Deadly Costa Concordia Shipwreck Captured in Stunning Image from Space

Capsized Costa Concordia Cruise Ship, Giglio, Italy- January 17, 2012; The Costa Concordia luxury cruise ship ran aground in the Tuscan waters off of Giglio,Italy on Friday, January, 2012. Credit: DIGITALGLOBE See the Full Image below

[/caption]

The deadly Costa Concordia shipwreck has been captured in a stunning high resolution image from space that vividly shows the magnitude of the awful disaster with the huge luxury cruise ship precariously tipped on its side just off of the Tuscan coastline of the Italian Island of Giglio [Isola del Giglio]. See the full image and close-up below.

The newly released image was taken by a commercial owned by DigitalGlobe and flying some 300 miles overhead in low Earth orbit. The photo from a WorldView satellite was snapped on January 17, 2012 and shows exactly where the cruise ship ran aground five days ago on Friday, January 13, 2012 when it was steered way to close to the shoreline.

The photo is a surreal view of the massive ship on its side, submerged on the shoreline in the Mediterranean Sea snapped through scattered clouds. The sight is something really hard to believe – imagine the movie Titanic.

Location Map of Costa Concordia Shipwreck
off the Tuscan coastline of Giglio, Italy

The Costa Concordia cruise ship had just left port with over 3200 passengers and 1000 crew members aboard and was sailing extremely close to Giglio Island when it apparently struck underwater rocks that suddenly ripped a gigantic gash through the hull and capsized the ship, sending the terrified passengers scrambling for their lives.

The Mediterranean waters temperature was about 57 F.

Shocking infrared video shows people frantically crawling over the side of the listing ship – tilted completely on its side – frantically trying to get into the lifeboats using rope lines – at night.

Passengers said it was an “Out of body experience.” Strangers helping strangers

Amazing new video shows the rocks clearly embedded in the hull of the wrecked ship.

The ship soon began listing off the Italian coastline in darkness. At a moment’s notice objects started flying through the air and the frightened passengers boarded lifeboats as fast as they could, apparently with no practice training beforehand.

Full view of Capsized Costa Concordia Cruise Ship, Giglio, Italy- January 17, 2012
The Costa Concordia luxury cruise ship ran aground in the Tuscan waters off of Giglio,Italy on Friday, January, 2012. Giglio Island at left, the Mediterranean Sea at right. Credit: DIGITALGLOBE

11 people are confirmed dead so far and about two dozen people are still missing today as emergency rescue crews furiously search every nook and cranny on the cruise ship in a desperate bid to find anyone who may still be alive.

Giglio Island, Italy off the coastline of Tuscany - Location Costa Concordia Shipwreck
Click to enlarge

Rescues divers have used explosives to gain entry to portions of the ship searching for any survivors.

Rescue efforts were temporarily suspended today (Jan. 18) due to rough seas. The Costa Concordia is loaded with several thousand gallons of diesel fuel oil which could contaminate the surroundings.

Satellite Close-up of Wreckage of Costa Concordia Luxury Cruise Ship of the coast of Giglio, Italy. Credit: DIGITALGLOBE

According to the DigitalGlobe website, the Colorado based company owns and operates the most sophisticated constellation of high-resolution commercial earth imaging satellites – . QuickBird, WorldView-1 and WorldView-2 which are capable of collecting over 500 million km2 of quality imagery per year with high resolution cameras.

The DigitalGlobe satellites are used for defense and intelligence, civil agencies, mapping and analysis, environmental monitoring and oil and gas exploration.

Costa Concordia Shipwreck
Artist concept shows DigitalGlobe Quickbird satellite soaring over Italy and Sicily. Credit: DigitalGlobe

Now look in the opposite direction and see fabulous photos of the ISS crossing the Moon shot from a telescope in Houston, Texas
Dazzling Photos of the International Space Station Crossing the Moon!

