Latest Satellite Views of Oil Leak, Plus Dramatic Video of Where the Oil May End Up

Satellite view of the oil spill in the Gulf of Mexico on June 12, 2010, from the Aqua satellite. NASA image courtesy the MODIS Rapid Response Team.

[/caption]

56 days into the the still-leaking Deepwater Horizon oil well spill in the Gulf of Mexico, satellite views are becoming a daily viewing habit. This latest image, taken on June 12, 2010 shows the oil particularly visible across the northern Gulf of Mexico when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured this image at 1:55 p.m. CDT. Oil appears to have reached beaches and barrier islands in Alabama and the western Panhandle of Florida. The problem for wildlife, and particularly birds, is that from above, the water does not look different. And when they dive in for prey, the get soaked with oil. Estimates are that between 12,000 and 19,000 barrels a day are gushing from the damaged well. On June 3rd, BP lowered a containment cap onto a cut pipe to catch some of the flow. This cap, says the company, is now collecting more than 10,000 barrels of oil a day, ferrying it up to a tanker on the surface. But no one can be absolutely sure of the estimates.

As the oil is coming ashore along the gulf coast, everyone wonders how far the oil will travel. Researchers National Center for Atmospheric Research (NCAR) have completed a detailed computer modeling study that indicates the oil might soon extend along thousands of miles of the Atlantic coast and open ocean as early as this summer. The video of their results, captured in a series of dramatic animations, below, has caused quite a stir.

The results seem fairly dramatic, but Dr. Synte Peacock, an oceanographer at NCAR said in an interview in EarthSky.org on that the simulations used a dye, and not oil. A dye would travel to the Atlantic Ocean, but oil would behave differently.

However, her team still thinks it’s very likely that oil will get into the Atlantic.

If it does, she said, people shouldn’t expect oil to coat Atlantic beaches and wildlife. That’s because, over the months it would take to travel there – if it does travel there – some oil will evaporate, be eaten by microbes, and become diluted in sea water.

Dr. Peacock added that in all the possible scenarios and simulations that were tested, oil from the oil spill traveled outside of the Gulf within 6 months. But she added that it’s still unclear if or how the oil will affect beaches on the Atlantic Coast. That eventual outcome is partially dependent on local weather around the time the oil reaches a beach.

NASA Earth Observatory image created by Jesse Allen, using data provided courtesy of NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

This satellite image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite shows a false color image of on June 10, 2010, where parts of the oil slick are nearing the Mississippi Delta. Vegetation appears red and water appears in shades of blue and white.

Sources: NASA Earth Observatory, EarthSky

A Trilogy of Tremendous Volcanoes

Mt. Cleveland in Alaska. NASA Earth Observatory image by Jesse Allen & Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

[/caption]

You like volcanoes? We’ve got volcanoes! Three recent images from space show some tremendous volcanoes on Earth. This very unusual image shows a small volcanic plume rising above remote Mount Cleveland on June 1, 2010. The snow-covered upper slopes of the Aleutian alaska volcano were also marked by dark debris flow deposits (descending to the east) and ash fall to the south of the summit. This false-color image was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA’s Terra satellite. Snow is white, clouds are pink, vegetation is red, and water is almost black. The Alaska Volcano Observatory reported an ash emission above Mount Cleveland no higher than 16,000 feet (4,900 meters) on May 30th. Mount Cleveland is frequently restless, and the current activity is not unusual, but Ash from Cleveland could threaten flights between Asia and North America. Satellites are the best way to monitor the volcano, which is about 900 miles (1,500 kilometers) from Anchorage.

Next: @Astro_Soichi strikes again:

Mt. Fuji in Japan, as seen from the ISS. Credit: NASA/JAXA/Soichi Noguchi

Before he left the International Space Station to return back to Earth, Soichi Noguchi, who shared his experiences in space like no other astronaut via his Twitter feed and pictures, took this image of Mt. Fuji in his home country of Japan.

Iceland, without ash and smoke from the Eyjafjallajokull volcano. Credit: ESA

Ok, this one isn’t specifically of a volcano, but it is one of the first satellite images of Iceland to show smoke- and ash-free skies above Iceland.

