“Star Wars” Laser Methods Tracks Greenhouse Gases

A green laser was used to guide the invisible infrared beam from La Palma to Tenerife as part of an experiment to test a new satellite concept for measuring atmospheric greenhouse gases and turbulence. Credits: ESA

[/caption]

It may have looked like a futuristic scene from Star Wars, but ESA’s latest technique for aiding space exploration might shed some “green light” on greenhouse gases. A recent experiment involving the Spanish Canary Islands was conducted by shooting laser beams from a peak on La Palma to Tenerife. The two-week endeavor not only increased the viability of using laser pulses to track satellites, but increased our understanding of Earth’s atmosphere.

ESA runs an optical ground station in Tenerife for communications links with satellites. The facility is part of a larger astronomical installation Observatorio del Teide run by Instituto de Astrofisica de Canarias. Credit: ESA
Known as infrared differential absorption spectroscopy, the laser method is an accurate avenue to measure trace gases such as carbon dioxide and methane. It is accomplished by linking two Earth-orbiting satellites – one a transmitter and the other a receiver – and examining the atmosphere as the beam passes between the two. As satellites orbit, they both rise and set behind Earth and radio occultation occurs. It’s a time-honored way of employing microwave signals to measure Earth’s atmosphere, but new wave thinking employs shortwave infrared laser pulses. When the correct wavelength is achieved, the atmospheric molecules impact the beam and the resultant data can then be used to establish amounts of trace gases and possibly wind. By different angular repetitions, a vertical picture can be painted which stretches between the lower stratosphere to the upper troposphere.

While it all sounded good on paper – the proof of a working model is when it is tested. Enter ESA’s optical ground station on Tenerife – a facility built on a peak 2390 meters above sea level and part of a larger astronomical installation called the Observatorio del Teide run by the Instituto de Astrofisica de Canarias (IAC).With equipment placed on two islands, the Tenerife location offered the perfect setting to install receiver hardware grafted to the main telescope. The transmitter was then assigned to a nearly identical peak on La Palma. With nothing but 144 kilometers of ocean between them, the scenario was ideal for experimentation.

Over the course of fourteen days, the team of researchers from the Wegener Center of the University of Graz in Austria and the Universities of York and Manchester in the UK were poised to collect this unique data.

The Observatorio del Roque de los Muchachos on the island of La Palma housed the equipment to transmit the infrared signal and green guidance laser across the Atlantic Ocean to the receiving station in Tenerife. The experiment was carried out to test a new satellite mission concept for measuring concentrations of atmospheric carbon dioxide and methane. Credit: ESA
While the infrared beam wasn’t visible to the unaided eye, the green guidance laser lit up the night during its runs to record atmospheric turbulence. Gottfried Kirchengast from the Wegener Center said, “The campaign has been a crucial next step towards realising infrared-laser occultation observations from space. We are excited that this pioneering inter-island demonstration for measuring carbon dioxide and methane was successful.”

Armin Loscher from ESA’s Future Mission Division added, “It was a challenging experiment to coordinate, but a real pleasure to work with the motivated teams of renowned scientists and young academics.” The experiment was completed within ESA’s Earth Observation Support to Science Element.

Nice shootin’!

Original Story Source: ESA News Release.

Satellite Captures Unusual “Cloud Streets”

NASA' Terra satellite captured cloud streets in Hudson Bay, Canada on November 20, 2011 at 12:25 p.m. EST (17:25 UTC). Credit: NASA

[/caption]

I love looking at unusual cloud formations, and these have to be some of the most intriguing. These long, horizontal rolls of clouds are called “cloud streets” and NASA’s Terra satellite had a “drive by” of these clouds, observing them over Hudson Bay, Canada on November 20, 2011 at 12:25 p.m. EST (17:25 UTC). These rows of clouds stretch from northwest to southeast over the Hudson Bay.

Cloud streets are long lines or bands of cumulus clouds that usually form within the lower one to three kilometers of the atmosphere, and come from eddies in the atmosphere.