Clear Satellite View of Earth’s Newest Island

Satellite view from the Advanced Land Imager on the Earth Observer 1, showing a brand new volcanic island in the Red Sea. Credit: NASA

[/caption]

Want to get away from it all? Here’s the newest deserted island on Earth. In late December, we reported on a volcanic eruption in the Red Sea that appeared to have created a brand new island. The eruption has now stopped and on January 15, 2012 the Advanced Land Imager on the Earth Observer-1 satellite captured a clear, cloud- and volcanic plume-free view of this newly formed land mass. The new island is part of the Zubair Islands, located about 60 kilometers (40 miles) off the coast of Yemen. The new island and its older family members poke above the sea surface, rising from a shield volcano. This region is part of the Red Sea Rift where the African and Arabian tectonic plates pull apart and new ocean crust regularly forms.

If you want to visit, just watch out for hot lava pits and almost certain future eruptions.


Source: NASA Earth Observatory

Strait of Hormuz Shot from the International Space Station – World Strategic Flashpoint

Christmas Eve photo of the Strait of Hormuz from the International Space Station. The image of the Strait of Hormuz (center) and the Persian Gulf region was shot on Christmas Eve, 24 December 2011. 20% of the world’ s oil supply passes through the Strait every day. Iran has threatened to close the Strait to oil shipments. Note the thin atmosphere and curvature of the Earth. ISS module above. Photo Credit: NASA

[/caption]A beautiful and peaceful Christmas-time picture of The Strait of Hormuz was shot from the International Space Station (ISS) soaring some 250 miles (400 kilometers) overhead on Christmas Eve, 24 Dec 2011.

Today, the economically vital Strait of Hormuz is a ‘Flashpoint of Tension’ between Iran and the US and much of the rest of the world community because of official threats by Iranian government officials to shut the highly strategic waterway to crude oil tankers that transport the lifeblood of the world’s economy.

The timely image above was just tweeted by NASA Astronaut Ron Garan who wrote; “Interesting peaceful pic of the #StraightofHormuz #FromSpace taken on Christmas Eve (12/24/11) from the #ISS”. Garan served aboard the ISS from April to September 2011 as a member of the Expedition 27/28 crews.

The Strait of Hormuz lies at the mouth of the Persian Gulf between Iran and the Arabian Peninsula and is a major chokehold of the world’s energy consumption.

At its narrowest point, the Strait is only 34 miles (54 kilometers) wide. The vital shipping lanes span barely 2 miles (3 kilometers) in width in each direction (see maps below).

See more ISS photos of the Persian Gulf region and the Strait, below.

Image of the Strait of Hormuz and Persian Gulf region
Taken from the International Space Station on Sept. 30, 2003. United Arab Emirates, Oman and Saudi Arabia at left, Iran at right. Credit: NASA

Each and every day, about 20% of the world’s daily petroleum consumption is shipped through the extremely narrow channel on gigantic Oil tankers. Any disruption of petroleum shipments would instantly send crude oil prices skyrocketing to exhorbitant levels that could wreak havoc and rapidly lead to a worldwide economic depression and a devastating war between Iran and the US and its allies.

Red arrow indicates location of the Strait of Hormuz in relation to the Arabian Peninsula.

In recent days Iranian boats have approached US Naval warships at high speeds while they were heading through the Strait of Hormuz – playing a potentially deadly game of cat and mouse that could spin out of control in a single misstep, even if unintentional.

Clashes would easily disrupt the crude oil tanker shipping traffic.

Several Iranian speedboats came within about 800 yards of the US vessels in recent days as a war of words has flared over oil and Iran’s nuclear program as tensions escalate.


Video Caption: Iranian speedboats closely approach US Navy ships at high speed in the Strait of Hormuz on Jan. 6, 2012. Credit: US Dept of Defense

The US and allied fleet operates in the Gulf region to protect the oil shipments and the oil installations of a number of Arab countries including Saudi Arabia.

