How To Take Photos Of Earth While Whizzing At 17,000 MPH

A timelapse photo taken by Don Pettit on the International Space Station. Credit: Don Pettit/NASA

When you’re flying above Earth in a spaceship or space station, taking a clear picture below is more than a point-and-shoot job. As NASA astronaut Don Pettit explains in this video, you need to account for the motion of your little craft to get the best pictures below. And Pettit should know, being a photographer who captured many stunning timelapses in space.

“Apart from everything else an astronaut does on orbit, photography is actually part of our job,” Pettit said in the video. “We take pictures of Earth and the surroundings of Earth, the upper atmosphere. These pictures, in themselves, represent a scientific dataset, recorded now for over 14 years.”

The video is called “From Above” and is a production of SmugMug films, who also did an interview with Pettit. As it turns out, much of the photography taken in space is not of Earth — it’s engineering photography of window smudges or electrical connections to help diagnose problems happening in space.

“These things need to be documented so the images can be downlinked for engineers on the ground to assess what’s happening to the systems on space station,” Pettit said in the interview. “We get training specifically on doing these engineering images, which, for the most part, are not really interesting to the public.”

Powerful Philippines Typhoon Spotted From Space As 1 Million Flee Homes

Typhoon Hagupit seen from the International Space Station on Dec. 6, 2014. Credit: Terry Virts/Twitter

As a million people fled their homes in the Philippines, astronauts on the International Space Station could clearly see the cause of the disruption — Typhoon Hagupit, which struck the chain of Asian islands this weekend.

“This storm looks incredibly dangerous — praying for the people of the Philippines,” wrote Expedition 42 astronaut Terry Virts in one of a series of pictures he tweeted from space yesterday (Dec. 6). Three deaths have been reported in media so far in the Philippines due to the storm.

While the Guardian said the typhoon is the biggest to hit the area this year, reports say it’s not as big as Super-Typhoon Haiyan, which killed thousands last year. Winds from Hagupit were reported at 106 miles per hour (170 kilometers per hour) in the central Philippines. The BBC says that the Red Cross is now trying to reach the affected areas to give aid.

The Category 3 storm is called “Ruby” among the locals. As always, weather agencies around the world are providing forecasts as they can through satellite imagery. Virts sent several pictures from space, which you can see below.

The “Potsdam Gravity Potato” Shows Variations in Earth’s Gravity

The Geoid 2011 model, based on data from LAGEOS, GRACE, GOCE and surface data. Credit: GFZ

People tend to think of gravity here on Earth as a uniform and consistent thing. Stand anywhere on the globe, at any time of year, and you’ll feel the same downward pull of a single G. But in fact, Earth’s gravitational field is subject to variations that occur over time. This is due to a combination of factors, such as the uneven distributions of mass in the oceans, continents, and deep interior, as well as climate-related variables like the water balance of continents, and the melting or growing of glaciers.

And now, for the first time ever, these variations have been captured in the image known as the “Potsdam Gravity Potato” –  a visualization of the Earth’s gravity field model produced by the German Research Center for Geophysics’ (GFZ) Helmholtz’s Center in Potsdam, Germany.

And as you can see from the image above, it bears a striking resemblance to a potato. But what is more striking is the fact that through these models, the Earth’s gravitational field is depicted not as a solid body, but as a dynamic surface that varies over time.This new gravity field model (which is designated EIGEN-6C) was made using measurements obtained from the LAGEOS, GRACE, and GOCE satellites, as well as ground-based gravity measurements and data from the satellite altimetry.

The Geoid 2005 model, which was based on data of two satellites (CHAMP and GRACE) plus surface data. Credit: GFZ
The 2005 model, which was based on data from the CHAMP and GRACE satellites and surface data, was less refined than the latest one. Credit: GFZ

Compared to the previous model obtained in 2005 (shown above), EIGEN-6C has a fourfold increase in spatial resolution.

“Of particular importance is the inclusion of measurements from the satellite GOCE, from which the GFZ did its own calculation of the gravitational field,” says Dr. Christoph Foerste who directs the gravity field work group at GFZ along with Dr. Frank Flechtner.

The ESA mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched in mid-March 2009 and has since been measuring the Earth’s gravitational field using satellite gradiometry – the study and measurement of variations in the acceleration due to gravity.