This image is from ESA’s Envisat satellite and the Medium Resolution Imaging Spectrometer on May 24, 2010.

The Eyjafjallajokull volcano, which had a series of eruptions in April and May, is visible in the dark area on the southern coast. The Vatnajokull glacier (visible in white northeast of Eyjafjallajokull) is the largest in Iceland and in Europe. The white circular patch in the center of the country is Hofsjokull, the country’s third largest glacier and its largest active volcano. The elongated white area west of Hofsjokull is Langjokull, Iceland’s second largest glacier.

Sources: Goddard Spaceflight Center, @Astro_Soichi, ESA

Time-Lapse Satellite View of Growing Oil Spill

We’ve featured many aerial satellite images of the Deepwater Horizon oil spill, here on Universe Today, but this time-lapse video puts them all together. The video reveals a space-based view beginning on April 12 before the accident, then after the April 20 explosion, with the burning oil rig. Later, the ensuing oil spill is captured through May 24. Two NASA satellites are constantly capturing images Earth, focusing on particular areas of interest, the Terra and Aqua satellites which both have the MODIS instrument (Moderate Resolution Imaging Spectroradiometer.) The oil slick appears grayish-beige in the image and changes due to changing weather, currents, and use of oil dispersing chemicals.

The latest word on the “top kill” effort to stop the gushing oil well is that it has seen initial success.
Continue reading “Time-Lapse Satellite View of Growing Oil Spill”

Satellite Images Show Oil Slick on the Move Towards Florida, Possibly East Coast of US

A satellite image from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite on May 17, 2010, showing a long ribbon of oil stretched far to the southeast. Credit: NASA NASA image by Jeff Schmaltz, MODIS Rapid Response Team.

[/caption]

Confirming some of the worst fears about the Deepwater Horizon oil spill in the Gulf of Mexico, satellite images now show part of the oil slick has entered the Loop Current, a powerful conveyor belt-like current that flows clockwise around the Gulf of Mexico towards Florida. The Loop Current joins the Gulf Stream — the northern hemisphere’s most important ocean-current system — and the oil could enter this system and be carried up to the US East Coast.

Both NASA and ESA satellites have been returning daily satellite images of the oil spill.

“With these images from space, we have visible proof that at least oil from the surface of the water has reached the current,” said Dr Bertrand Chapron of Ifremer, the French Research Institute for Exploitation of the Sea.

During the first weeks following the explosion at the oil rig, oil could be seen drifting from the site of the incident and it usually headed west and northwest to the Mississippi River Delta. But in the third week of May, currents drew some of the oil southeast. According to the National Oceanic and Atmospheric Administration (NOAA), the southward spread increased the chance that the oil would become mixed up with the Loop Current and spread to Florida or even the U.S. East Coast.

Graphic from Envisat data. Credits: CLS

In this Envisat Advanced Synthetic Aperture Radar (ASAR) image, acquired on 18 May 2010, a long tendril of the oil spill (outlined in white) is visible extending down into the Loop Current (red arrow).

An infrared image from May 18, 2010 from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite.

The infrared image is annotated with the location of the leaking well and the approximate location of the southern arm of the oil slick on May 17 (based on natural-color MODIS imagery). Oil was very close to the Loop Current, whose warm waters appear in yellow near the bottom of the image. However, there is also an eddy of cooler water (purple) circulating counterclockwise at the top of the Loop Current. According to NOAA, “Some amount of any oil drawn into the Loop Current would likely remain in the eddy, heading to the northeast, and some would enter the main Loop Current, where it might eventually head to the Florida Strait.”

Image from MODIS on Aqua from May 18. NASA image by Jeff Schmaltz, MODIS Rapid Response Team.

This unusual natural color image taken on May 18, 2010 by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite shows sun glinting off the oil slick. The diagonal stripes result from the Sun’s reflection on the ocean surface, called sunglint. The sunglint accentuates the left-to-right scans that the satellite sensor makes as it passes over the Earth’s surface, and the stripes are perpendicular to the satellite’s path.