Persian Gulf and Strait of Hormuz from cargo bay of NASA Space Shuttle - May 27, 2000. Credit: NASA

Map of Strait of Hormuz showing political boundaries and narrow maritime shipping lanes. Wikipedia

An international crew of six men from the US, Russia and Holland are currently in residence aboard the ISS running science experiments.

ISS Expedition 30 Commander and US astronaut Dan Burbank snapped gorgeous photos of Comet Lovejoy during this Christmas season – look here.

Strait of Hormuz and Persian Gulf region

Look here for dazzling photos of the ISS crossing the Moon – shot just days ago from NASA’s Johnson Space Center in Houston

Read Ken’s recent features about the ISS here:
Dazzling Photos of the International Space Station Crossing the Moon!
Solar Powered Dragon gets Wings for Station Soar
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

As Seen From Space: Beautiful Swirling Phytoplankton Blooms

A phytoplankton bloom swirls a figure-8 in the South Atlantic Ocean. Credit: ESA, Envisat

[/caption]

One of the orbiting windows to our world, an Earth-observing satellite named Envisat, took this image in early December 2011 showing a phytoplankton bloom swirling into a figure-8 in the South Atlantic Ocean about 600 km east of the Falkland Islands. The European Space Agency says that since the phytoplankton are sensitive to environmental changes, it is important to monitor and model them for climate change calculations and to identify potentially harmful blooms. Sensors on the satellites can monitor these algal blooms and make an initial identification of its species and toxicity.

Blooms like this are common in the spring and summer, and it is currently summer in the southern hemisphere.

These microscopic organisms are the base of the marine food chain, and play a huge role in the removal of carbon dioxide from the atmosphere and the production of oxygen in the oceans. Besides being beautiful to see from space, phytoplankton help regulate the carbon cycle, and are important to the global climate system.

Source: ESA

Scientists Find Trio of Tiny Exoplanets

Image credit: NASA/JPL-Caltech

[/caption]

NASA’s Kepler mission has detected no shortage of planets; more than a thousand candidates were discovered in 2011, a handful of which were Earth-like in size. As data from the mission keeps pouring in, astronomers are continuing to confirm and classify these possible exoplanets. Today, a team of astronomers from the California Institute of Technology added three more to the growing list. They have confirmed the three smallest exoplanets yet discovered.

Kepler searches for planets by looking at stars. The light from the star flickers or dips when a planet passes in front of it. At least three passes are required to confirm that the signal is from a planet, and further ground-based observations are necessary before a discovery can be confirmed.

An artist's impression of Kepler's field of view, the area in which it is constantly searching for new planets. Image Credit: Jon Lomberg/NASA

The Cal Tech team’s discovery was made with old data from Kepler. They found that the three planets are rocky like Earth and orbit a single star called KOI-961. They are also smaller than our planet; their radii are 0.78, 0.73 and 0.57 times that of Earth. As a comparison, the smallest of the three is roughly the size of Mars.

That these planets are so small is big news; they were thought to be much bigger when they were first found. Finding a planet as small as Mars is particularly amazing, said Doug Hudgins, Kepler program scientist at NASA Headquarters in Washington. It “hints that there may be a bounty of rocky planets all around us.”

The whole system is also small. The planets orbit so close to their star that their year lasts only two days. “This is the tiniest solar system found so far,” said John Johnson, the principal investigator of the research from NASA’s Exoplanet Science Institute at Cal Tech in Pasadena.

A view of Kepler's search area as seen from Earth. Image credit: Carter Roberts / Eastbay Astronomical Society

Their star, KOI-961, is a red dwarf with a diameter one-sixth that of our Sun and it is only 70 percent larger than Jupiter. This makes the system’s scale much closer to that of Jupiter and its moons than that of the Sun and the planets in our Solar System. As Johnson explains, this speaks to “the diversity of planetary systems in our galaxy.”

