Satellites Measure Melting Greenland Ice

NASA’s GRACE satellites have measured an increasing rate of ice melt in Greenland. According to new analysis by researchers at the University of Arizona at Austin, the loss of ice from Greenland’s southeastern region has sped up between 2002 and 2005. Approximately 239 cubic kilometers (57 cubic miles) is now lost each year. Greenland contains 10% of the Earth’s fresh water, and this melting ice is contributing 0.56 mm (.02 inches) to globally rising sea levels.
Continue reading “Satellites Measure Melting Greenland Ice”

Cluster Spacecraft Catch a Magnetic Reconnection

ESA’s Cluster spacecraft were in the right place at the right time on September 15, 2001. They flew through a region of the Earth’s magnetosphere at the exact moment that it reconfigured itself. The wealth of data will help scientists better model interactions between the Earth’s magnetosphere and the solar wind, as well as the magnetic fields around other stars and exotic objects with powerful magnetic fields.
Continue reading “Cluster Spacecraft Catch a Magnetic Reconnection”

MetOp Prepares for Launch

In about a week, ESA’s MetOp-A satellite will be launched from the Baikonur Cosmodrome in Kazakhstan. If all goes well, the meteorological satellite will be placed on July 17 by a Russian Soyuz rocket into a low Earth polar orbit. MetOp-A carries 11 scientific instruments designed to scan the Earth’s atmosphere, land and oceans. There will eventually be three similar MetOp satellites flying in roughly the same orbit at an altitude of 817km (507 miles) collecting high resolution data from the Earth.
Continue reading “MetOp Prepares for Launch”

Ozone Recovery is Going Slowly

Although the Earth’s ozone layer is on the mend, the recovery is going more slowly than expected. Scientists have developed a new computer model that takes existing atmospheric data and correctly reproduces the size and shape of the ozone hole above Antarctica for the past 27 years. The model then predicts into the future, forecasting that the ozone hole will stick around until 2068, and not 2050 as scientists originally believed.
Continue reading “Ozone Recovery is Going Slowly”

GPS Can Predict Tsunamis

After the terrible tsunami damage caused by the Sumatra earthquake in December 2004, scientists have been searching for strategies to predict future killer waves. A team of university scientists have shown that Global Positioning System software developed at NASA can determine within minutes if an earthquake is strong enough to generate an ocean-wide tsunami. Ground stations within a few thousand kilometres of the earthquake can actually measure their displacement using the GPS satellites. If they’ve moved enough, there’s a high risk of a tsunami.
Continue reading “GPS Can Predict Tsunamis”

Fizzing Space Around the Earth

New observations from ESA’s Cluster and Double Star spacecraft have found that that space around the Earth fizzes as bubbles of superheated gas are created and popped. These bubbles are known as density holes, and they occur when gas in a region drops in density, but rises in temperature. The European spacecraft encountered these bubbles on the day-lit side of Earth at an altitude of 13-19 Earth radii. Scientists aren’t exactly sure what’s causing these bubbles, but it has something to do with the interaction between the Earth’s magnetic field and the solar wind.
Continue reading “Fizzing Space Around the Earth”

CALIPSO Begins Scientific Observations

NASA’s newly launched CALIPSO Earth observation satellite began its scientific observations last week. The satellite is designed to help scientists understand what effect cloud reflectivity and aerosol particles are having on the planet’s climate. CALIPSO is part of a satellite formation called the A-Train; several satellites in the same orbit which can analyze the same spot on Earth, one after the other.
Continue reading “CALIPSO Begins Scientific Observations”

First Images From Cloudsat

Meteorologists and scientists have a new tool at their disposal; NASA’s new CloudSat satellite, which is capable of building 3-D images of clouds. CloudSat launched on April 28 from Vandenberg Air Force Base with two other satellites. After several weeks of testing, mission managers tested its Cloud-Profiling Radar system in May. Its first image was a slice of atmosphere above the North Sea in the Atlantic Ocean. CloudSat’s radar system is 1,000 times more powerful than typical weather radar.
Continue reading “First Images From Cloudsat”

Huge Asteroid Crater in Antarctica

Image of Antarctica captured by Galileo. Image credit: NASA. Click to enlarge
The asteroid impact that killed the dinosaurs 65 million years ago was big, but geologists have found a new asteroid crater that’s even bigger: in Antarctica. This 482 km (300 mile) crater was discovered using NASA’s GRACE satellites, which can detect the gravity fluctuations beneath Antarctica’s ice sheets. This meteor was probably 48 km (30 miles) across and might have struck 250 million years ago – the time of the Permian-Triassic extinction, when almost all the animals on Earth died out.

Planetary scientists have found evidence of a meteor impact much larger and earlier than the one that killed the dinosaurs — an impact that they believe caused the biggest mass extinction in Earth’s history.

The 300-mile-wide crater lies hidden more than a mile beneath the East Antarctic Ice Sheet. And the gravity measurements that reveal its existence suggest that it could date back about 250 million years — the time of the Permian-Triassic extinction, when almost all animal life on Earth died out.

Its size and location — in the Wilkes Land region of East Antarctica, south of Australia — also suggest that it could have begun the breakup of the Gondwana supercontinent by creating the tectonic rift that pushed Australia northward.

Scientists believe that the Permian-Triassic extinction paved the way for the dinosaurs to rise to prominence. The Wilkes Land crater is more than twice the size of the Chicxulub crater in the Yucatan peninsula, which marks the impact that may have ultimately killed the dinosaurs 65 million years ago. The Chicxulub meteor is thought to have been 6 miles wide, while the Wilkes Land meteor could have been up to 30 miles wide — four or five times wider.