Besides hinting at the sensor’s scans, the sunglint also illuminates oil slicks on the sea surface. Bright oil slicks appear east and southeast of the delta.

NASA’s and ESA’s satellites will keep watch on this oil slick from above.

Sources: NASA Earth Observatory, (this page, and this page, too), ESA

NASA Technology Helping in Oil Spill Response

An advanced optical sensor built by the Jet Propulsion Lab is flying aboard a NASA research aircraft to help monitor the spread and impact of the Deepwater Horizon BP oil spill in the Gulf of Mexico via remote sensing. The Earth Resources-2 (ER-2) is outfitted with JPL’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Cirrus Digital Camera System and can collect detailed images of the Gulf of Mexico and its threatened coastal wetlands. NASA is also making extra satellite observations and conducting additional data processing to assist in monitoring the spill.
Continue reading “NASA Technology Helping in Oil Spill Response”

Latest Satellite Images of Oil Spill

Satellite image from the Aqua Satellite on May 4, 2010 showing the oil spill in the Gulf of Mexico. Credit: NASA/Goddard/MODIS Rapid Response Team

[/caption]

NASA’s Aqua satellite flew over the oil slick in the Gulf of Mexico on May 4, at 18:50 UTC, or 2:50 p.m. EDT, and the Moderate Imaging Spectroradiometer, or MODIS, instrument captured this visible-light image. The bulk of the spill appears as a dull gray area southeast of the Mississippi Delta. The spill is the result of an explosion on April 20, 2010 which destroyed the Deepwater Horizon oil platform operating in the Gulf 80 kilometers (50 miles) offshore. Many of the workers on the platform were killed, and about 5,000 barrels of oil per day has been released into the water. The huge oil slick is being carried towards the Mississippi River Delta. Weather and currents have cooperated so far to keep the slick away from sensitive wetlands and wildlife areas along the Gulf Coast, and oil has come ashore in a few spots in Louisiana. However, the oil is expected to reach the Louisiana, Alabama, and Mississippi shores by Thursday, May 6, and cause considerable damage to property and endanger wildlife and habitats.

See more images below, including one from the International Space Station taken today.

The oil spill as seen from the International Space Station by astronaut Soichi Noguchi. Credit: NASA/JAXA/Noguchi

This image was taken on May 5 by astronaut Soichi Noguchi on board the ISS, and posted on Twitter.

A Envisat Advanced Synthetic Aperture Radar (ASAR) image from May 2, 2010. Credit: CLS

This image from ESA’s Envisat radar, shows sea surface roughness and current flow information. Not only could the slick head towards the US mainland, but there have been fears that the Loop Current in the Gulf of Mexico could catch the oil slick and drag it south towards coral reefs in the Florida Keys. If that were to happen, the oil could flow into the Gulf Stream and be carried up to the US East Coast.

But so far, the loop does not appear to be catching the oil slick.

The Deepwater Horizon oil spill (appearing as a dull gray color) is southeast of the Mississippi Delta in this May 1, 2010, image from NASA's MODIS instrument. Credit: NASA/Goddard/MODIS Rapid Response Team

Another MODIS image from May 1 shows the oil slick as a tangle of dull gray on the ocean surface, made visible to the satellite sensor by the sun’s reflection on the ocean surface. At this point, the oil slick was southeast of the Mississippi Delta.

Close-up view of the oil spill from the ASTER satellite from May 3, 2010. A new NASA satellite image shows the extent of the growing oil spill in the Gulf of Mexico. Image credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA’s Terra spacecraft captured this image of the growing oil spill in the Gulf of Mexico on May 1, 2010. The image is located at 29.0 degrees north latitude, 88.3 degrees west longitude and covers an area measuring 79.1 by 103.9 kilometers (49 by 64.4 miles), about 32 kilometers (20 miles) west of the mouth of the Mississippi River delta. No land is visible in the image.