“This allows the measurement of gravity in inaccessible regions with unprecedented accuracy, for example in Central Africa and the Himalayas,” said Dr. Flechtner. In addition, the GOCE satellites offers advantages when it comes to measuring the oceans.

Within the many open spaces that lie under the sea, the Earth’s gravity field shows variations. GOCE is able to better map these, as well as deviations in the ocean’s surface – a factor known as “dynamic ocean topography” – which is a result of Earth’s gravity affecting the ocean’s surface equilibrium.

Twin-satellites GRACE with the earth's gravity field (vertically enhanceded) calculated from CHAMP data. Credit: GFZ
Twin-satellites GRACE with the earth’s gravity field (vertically enhanced) calculated from CHAMP data. Credit: GFZ

Long-term measurement data from the GFZ’s twin-satellite mission GRACE (Gravity Recovery And Climate Experiment) were also included in the model. By monitoring climate-based variables like the melting of large glaciers in the polar regions and the amount of seasonal water stored in large river systems, GRACE was able to determine the influence of large-scale temporal changes on the gravitational field.

Given the temporal nature of climate-related processes – not to mention the role played by Climate Change – ongoing missions are needed to see how they effect our planet long-term. Especially since the GRACE mission is scheduled to end in 2015.

In total, some 800 million observations went into the computation of the final model which is composed of more than 75,000 parameters representing the global gravitational field. The GOCE satellite alone made 27,000 orbits during its period of service (between March 2009 and November 2013) in order to collect data on the variations in the Earth’s gravitational field.

The final result achieved centimeter accuracy, and can serve as a global reference for sea levels and heights. Beyond the “gravity community,” the research has also piqued the interest of researchers in aerospace engineering, atmospheric sciences, and space debris.

But above all else, it offers scientists a way of imaging the world that is different from, but still complimentary to, approaches based on light, magnetism, and seismic waves. And it could be used for everything from determining the speed of ocean currents from space, monitoring rising sea levels and melting ice sheets, to uncovering hidden features of continental geology and even peeking at the convection force driving plate tectonics.

Further Reading: GFZ

NASA Airship Could Watch The Stars Without The Need Of a Rocket

Artist's concept of a NASA airship that would fly at a suborbital altitudes for hours at a time. Credit: Mike Hughes (Eagre Interactive)/Keck Institute for Space Studies

Dreams of space are often tied to jet engines or solar sails or taking a ride on a rocketship. But it’s often quite efficient to do research from Earth, especially from the high reaches of the atmosphere where there are few molecules to get in the way of observations.

NASA wants to do more of this kind of astronomy with an airship — but at an extreme height of 65,000 feet (20 kilometers) for 20 hours. No powered-airship mission has managed to last past eight hours at this height because of the winds in that zone, but NASA is hoping that potential creators would be up to the challenge.

This isn’t a guaranteed mission yet. NASA has a solicitation out right now to gauge interest from the community, and to figure out if it is technically feasible. This program would be a follow-on to ideas such as SOFIA, a flying stratospheric telescope that the agency plans to defund in future budgets.

Their goal is to fly an airship with a 44-pound (20-kilogram) payload at this altitude for 20 hours. If a company is feeling especially able, it can even try for a more difficult goal: a 440-pound (200-kilogram) payload for 200 hours.

NASA's Stratospheric Observatory for Infrared Astronomy 747SP aircraft flies over Southern California's high desert during a test flight in 2010. Credit: NASA/Jim Ross
NASA’s Stratospheric Observatory for Infrared Astronomy 747SP aircraft flies over Southern California’s high desert during a test flight in 2010. Credit: NASA/Jim Ross

“We are seeking to take astronomy and Earth science to new heights by enabling a long-duration, suborbital platform for these kinds of research,” stated lead researcher Jason Rhodes, an astrophysicist at NASA’s Jet Propulsion Laboratory in California.

And why not just use a balloon? It comes down to communications, NASA says: “Unlike a balloon, which travels with air currents, airships can stay in one spot,” the agency states. “The stationary nature of airships allows them to have better downlink capabilities, because there is always a line-of-sight communication.”

If the prize goes forward, NASA is considering awarding $2 million to $3 million across multiple prizes. You can get more on the official request for information at this link.