The type of star is also significant. Red dwarfs are the most common stars in the Milky Way galaxy, and the discovery of three rocky planets around one suggests that the galaxy could be teeming with similar rocky planets.

The team’s find, however, isn’t going to provide us with intergalactic vacation homes anytime soon. The planets are all too close to their star to be in the habitable zone, an orbit where water can exist as a liquid on the surface. Nevertheless, the tiny planets are a significant find. “These types of systems could be ubiquitous in the universe,” said Phil Muirhead, lead author of the new study from Caltech. “This is a really exciting time for planet hunters.”

Source: NASA’s Kepler Mission Find Three Smallest Exoplanets.

As Seen From Space: Volcanic Eruption Creates New Island in the Red Sea

The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this high-resolution, natural-color images on December 23, 2011 showing an island being formed in the Red Sea. Credit: NASA

[/caption]

Looking for some new lake-front property? Here’s the newest available on the planet. Volcanic activity in the Red Sea that started in mid-December has created what looks like a new island. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured a high-resolution, natural-color image on December 23, 2011 showing an apparent island where previously there was none. Here, a thick plume of volcanic ash still rises from the new island.

See below for an image from 2007 of the same region.

Satellite image of the same region from October 24, 2007. Credit: NASA

According to the NASA Earth Observatory website, the volcanic activity occurred along the Zubair Group, a collection of small islands off the west coast of Yemen. The islands poke above the sea surface, rising from a shield volcano. This region is part of the Red Sea Rift where the African and Arabian tectonic plates pull apart and new ocean crust regularly forms.

According to news reports, fishermen witnessed lava fountains reaching up to 30 meters (90 feet) tall on December 19.

Source: NASA Earth Observatory

Earth’s Other Moons

Saturn's moons Rhea and Dione as seen by the Cassini spacecraft. Could this be a future view from Earth? Image credit: NASA/JPL/Space Science Institute

[/caption]

In the fall of 2006, observers at the Catalina Sky Survey in Arizona found an object orbiting the Earth. At first, it looked like a spent rocket stage — it had a spectrum similar to the titanium white paint NASA uses on rocket stages that end up in heliocentric orbits. But closer inspection revealed that the object was a natural body. Called 2006 RH120, it was a tiny asteroid measuring just a few metres across but it still qualified as a natural satellite just like the Moon. By June 2007, it was gone. Less than a year after it arrived, it left Earth’s orbit in search of a new cosmic companion.

Now, astrophysicists at Cornell are suggesting that 2006 RH120 wasn’t an anomaly; a second temporary moon is actually the norm for our planet.

Temporary satellites are a result of the gravitational pull of Earth and the Moon. Both bodies pull on one another and also pull on anything else in nearby space. The most common objects that get pulled in by the Earth-Moon system’s gravity are near Earth objects (NEOs) — comets and asteroids are nudged by the outer planets and end up in orbits that bring them into Earth’s neighbourhood.

Near Earth object Eros, the type of object that could be a second satellite. Image credit: NASA

The team from Cornell, astrophysicists Mikael Granvik, Jeremie Vaubaillon, Robert Jedicke, has modeled the way our Earth-Moon system captures these NEOs to understand how often we have additional moons and how long they stick around.

They found that the Earth-Moon system captures NEOs quite frequently. “At any given time, there should be at least one natural Earth satellite of 1-meter diameter orbiting the Earth,” the team said. These NEOs orbit the Earth for about ten months, enough time to make about three orbits, before leaving.

Luckily, and very interestingly, this discovery has implication well beyond academic applications.

Knowing that these small satellites come and go but that one is always present around the Earth, astronomers can work on detecting them. With more complete information on these bodies, specifically their position around the Earth at a given time, NASA could send a crew out to investigate. A crew wouldn’t be able to land on something a few metres across, but they could certainly study it up close and gather samples.