The varying shades of white in the image reflect different thicknesses of oil (the whiter, the thicker the oil). The source of the oil spill is visible as the bright white area in the bottom center of the image. The thickest part of the spill extends vertically from it, appearing somewhat like the ash plume of an erupting volcano. The wispy patterns of the oil spill reflect the transport of the oil by waves and currents.

A wide angle view of the oil slick on April 29, 2010. Credit: NASA/Earth Observatory/Jesse Allen, using data provided courtesy of the University of Wisconsin’s Space Science and Engineering Center MODIS Direct Broadcast system.

Sources: NASA Earth Observatory, ESA

Satellite Captures Wall of Dust Moving Across Sahara

Wall of dust in the Sahara Desert. NASA image by Jeff Schmaltz, MODIS Rapid Response Team at NASA GSFC.

[/caption]
Wow — this looks HUGE from orbit — can you imagine standing out in the Sahara Desert and seeing this gigantic wall of dust heading right towards you? The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite observed this wall of dust on April 22, 2010 which spans hundreds of kilometers. See the image below for a wider view of the area.


NASA image by Jeff Schmaltz, MODIS Rapid Response Team at NASA GSFC.

The region affected by this dust storm includes not just the Sahara Desert but also the Sahel, a semi-arid grassland region bordering the massive desert on the south. The dust plume hovers primarily over Burkina Faso and Mali. Straddling the border between Burkina Faso and Niger, an especially thick layer of dust appears to push southeastward.

Source: NASA Earth Observatory

Incredible Images of Iceland Volcano from Just a Few Kilometers Away

Lightning visible in the plume of the Eyjafjallajokull volcano in Iceland on April 17, 2010. Image courtesy of Snaevarr Gudmundsson.

[/caption]

Astronomer Snaevarr Gudmundsson from Iceland was able to travel to within just a few kilometers from the Eyjafjallajokull volcano, and shared his incredible close-up images with Universe Today. “I stayed near the volcano from about 16:00 hours to 22:00 hours on Saturday and watched its impressive eruption,” Gudmundsson said in an email to me. “Amazing event, awesome explosions of 1200 °C hot magma reaching ice and water. I shot more than 550 images during these hours of continuous enjoyment. Sounds ridiculous but its ever changing appearance was never boring.”

The massive plume put on an impressive display – from lightning forming within the plume to an incredible amount of spewing ash. On one of following pictures you can see helicopter for size comparison of the plume

The massive plume of Eyjafjallajokull volcano dwarfs a helicopter flying nearby (upper left). Image courtesy of and copyright Snaevarr Gudmundsson.

Gudmundsson said he and other photographers were a safe distance from the eruption, but were a few kilometers away. “Nearby was a small river and its prominent sound prevented us from hearing much in the eruption itself except a loud roar from thunders from time to time,” he said. “During daylight we even glimpsed some lightning but at dusk (the photo is taken at about 22:00 in the evening) they were easily spotted especially during active periods of explosions.”

The plume of Eyjafjallajokull volcano on April 17, 2010. Image courtesy of and copyright Snaevarr Gudmundsson.

I asked if there was any smell associated with the Iceland volcano and Gudmundsson said there was a bit of sulphuric smell in the air even though they were in a location where the wind was blowing towards the volcano. “The ash went to the other side of the volcano, as you can suggest, making life miserable for farmers and households below, but the rest of it climbed to higher altitude and from there to Europe.”

“From the foot of the volcano to the prominent top, seen in front of the tephra cloud (seen on some of the photos) the overall height is about 1300 -1400 m,” Gudmundsson said. “When the eruption began a huge flood went down beneath the obvious glacier to the left from the crater. And if you look closely on the photo showing the foot hills under the mountain a lot of icebergs can be seen on the flood plain. Under that same glacier was a rather deep lagoon (can’t been seen but sat between the two high moraines on either side of it, in front of the glacier) but sediment from the eruption filled it up in only two days at most! That is unbelievable. I have climbed this glacier many times but to approach it one usually must traverse the moraine, around the lagoon to reach the ice. But suddenly it is gone.”

Another view of Eyjafjallajokull volcano on April 17, 2010. Image courtesy of and copyright Snaevarr Gudmundsson.