Source: NASA

Antares Rocket Failure Pushes Tiny Satellite Company To Hitch Ride With SpaceX

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The various companies that had stuff sitting on the failed Orbital Sciences Antares rocket launch last month are busy looking for alternatives. One example is Planet Labs, which is best known for deploying dozens of tiny satellites from the International Space Station this year.

The company lost 26 satellites in the explosion. But within nine days of the Oct. 28 event, Planet Labs had a partial backup plan — send two replacements last-minute on an upcoming SpaceX Falcon 9 launch.

In what Planet Labs’ Robbie Schingler calls “the future of aerospace”, almost immediately after the explosion Planet Labs began working with NanoRacks, which launches its satellites from the space station, to find a replacement flight. Half of Planet Labs’ employees began building satellites, while the other half began working through the regulations and logistics. They managed to squeeze two satellites last-minute on to the next SpaceX manifest, which is scheduled to launch in December.

“In space, each element is very difficult to get right by itself, and it takes an ecosystem to deliver a capability this quickly,” wrote Schingler, a president and co-founder of the company, in a blog post last week.

NanoRacks CubeSats deployed from the International Space Station in February 2014, during Expedition 38. Credit: NASA
NanoRacks CubeSats deployed from the International Space Station in February 2014, during Expedition 38. Credit: NASA

“Central to making this possible was developing our own custom design of the satellite that is free from specialty suppliers (thus decreasing lead time) and having a spacecraft design optimized for manufacturing and automated testing. Moreover, we certainly couldn’t have done it without the collaboration from NanoRacks and support from NASA, and we thank them for their support. This is a great example for how to create a resilient aerospace ecosystem.”

There’s no word on how they will replace the other satellites, nor how this will affect Planet Labs’ vision (explained in this March TED talk) to have these small sentinels frequently circling Earth to provide near-realtime information on what is happening with our planet. But the company acknowledged that space is hard and satellites do get lost from time to time.

The company has been testing hardware in space, Silicon Valley-style, and starting to sign partnerships with various entities who want access to the imagery. Check out some of the free stuff below.

Writes Planet Labs of this image: "Water from reservoirs developed on the Tigris and Euphrates Rivers in the past 25 years enabled the expansion of cropland in the region, including these circular fields in the ?anliurfa Province of southeastern Turkey." Credit: Planet Labs
Writes Planet Labs of this image: “Water from reservoirs developed on the Tigris and Euphrates Rivers in the past 25 years enabled the expansion of cropland in the region, including these circular fields in the ?anliurfa Province of southeastern Turkey.” Credit: Planet Labs
Writes Planet Labs of this image: "Forty percent of the coal mined in the United States comes from the Powder River Basin in Wyoming. The North Antelope Rochelle Mine, pictured here, is both the largest in the basin, and the largest in the United States." Credit: Planet Labs
Writes Planet Labs of this image: “Forty percent of the coal mined in the United States comes from the Powder River Basin in Wyoming. The North Antelope Rochelle Mine, pictured here, is both the largest in the basin, and the largest in the United States.” Credit: Planet Labs
Writes Planet Labs of this image: "The deep valleys and sharp ridges of the Nan Shan range in central China are highlighted in this early-morning satellite image." Credit: Planet Labs
Writes Planet Labs of this image: “The deep valleys and sharp ridges of the Nan Shan range in central China are highlighted in this early-morning satellite image.” Credit: Planet Labs
Writes Planet Labs of this image: "Vivid red maples stand out against the dark green evergreen forest and brown scrub landscape of the Pleasantview Hills." Credit: Planet Labs
Writes Planet Labs of this image: “Vivid red maples stand out against the dark green evergreen forest and brown scrub landscape of the Pleasantview Hills.” Credit: Planet Labs
Writes Planet Labs of this image: "Filled in 1967, Lake Diefenbaker is a 140-mile-long reservoir along the South Saskatchewan and Qu’Appelle Rivers. Diefenbaker is renowned for harboring extremely large fish: the world record rainbow trout (48 pounds) and burbot (25 pounds) were both caught in the lake." Credit: Planet Labs
Writes Planet Labs of this image: “Filled in 1967, Lake Diefenbaker is a 140-mile-long reservoir along the South Saskatchewan and Qu’Appelle Rivers. Diefenbaker is renowned for harboring extremely large fish: the world record rainbow trout (48 pounds) and burbot (25 pounds) were both caught in the lake.” Credit: Planet Labs
Writes Planet Labs of this image: "The red, sediment-filled Colorado River contrasts with blue-green Havasu Creek in the heart of Grand Canyon National Park. The Colorado River is almost always red in spring and summer, since it collects silt from a huge watershed. Short tributaries, however, usually run clear—only picking up significant sediment during flash floods." Credit: Planet Labs
Writes Planet Labs of this image: “The red, sediment-filled Colorado River contrasts with blue-green Havasu Creek in the heart of Grand Canyon National Park. The Colorado River is almost always red in spring and summer, since it collects silt from a huge watershed. Short tributaries, however, usually run clear—only picking up significant sediment during flash floods.” Credit: Planet Labs
Writes Planet Labs of this image: "Dark green fields stand out against the pale desert floor in Pinal County, Arizona. The region’s farms rely on irrigation, since they receive less than 10 inches of rain a year. Irrigation water comes from two main sources: the Colorado River and aquifers." Credit: Planet Labs
Writes Planet Labs of this image: “Dark green fields stand out against the pale desert floor in Pinal County, Arizona. The region’s farms rely on irrigation, since they receive less than 10 inches of rain a year. Irrigation water comes from two main sources: the Colorado River and aquifers.” Credit: Planet Labs