According to NASA’s Earth Observatory and the Goddard Space Flight Center Flickr page, cloud streets form when cold air blows over warmer waters, while a warmer air layer—or temperature inversion—rests over top of both. The comparatively warm water of Hudson Bay gives up heat and moisture to the cold air mass above, and columns of heated air—thermals—naturally rise through the atmosphere. As they hit the temperature inversion like a lid, the air rolls over like the circulation in a pot of boiling water. The water in the warm air cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the wind.

Hudson Bay is a large body of saltwater located in northeastern Canada. Also in the image, are several snow-covered islands in Hudson Bay. The larger island to the north is South Hampton Island, and the smaller island east is Coats Island, and further east is Mansel Island.

Another AMAZING Space Station Timelapse — with Aurora

What more can we say? The view from the International Space Station is incredible, and this latest time-lapse sequence of photographs was put together by Michael König. These views are taken with a special low-light 4K-camera now on the Space Station, and covers August to October, 2011. The crews of expedition 28 & 29 were behind the camera, while König refurbished, smoothed, retimed, denoised, deflickered, and cut, etc. You can see all the images taken with this new camera at the Image Science & Analysis Laboratory website, The Gateway to Astronaut Photography of Earth

An Iceberg Caught in the Act of Forming

An airborne ‘eye in the sky’ has provided unprecedented views and details of a massive iceberg calving from its parent glacier in Antarctica. Essentially, we’re able to watch the process of an iceberg being born. NASA’s Operation IceBridge mission discovered a huge crack in the Pine Island Glacier in western Antarctica. The mammoth rift extends at least 18 miles and is 50 meters deep, and scientists say it could produce an iceberg more than 800 square kilometers in size.

“We are actually now witnessing how it happens and it’s very exciting for us,” said IceBridge project scientist Michael Studinger, Goddard Space Flight Center, Greenbelt, Md. “It’s part of a natural process but it’s pretty exciting to be here and actually observe it while it happens. To my knowledge, no one has flown a lidar instrument over an actively developing rift such as this.”
Continue reading “An Iceberg Caught in the Act of Forming”

Satellite Image of the ‘Snowtober’ Storm

The 'Snowtober' storm in the Northeastern US, as seen by the The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. Credit: NASA

[/caption]

An unusual October storm dumped wet heavy snow across much of the Northeast US over the weekend, as much as 32 inches (81 centimeters) in some areas. Nicknamed “Snowtober,” the storm left as many as 3 million people without power at the snowstorm’s peak, and was blamed for the deaths of at least 10 people. In this images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite, a swath of snow sweeps from West Virginia northeastward to Maine, as seen on Oct. 30, 2011. Clouds hover east and west of the snow, blocking the satellite sensor’s view of western Pennsylvania and parts of the Atlantic Ocean.

The storm broke snowfall-total records in many cities, with strong winds and heavy tree damage as the heavy snow easily clung to trees which still had their leaves, snapping branches and power lines.

Source: NASA Earth Obseratory

NASA’s New Climate and Weather Satellite Launches

The National Polar-orbiting Operational Environmental Satellite System Preparatory Project, or NPP, launched successfully on a Delta 2 rocket early today at at 5:48 a.m. EDT 09:48 GMT (or precisely at 2:48:01.828 a.m. PDT, according to NASA’s Twitter feed). The next generation satellite will measure both global climate changes and key weather variables, as well as test new technologies for future Earth observing satellites.

The spacecraft has also successfully separated and is now in orbit. The separation video is below.

Continue reading “NASA’s New Climate and Weather Satellite Launches”

Next Generation Climate and Weather Satellite Ready for Friday Launch

A new satellite that will test key technologies and instruments for the next generation of climate and weather-monitoring satellites is scheduled to launch on Friday, Oct. 28, 2011. The NPOESS Preparatory Project (NPP) mission has a planned liftoff from Vandenberg Air Force Base in California at 5:48 a.m. EDT/2:48 a.m. PDT.

