch of Orbital ATK SS John Glenn atop ULA Atlas V on April 18, 2017 from pad 41 on Cape Canaveral Air Force Station, FL – as seen from KSC Press Site Complex 39. Credit: Jean Wright
Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

SS John Glenn Arrives at Space Station with Science and Supplies

#Canadarm2 on @Space_Station is positioning #Cygnus for berthing to Unity module on 22 April 2017. Credit: NASA TV
#Canadarm2 on @Space_Station is positioning #Cygnus for berthing to Unity module on 22 April 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – The SS John Glenn commercial Cygnus resupply vessel arrived at the International Space Station early this morning, April 22, carrying nearly four tons of science and supplies crammed inside for the five person multinational Expedition 51 crew.

After reaching the vicinity of the space station overnight Saturday, the commercial Cygnus cargo ship was successfully captured by astronaut crew members Thomas Pesquet of ESA (European Space Agency) and Expedition 51 Station Commander Peggy Whitson of NASA at 6:05 a.m. EDT using the stations Canardarm2.

Working at robotic work consoles inside the domed Cupola module, Pesquet and Whitson deftly maneuvered the space station’s 57.7-foot (17.6-meter) Canadian-built Canadarm2 robotic arm to reach out and flawlessly snare the Cygnus CRS-7 spacecraft at 6:05 a.m. EST at the short and tiny grappling pin located at the base of the vessel.

Now bolted into place on @Space_Station, @OrbitalATK’s #Cygnus will spend ~3 months at the orbiting outpost. Credit NASA TV

Cygnus and the station were soaring some 250 miles (400 km) over Germany as they were joined at Canada’s high tech arm in a perfect demonstration of the peaceful scientific purpose of the massive laboratory complex.

The private supply ship was moved and bolted into place a few hours later at 8:19 a.m. EDT to physically berth and join the station at the Unity module.

Thus begins a three month long sentimental journey ‘bridging history’ to the dawn of America’s human spaceflight with the cylindrically shaped ship named in tribute to John Glenn – the first American to orbit Earth way back in 1962.

The SS John Glenn is a private Cygnus spacecraft manufactured by Orbital ATK under the commercial resupply services (CRS) contact with NASA whose purpose is to deliver many thousands of pounds of cargo and research supplies to the space station to enable the scientific research for which it was built.

Cygnus arrived at the station via a carefully choreographed series on thruster maneuvers after almost four days in orbit following liftoff earlier this week.

The SS John Glenn blasted to orbit on time at 11:11 a.m. EDT Tuesday, April 18 atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The Orbital ATK Cygnus cargo craft approaches its 10 meter capture point where the Canadarm2 grapples resupply ship on 22 April 2017. Credit: NASA TV

The SS John Glenn Cygnus vehicle counts as Orbital ATK’s seventh cargo delivery flight to the station.

The vehicle is also known alternatively as the Cygnus OA-7 or CRS-7 mission.

GO for capture of S.S. John Glenn #Cygnus on 22 April 2017 with Canadarm2. Credit: NASA TV

The entire rendezvous and grappling sequence was broadcast live on NASA TV starting at 4:30 a.m. Saturday: http://nasa.gov/nasatv

“Over the pin. Trigger initiated and snares closed,” radioed Pesquat in the final moments of approach as he carefully and ever so slowly moved the arm towards Cygnus this morning.

“Capture confirmed right on time at 6:05 a.m,” replied Houston Mission Control.

“We have a good capture, and are go for safing,” reported Station Commander Whitson.

“The crew of Expedition 51 would like to congratulate all the teams at NASA, Orbital ATK and the contractors for a flawless cargo-delivery mission,” Pesquat elaborated. “We are very proud to welcome onboard the S.S. John Glenn.”

“The more than three tons of pressurized cargo in the Cygnus spacecraft will be put to good use to continue our mission of research, exploration and discovery. Achievements like this, fruit of the hard work by space agencies and private companies and the international cooperation across the world, are what truly makes the ISS such a special endeavor at the service of all mankind.”

“Station, Houston, well said,” replied Mission Control.

After the astronauts finished their work in orbit, mission controllers in Houston took over and commanded the arm to move Cygnus to the Earth facing port on Node 1 where it was remotely bolted in place with 16 hooks and latches and hard mated to the Unity module.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The mission is named the ‘S.S. John Glenn’ in tribute to legendary NASA astronaut John Glenn – the first American to orbit Earth back in February 1962.

Glenn was one of the original Mercury Seven astronauts selected by NASA. At age 77 he later flew a second mission to space aboard Space Shuttle Discovery- further cementing his status as a true American hero.

Glenn passed away in December 2016 at age 95. He also served four terms as a U.S. Senator from Ohio.

A picture of John Glenn in his shuttle flight suit and a few mementos are aboard.

Cygnus OA-7 is loaded with 3459 kg (7626 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware to the orbital laboratory in support over 250 research experiments being conducted on board by the Expedition 51 and 52 crews. The total volumetric capacity of Cygnus exceeds 27 cubic meters.

Science plays a big role in this mission named in tribute to John Glenn. Over one third of the payload loaded aboard Cygnus involves science.

“The new experiments will include an antibody investigation that could increase the effectiveness of chemotherapy drugs for cancer treatment and an advanced plant habitat for studying plant physiology and growth of fresh food in space,” according to NASA.

The astronauts will grow food in space, including Arabidopsis and dwarf wheat, in an experiment that could lead to providing nutrition to astronauts on a deep space journey to Mars.

“Another new investigation bound for the U.S. National Laboratory will look at using magnetized cells and tools to make it easier to handle cells and cultures, and improve the reproducibility of experiments. Cygnus also is carrying 38 CubeSats, including many built by university students from around the world as part of the QB50 program. The CubeSats are scheduled to deploy from either the spacecraft or space station in the coming months.”

Also aboard is the ‘Genes in Space-2’ experiment. A high school student experiment from Julian Rubinfien of Stuyvescent High School, New York City, to examine accelerated aging during space travel. This first experiment will test if telomere-like DNA can be amplified in space with a small box sized experiment that will be activated by station astronauts.

The Saffire III payload experiment will follow up on earlier missions to study the development and spread of fire and flames in the microgravity environment of space. The yard long experiment is located in the back of the Cygnus vehicle. It will be activated after Cygnus departs the station roughly 80 days after berthing. It will take a few hours to collect the data for transmission to Earth.

Four spacecraft are parked at the station including the Orbital ATK Cygnus resupply ship, the Progress 66 cargo craft and the Soyuz MS-03 and MS-04 crew vehicles as of 22 April 2017. Credit: NASA

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com