Global Warming Watch: How Carbon Dioxide Bleeds Across The Earth

High concentrations of carbon dioxide (in red) tend to congregate in the northern hemisphere during colder months, when plants can't absorb as much from the atmosphere. This picture is based on a NASA Goddard computer model from ground-based observations and depicts concentrations on March 30, 2006. Credit: NASA's Goddard Space Flight Center/B. Putman/YouTube (screenshot)

Red alert — the amount of carbon dioxide in the atmosphere is increasing year-by-year due to human activity. It’s leading to a warming Earth, but just how quickly — and how badly it will change the environment around us — is hard to say.

NASA released a new video showing how carbon dioxide — a product mainly of fossil fuels — shifts during a typical year. Billed as the most accurate model to date, the emissions shown in 2006 (tracked by ground-based sources) show how wind currents across the globe spread the gas across the globe. The red you see up there indicates high concentrations. The full video is below the jump.

In spring and summer, plants absorb carbon dioxide and the amount in the atmosphere above that hemisphere decreases. In fall and winter, carbon dioxide is not absorbed as well since the plants are dead or dormant. Also seen in the video is carbon monoxide that spreads out from forest fires, particularly in the southern hemisphere.

“Despite carbon dioxide’s significance, much remains unknown about the pathways it takes from emission source to the atmosphere or carbon reservoirs such as oceans and forests,” NASA stated.

“Combined with satellite observations such as those from NASA’s recently launched OCO-2 [Orbiting Carbon Observatory-2], computer models will help scientists better understand the processes that drive carbon dioxide concentrations.”

The model is called GEOS-5 and was made by scientists at the NASA Goddard Space Flight Center’s global modeling and assimilation office.

Source: NASA

NASA’s RapidScat Ocean Wind Watcher Starts Earth Science Operations at Space Station

ISS-RapidScat data on a North Atlantic extratropical cyclone, as seen by the National Centers for Environmental Prediction Advanced Weather Interactive Processing System used by weather forecasters at the National Oceanic and Atmospheric Administration's Ocean Prediction Center. Image Credit: NASA/JPL-Caltech/NOAA

Barely two months after being launched to the International Space Station (ISS), NASA’s first science payload aimed at conducting Earth science from the station’s exterior has started its ocean wind monitoring operations two months ahead of schedule.

Data from the ISS Rapid Scatterometer, or ISS-RapidScat, payload is now available to the world’s weather and marine forecasting agencies following the successful completion of check out and calibration activities by the mission team.

Indeed it was already producing high quality, usable data following its power-on and activation at the station in late September and has monitored recent tropical cyclones in the Atlantic and Pacific Oceans prior to the end of the current hurricane season.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring for a minimum mission duration of two years.

“RapidScat is a short mission by NASA standards,” said RapidScat Project Scientist Ernesto Rodriguez of JPL.

“Its data will be ready to help support U.S. weather forecasting needs during the tail end of the 2014 hurricane season. The dissemination of these data to the international operational weather and marine forecasting communities ensures that RapidScat’s benefits will be felt throughout the world.”