“This is the first mission designed to provide observations for both weather forecasters and climate researchers and will provide data that is critical to climate research,” said Jim Gleason, NPP project scientist during a news briefing last week.
Continue reading “Next Generation Climate and Weather Satellite Ready for Friday Launch”

As the World Burns: Satellites Watch Fires Around the World

NASA put out this video last week and we missed covering it, but this is a very interesting little video that takes you on a narrated global tour of tens of millions of fires detected from space between July 2002 and July 2011. Yes, that’s right, tens of millions of fires on Earth, and these aren’t tiny little campfires — they are big enough to be seen from space. The video was created from new satellite data visualizations, and is combined with satellite views of vegetation and snow cover to show how fires relate to seasonal changes. The research helps scientists understand how fire affects our environment on local, regional and global scales.
Continue reading “As the World Burns: Satellites Watch Fires Around the World”

Video: Huge Hurricane Rina Seen from the Space Station

Hurricane Rina's location and forecasted path as of 7 am CDT on Oct 26, 2011. Credit: NOAA

“It’s a big one!” said International Space Station commander Mike Fossum as the space station flew over Hurricane Rina at 2:39 p.m. EDT on Oct. 25, 2011. External cameras on the ISS captured these views as the station flew 248 miles over the Caribbean Sea east of Belize.

Rina’s maximum sustained winds remained steady at about 110 mph early Wednesday, said the U.S. National Hurricane Center in Miami, making it a Category 2 storm. Forecasters predict it will strengthen to a major hurricane as it nears the Mexican coast Wednesday night before rolling over the island of Cozumel, then along the coast to Cancun.

See a map of the Hurricane’s projected path below.

The late season hurricane, which continues to intensify, was located 300 miles east-southeast of Chetumal, Mexico, barely moving west-northwest at a glacial three miles an hour. Hurricane warnings have been issued for the Yucatan from north of Punta Gruesa, Mexico, to Cancun.

[/caption]

From the Land of Ice and Snow

Ice-coated mountaintops of Alexander Island, one of the largest islands off Antarctica. Credit: Michael Studinger/NASA.

[/caption]

Views from the window of NASA’s DC-8 reveal sweeping expanses of ice and rock as part of the ongoing 2011 Operation IceBridge survey of Antarctica’s ice cover.

Now in its third season, Operation IceBridge is a six-year-long mission to study the dynamics of the Antarctic and Arctic ice sheets. It’s the largest ever aerial survey of the polar ice and will yield valuable data on the state of Earth’s vast reservoirs of frozen water, including the land and sea underneath and how they are being affected by today’s rapidly changing climate.

The ridges of the Shackleton Range cast shadows onto Antarctica's ice. Credit: Michael Studinger/NASA.

Researchers – like Michael Studinger, who took the incredible photos seen here –  fly over Greenland during the months of March through May and over Antarctica in October and November. NASA’s instrument-laden DC-8 flies over these remote locations at a low altitude of about 1,500 feet, often with little or no advance weather data.

98 percent of Antarctica is covered with ice. Information obtained by Operation IceBridge will be combined with satellite data to create the most accurate models possible of Antarctic ice loss and how it will affect future sea level rise.

Mountains piled with snow and ice rise above the clouds on Alexander Island. Credit: Michael Studinger/NASA.

This season’s Antarctic IceBridge campaign features NASA’s DC-8, at 157 feet long the largest plane in the agency’s airborne research fleet, and will also feature the debut of the Gulfstream V (G-V) operated by the National Science Foundation and National Center for Atmospheric Research.

While the DC-8 flies at low altitudes, the G-V will fly above 30,000 feet to utilize its Land, Vegetation and Ice Sensor (LVIS), which makes detailed topographic studies of the surface.

“With IceBridge, our aim is to understand what the world’s major ice sheets could contribute to sea-level rise. To understand that you have to record how ice sheets and glaciers are changing over time.”

– Michael Studinger, IceBridge project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.

The wing of NASA's DC-8 cuts across the frozen expanse of the Brunt Ice Shelf, with its 100-foot-high cliff face. Credit: Michael Studinger/NASA.

Read more about Operation IceBridge here.