Gudmundsson said the flood paths can be seen below the glacier as a narrow gorges carved into rather soft volcanic sediment.

Some of the latest reports from Iceland say that in some areas the volcanic fallout has been significant, clogging car engines, turning grass grey and reducing visibility to just a few meters.

The police say driving conditions can be very difficult in these places, but the area affected is remote with only a few hundred people, most of them living in isolated homes and many of them farmers. They have been advised to stay inside with the windows and doors shut and if they do venture out to wear goggles and a mask.

The staff of Landhelgisgæslan (Icelandic Coastal Patrol) captured this radar image of the craters in Eyjafjallajökull on Friday. There are three main openings and each one is 200-500m in diameter.

Radar image of the volcano, taken by the Icelandic Coastal Patrol.

Our very special thanks to Snaevarr Gudmundsson for sharing his images and experiences of seeing the volcano “up close and personal.” Also thanks to Col Maybury of radio station 2NUR in Newcastle, Australia for connecting me with Snaevarr (yes my connection to Iceland came through Australia!) and also thanks to erlinger on Twitter for help with Icelandic translations of news reports.

Other sources: mbl.is, BBC

Here are some more Iceland pictures.

Spectacular Footage, Satellite Images of Eyjafjallajokull Volcano in Iceland

NASA's Terra Satellite captured this image on April 15, 2010 of the volcano and resulting ash plume. NASA image by Jeff Schmaltz, MODIS Rapid Response Team at NASA GSFC.

A volcano under a glacier in Iceland erupted Wednesday, melting ice, shooting smoke and steam into the air and forcing hundreds of people to leave their homes. The resulting ash plume has also halted air traffic over much of Europe. Scientists said the eruption under the ice cap was 10 to 20 times more powerful than an eruption from the that happened from the Eyjafjallajokullin Volcano late last month. “This is a very much more violent eruption because it’s interacting with ice and water,” said Andy Russell, an expert in glacial flooding at the University of Newcastle in northern England, in an article on the CBC website. The dramatic footage in the video here was released today, April 15, and satellite images, below, show how far the ash plume has traveled.

[/caption]

The iceland volcano sent a plume of ash and steam across the North Atlantic prompting airspace closures in the United Kingdom, Ireland, France, and Scandinavia, which then had a ripple effect, disrupting flights to and from other countries as well. Authorities could not say how long the airspace closure would last, and the ash’s spread threatened to force closures of additional airspace over the coming days.

NASA's EO-1 Satellite took this image on April 1, 2010. NASA image by Robert Simmon, using ALI data from the EO-1 team

This natural-color satellite image shows the area of the eruption on April 1, when a new vent opened up. The image was acquired by the Advanced Land Imager (ALI) aboard NASA’s Earth Observing-1 (EO-1) satellite.

The volcano, about 120 kilometres east of Reykjavik, erupted March 20 after almost 200 years of silence.

Watch an animation from ESA of how the plume traveled.

Pall Einarsson, a geophysicist at the University of Iceland, said magma was melting a hole in the thick ice covering the volcano’s crater, sending water coursing down the glacier, and causing widespread flooding.

Iceland’s main coastal ring road was closed near the volcano, and workers smashed a hole in the highway in a bid to give the rushing water a clear route to the coast and prevent a major bridge from being swept away.

Sources: CBC, NASA Earth Observatory, ESA

Unmanned Robo-Plane Makes First Science Observations

The Global Hawk is a robotic plane that can fly autonomously to study Earth’s atmosphere, and can get to the area called the “Ignorosphere” that previously hasn’t been studied very well. The plane is carrying 11 instruments, and recently made its first science flight over the Pacific Ocean. “The Global Hawk is a fantastic platform because it gives us expanded access to the atmosphere beyond what we have with piloted aircraft,” said David Fahey, co-mission scientist and a research physicist at NOAA’s Earth System Research Laboratory in Boulder, Colo. “We can go to regions we couldn’t reach or go to previously explored regions and study them for extended periods that are impossible with conventional planes.”
Continue reading “Unmanned Robo-Plane Makes First Science Observations”