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module.  It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.
ISS-RapidScat instrument, shown in this artist’s rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014, and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

The 1280 pound (580kilogram) experimental instrument was developed by NASA’s Jet Propulsion Laboratory. It’s a cost-effective replacement to NASA’s former QuikScat satellite.

The $26 million remote sensing instrument uses radar pulses reflected from the ocean’s surface at different angles to calculate the speed and direction of winds over the ocean for the improvement of weather and marine forecasting and hurricane monitoring.

The RapidScat, payload was hauled up to the station as part of the science cargo launched aboard the commercial SpaceX Dragon CRS-4 cargo resupply mission that thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

ISS-RapidScat is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

ISS-RapidScat viewed the winds within post-tropical cyclone Nuri as it moved parallel to Japan on Nov. 6, 2014 05:30 UTC. Image Credit: NASA/JPL-Caltech
ISS-RapidScat viewed the winds within post-tropical cyclone Nuri as it moved parallel to Japan on Nov. 6, 2014, 05:30 UTC. Image Credit: NASA/JPL-Caltech

It was robotically assembled and attached to the exterior of the station’s Columbus module using the station’s robotic arm and DEXTRE manipulator over a two day period on Sept 29 and 30.

Ground controllers at Johnson Space Center intricately maneuvered DEXTRE to pluck RapidScat and its nadir adapter from the unpressurized trunk section of the Dragon cargo ship and attached it to a vacant external mounting platform on the Columbus module holding mechanical and electrical connections.

The nadir adapter orients the instrument to point its antennae at Earth.

The couch sized instrument and adapter together measure about 49 x 46 x 83 inches (124 x 117 x 211 centimeters).

“The initial quality of the RapidScat wind data and the timely availability of products so soon after launch are remarkable,” said Paul Chang, ocean vector winds science team lead at NOAA’s National Environmental Satellite, Data and Information Service (NESDIS)/Center for Satellite Applications and Research (STAR), Silver Spring, Maryland.

“NOAA is looking forward to using RapidScat data to help support marine wind and wave forecasting and warning, and to exploring the unique sampling of the ocean wind fields provided by the space station’s orbit.”

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

This has been a banner year for NASA’s Earth science missions. At least five missions will be launched to space within a 12 month period, the most new Earth-observing mission launches in one year in more than a decade.

ISS-RapidScat is the third of five NASA Earth science missions scheduled to launch over a year.

NASA has already launched the of the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency, in February and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

China’s Lunar Test Spacecraft Takes Incredible Picture of Earth and Moon Together

A unique view of the Moon and distant Earth from China's Chang’e-5 T1 lunar test flight. Image via CCTV News and UnmannedSpaceflight.com.

The Chinese lunar test mission Chang’e 5T1 has sent back some amazing and unique views of the Moon’s far side, with the Earth joining in for a cameo in the image above. According to the crew at UnmannedSpaceflight.com the images were taken with the spacecraft’s solar array monitoring camera.

Add this marvelous shot to previous views of the Earth and Moon together.

A closeup of Mare Marginis, a lunar sea that lies on the very edge of the lunar nearside. Credit: Xinhua News, via UnmannedSpacefight.com.
A closeup of Mare Marginis, a lunar sea that lies on the very edge of the lunar nearside. Credit: Xinhua News, via UnmannedSpacefight.com.

The mission launched on October 23 and is taking an eight-day roundtrip flight around the Moon and is now journeying back to Earth. The mission is a test run for Chang’e-5, China’s fourth lunar probe that aims to gather samples from the Moon’s surface, currently set for 2017. Chang’e 5T1 will return to Earth on October 31.

The test flight orbit had a perigee of 209 kilometers and reached an apogee of about 380,000 kilometers, swinging halfway around the Moon, but did not enter lunar orbit.

A view of Earth on October 24, 2014 from the Chinese Chang’e-5 T1 spacecraft. Credit: Xinhua News, via UnmannedSpaceflight.com.
A view of Earth on October 24, 2014, from the Chinese Chang’e-5 T1 spacecraft. Credit: Xinhua News, via UnmannedSpaceflight.com.

See original images at Xinhua News.

H/T: Cosmic_Penguin and Unmanned Spaceflight.