Close up image of asteroid 243 Ida. Image credit: NASA/courtesy of nasaimages.org

Proposals for a manned mission to an asteroid have been floating around NASA for years. Now, astronauts won’t have to go all the way out to an asteroid to learn about the Solar System’s early history. NASA can wait for an asteroid to come to us.

If the Cornell team is right and there is no shortage of second satellites around the Earth, the gains from such missions increases. The possible information about the solar system’s formation that we could obtain would be amazing, and amazingly cost-efficient.

Source: Earth Must Have Another Moon, Astronomers Say

Winter Solstice – The Shortest day of the Year

Stonehenge Winter Solstice Credit: telegraph.co.uk

[/caption]
Depending on how the calendar falls, the December solstice occurs annually on a day between December 20 and 23. This year, the December solstice will occur at 05:30 UTC (12:30 a.m. EST) on December 22, 2011. While the southern hemisphere is experiencing the long days of summer, the northern hemisphere will have the “winter solstice” – often called the shortest day of the year.

Conversely, six months ago the northern hemisphere experienced the longest day with the summer solstice, with the southern hemisphere having their winter solstice. This is part of a never ending cycle and is at the heart of our seasons.

So, why do we call it the shortest day of the year for the winter solstice and longest day for the solstice in the summer? Do we lose some time off the clock in winter, and in summer do we miraculously gain time on the clock in a bizarre cycle that is imposed by old men in charge of calendars and times around the world? (I used to think this as a small boy…)

The fact is we don’t lose or gain any time; what we actually gain or lose is hours of sunlight. During the winter solstice we receive the least amount of sunlight of the year on that day.

To understand the winter and summer solstices we need to recognize a fundamental fact about the Earth. Earth’s axis of rotation is tilted approximately 23.5° from a vertical axis. This means that as the tilted Earth orbits the Sun during the year, the different hemispheres receive varying amounts of sunlight, as this tilt causes sunlight to strike the surface of Earth at different angles at different times of year.

In the summer, we see the Sun for longer periods of time and it appears high in the sky; the Sun’s rays are more direct and the heat energy is more abundant. In the winter, when the Sun is low in the sky and appears for less amount of time; there is less energy and the Sun therefore heats less efficiently.

If you live near the equator, you won’t notice much difference in the amount of sunlight you receive throughout the year. The biggest noticeable difference is at the poles, where each solstice brings an extreme in the hours of sunlight you receive; in summer the Sun never properly sets for weeks, and in winter it never rises, creating some of the most inhospitable environments on Earth.

I always find the solstices to be magical times of year and look forward to either the longest or shortest days as they are the bringers of seasons, darkness and light.

Wonderful Ice Halos

A bright moon halo surrounds the Moon on Dec. 11, 2011. © Jason Major

[/caption]
Have you ever seen a large ghostly disc around the Moon on a cool, calm, hazy night? If so, you have likely seen what is called an “Ice Halo” or “22° Halo.” Not only can the Moon display these ghostly rings of light, but the Sun does so in the day time too.

22° halos are visible all over the world and throughout the year; look for them whenever the sky is wispy or hazy with thin cirrus clouds – even in the hottest countries.

So what are they and why do they appear?

Ice halos or 22° radius Halos are in fact an optical illusion caused by 3 to 5 mile high, cold and very tenuous cirrostratus cloud, containing millions of tiny ice crystals.

The tiny ice crystals in the atmosphere create halos by refracting and reflecting light from the Moon. The halo is always the same diameter regardless of its position in the sky, though sometimes only parts of the circle are visible.

The much smaller coloured rings directly around the Moon or Sun are a corona produced by water droplets rather than ice crystals. They often form a rainbow effect or Moonbow.

Some people even believe they herald the onset of wet weather, but this has yet to be proved.

Moon Halo Imaged December '03 in Ontario, Canada by Lauri Kangas

Earth’s Magnetic Pole Reversal – Don’t “Flip Out”!

Schematic illustration of Earth's magnetic field. Credit/Copyright: Peter Reid

[/caption]

Have you heard or read stories about how Earth will some day reverse its magnetic poles? If you have, then chances are very good you’ve also heard this perfectly normal function of our planet could spell disaster. Before you buy into another “end of the world as we know it” scenario, let’s take a look at the facts.

For the record, we know that Earth’s magnetic field has changed its polarity more than once in its lifetime. For example, if you could step back in time some 800,000 years ago with a compass in your hand, you’d see the needle pointed to south – instead of north. Why? Because a compass works on magnetic fields, its needle directs you to the magnetic pole, measured as either positive or negative. The markings on the modern compass dial would be incorrect if the polarity of Earth’s magnetic fields were reversed! Like a witch hunt, many would-be prophets say natural occurrences like this might signal doom… But could their theories be correct? Unfortunately for hyperbole, the geologic and fossil records from past reversals show the answer is “No.” We’ll still be around.

Just like the Sun reversing its magnetic poles, Earthly switches are just a part of our planet’s schedule. During about the last 20 million years of our formation, Earth has settled into a pattern of switching magnetic poles about every 200,000 to 300,000 years… with a period of twice that long since our last reversal. And, it’s not a thing that happens rapidly. Magnetic pole reversal takes up to several hundred thousands of years to complete. The fields blend together and magnetic poles pop up at odd latitudes as it happens. It’s not that scary! Scientists say that Earth has reversed its magnetic field hundreds of times over the last three billion years and have sped up slightly with time.

How do we know about the impacts of magnetic pole reversal? We take a look at the deep evidence – sediment cores taken from the ocean floor. These samples are perfect fossil records which show us what direction the magnetic field was pointed in as the underwater lava emerged. These ancient flows were magnetized in the field’s direction at the time of their creation and exist on either side of the Mid-Atlantic Rift where the North American and European continental plates are moving away from each other.

“The last time that Earth’s poles flipped in a major reversal was about 780,000 years ago, in what scientists call the Brunhes-Matuyama reversal. The fossil record shows no drastic changes in plant or animal life.” says NASA’s Patrick Lynch. ” Deep ocean sediment cores from this period also indicate no changes in glacial activity, based on the amount of oxygen isotopes in the cores. This is also proof that a polarity reversal would not affect the rotation axis of Earth, as the planet’s rotation axis tilt has a significant effect on climate and glaciation and any change would be evident in the glacial record.”

A schematic diagram of Earth's interior and the movement of magnetic north from 1900 to 1996. The outer core is the source of the geomagnetic field. Graphic Credit: Dixon Rohr
Unlike a hard-wired magnet, Earth’s polarity isn’t constant – it moves around a bit. The reason we have a magnetic field is our solid iron core surrounding by hot, fluid metal. According to computer modeling, this flow creates electric currents which spawn the magnetic fields. While it’s not possible at this point in time to measure the outer core of our planet directly, we can guess at its movement by the changes in the magnetic field. One such change has occurred for almost 200 years now… Our northern pole has been shifting even more northward. Since it was first located, the pole has shifted its place by more than 600 miles (1,100 km)! What’s more, it’s speeding up. It would seem that it’s moving almost 40 miles per year now, instead of the 10 miles per year as recorded in the early 20th century.

Don’t be fooled by those saying a magnetic pole reversal would leave us temporarily without a magnetic field, either. This is simply isn’t going to happen and we’re not going to be exposed to harmful solar activity. While our magnetic field goes through weaker and stronger phases, there is simply no evidence to be found anywhere that it has ever disappeared completely. Even if it were weakened, our atmosphere would protect us against incoming particles and we’d have more auroral displays at lower latitudes!

So, go ahead… Sleep at night. Earthly magnetic pole reversal is a normal function of our planet and when it does happen its effects will be spread out over hundreds of thousands of years – not flipped like a pancake.

Original Story Source: NASA Earth News. For Further Reading: Earth’s Inconstant Magnetic Field..