This Is the Very First Photo of Earth From Space

The first photo of Earth from space was taken on Oct. 24, 1947 (Credit: White Sands Missile Range/Applied Physics Laboratory)

These days we see photos of our planet taken from space literally every day. Astronauts living aboard the International Space Station, weather and Earth-observing satellites in various orbits, even distant spacecraft exploring other planets in our Solar System… all have captured images of Earth from both near and far. But there was a time not that long ago when there were no pictures of Earth from space, when a view of our planet against the blackness of the cosmos was limited to the imagination of dreamers and artists and there was nothing but the Moon orbiting our world.

On this day in 1946, before Apollo, before Mercury, even before Sputnik, that was no longer the case.

The image above shows the first photo captured of Earth from space, taken by a camera mounted to a V-2 rocket that was launched from the U.S. Army’s White Sands Missile Range in New Mexico. Taken to the United States by the dozen from Germany after the end of World War II, the V-2 (for “Vergeltungswaffe 2”) missiles were used by the Army to improve on their own rocket designs and also by scientists who were permitted to fill their payloads with experiments.

On October 24, 1946, a V-2 was launched from the Missile Range while a mounted 35mm movie camera captured images every 1.5 seconds. It reached an altitude of 65 miles before crashing back to Earth and, while the camera was destroyed on impact, the film cassette survived. The grainy photo seen above was on that roll, one of our first views of Earth from above the atmosphere.

(Okay, technically there’s still atmosphere above 65 miles — even the ISS orbiting at 260-plus statute miles has to give itself a boost to compensate for drag now and again — but the official aeronautical delineation of “space” begins at about 62 miles, or 100 km: the Kármán Line. V-2 #13 passed that mark in 1946 by 3 miles.)

In the following years more V-2 rockets would be launched, some reaching heights of 100 miles, giving us many more detailed views of our planet as it looks from space and prompting Clyde Holliday, the APL engineer who developed the mounted film cameras, to envision that “the entire land area of the globe might be mapped in this way.”

Assembled panorama of V-2 images taken from an altitude of 60 miles in 1948 (JHUAPL/US Navy)
Assembled panorama of V-2 images taken from an altitude of 60 miles in 1948 (JHUAPL/US Navy)

Now, 68 years later, seeing pictures of Earth from space are a much more common, if no less amazing, occurrence. But it all started with that one launch of a missile designed for war but repurposed for science.

Read more here in an article for Smithsonian’s Air & Space by Tony Reichhardt, and watch a contemporary news reel below about the 1946 V-2 launch:

Source: Air & Space

No, This Is Not a Photo of India on Diwali

Yes, it's India, but it's not a photo captured from space during Diwali night. (Credit: NASA)

Diwali, the Indian festival of lights, falls on Thursday, Oct. 23 this year and with it come celebrations, gift-giving, and brilliant lighting and firework displays all across the subcontinent of India… but this isn’t a picture of that. What is it exactly? Find out below…

Over the past several years this image has repeatedly resurfaced online, especially around the time of Diwali. And understandably so: it’s a beautiful view of India seemingly decorated for the festival… one can easily imagine the entire country awash in colorful lights from shore to shore.

But it’s not a photo at all, or even a singular image. Rather it’s a composite of many images acquired from a USAF Defense Meteorological Satellite Program (DMSP) satellite over the course of several years, and assembled by NOAA scientist Chris Elvidge to show the country’s growing population and urban areas.

In a 2012 article by Robert Johnson on Business Insider a NASA spokesperson described the colors in the image: “The white lights were the only illumination visible before 1992. The blue lights appeared in 1992. The green lights in 1998. And the red lights appeared in 2003.”

So what does India look like at night during the five-day-long Diwali festival? Click here and see.

While city lighting in India is definitely visible from space, it’s not the rainbow explosion of neon colors that Internet hoaxers and uninformed online enthusiasts would eagerly have you believe. According to Adam Voiland on the NASA Earth Observatory site, “in reality, any extra light produced during Diwali is so subtle that it is likely imperceptible when observed from space.”

So this year, don’t fall for any false descriptions of this picture… and, Happy Diwali!

Sources: Business Insider, Mashable, NASA Earth Observatory, EarthSky. Read more about the 2014 celebration of Diwali here.

HT to Peter Caltner on Twitter for re-alerting me of this.