“This Wilkes Land impact is much bigger than the impact that killed the dinosaurs, and probably would have caused catastrophic damage at the time,” said Ralph von Frese, a professor of geological sciences at Ohio State University.

He and Laramie Potts, a postdoctoral researcher in geological sciences, led the team that discovered the crater. They collaborated with other Ohio State and NASA scientists, as well as international partners from Russia and Korea. They reported their preliminary results in a recent poster session at the American Geophysical Union Joint Assembly meeting in Baltimore.

The scientists used gravity fluctuations measured by NASA’s GRACE satellites to peer beneath Antarctica’s icy surface, and found a 200-mile-wide plug of mantle material — a mass concentration, or “mascon” in geological parlance — that had risen up into the Earth’s crust.

Mascons are the planetary equivalent of a bump on the head. They form where large objects slam into a planet’s surface. Upon impact, the denser mantle layer bounces up into the overlying crust, which holds it in place beneath the crater.

When the scientists overlaid their gravity image with airborne radar images of the ground beneath the ice, they found the mascon perfectly centered inside a circular ridge some 300 miles wide — a crater easily large enough to hold the state of Ohio.

Taken alone, the ridge structure wouldn’t prove anything. But to von Frese, the addition of the mascon means “impact.” Years of studying similar impacts on the moon have honed his ability to find them.

“If I saw this same mascon signal on the moon, I’d expect to see a crater around it,” he said. “And when we looked at the ice-probing airborne radar, there it was.”

“There are at least 20 impact craters this size or larger on the moon, so it is not surprising to find one here,” he continued. “The active geology of the Earth likely scrubbed its surface clean of many more.”

He and Potts admitted that such signals are open to interpretation. Even with radar and gravity measurements, scientists are only just beginning to understand what’s happening inside the planet. Still, von Frese said that the circumstances of the radar and mascon signals support their interpretation.

“We compared two completely different data sets taken under different conditions, and they matched up,” he said.

To estimate when the impact took place, the scientists took a clue from the fact that the mascon is still visible.

“On the moon, you can look at craters, and the mascons are still there,” von Frese said. “But on Earth, it’s unusual to find mascons, because the planet is geologically active. The interior eventually recovers and the mascon goes away.” He cited the very large and much older Vredefort crater in South Africa that must have once had a mascon, but no evidence of it can be seen now.

“Based on what we know about the geologic history of the region, this Wilkes Land mascon formed recently by geologic standards — probably about 250 million years ago,” he said. “In another half a billion years, the Wilkes Land mascon will probably disappear, too.”

Approximately 100 million years ago, Australia split from the ancient Gondwana supercontinent and began drifting north, pushed away by the expansion of a rift valley into the eastern Indian Ocean. The rift cuts directly through the crater, so the impact may have helped the rift to form, von Frese said.

But the more immediate effects of the impact would have devastated life on Earth.

“All the environmental changes that would have resulted from the impact would have created a highly caustic environment that was really hard to endure. So it makes sense that a lot of life went extinct at that time,” he said.

He and Potts would like to go to Antarctica to confirm the finding. The best evidence would come from the rocks within the crater. Since the cost of drilling through more than a mile of ice to reach these rocks directly is prohibitive, they want to hunt for them at the base of the ice along the coast where the ice streams are pushing scoured rock into the sea. Airborne gravity and magnetic surveys would also be very useful for testing their interpretation of the satellite data, they said.

NSF and NASA funded this work. Collaborators included Stuart Wells and Orlando Hernandez, graduate students in geological sciences at Ohio State; Luis Gaya-Piqu??bf? and Hyung Rae Kim, both of NASA’s Goddard Space Flight Center; Alexander Golynsky of the All-Russia Research Institute for Geology and Mineral Resources of the World Ocean; and Jeong Woo Kim and Jong Sun Hwang, both of Sejong University in Korea.

Original Source: Ohio State University

The Ozone Layer’s Recovering

The Antarctic ozone hole. Image credit: NASA.
Over the last few decades, scientists have been tracking the depletion of the ozone layer in the Earth’s atmosphere. A large hole still opens up over Antarctica, but ozone levels worldwide have stopped declining. The question is why. The relatively recent reduction of ozone-destroying gasses shouldn’t make an improvement so quickly. NASA scientists think that atmospheric wind patterns could be transferring ozone around the planet, helping with the recovery. At this rate, we’ll return to 1980 levels between 2030 and 2070.

Think of the ozone layer as Earth’s sunglasses, protecting life on the surface from the harmful glare of the sun’s strongest ultraviolet rays, which can cause skin cancer and other maladies.

People were understandably alarmed, then, in the 1980s when scientists noticed that manmade chemicals in the atmosphere were destroying this layer. Governments quickly enacted an international treaty, called the Montreal Protocol, to ban ozone-destroying gases such as CFCs then found in aerosol cans and air conditioners.

Today, almost 20 years later, reports continue of large ozone holes opening over Antarctica, allowing dangerous UV rays through to Earth’s surface. Indeed, the 2005 ozone hole was one of the biggest ever, spanning 24 million sq km in area, nearly the size of North America.

Listening to this news, you might suppose that little progress has been made. You’d be wrong.

While the ozone hole over Antarctica continues to open wide, the ozone layer around the rest of the planet seems to be on the mend. For the last 9 years, worldwide ozone has remained roughly constant, halting the decline first noticed in the 1980s.

The question is why? Is the Montreal Protocol responsible? Or is some other process at work?

It’s a complicated question. CFCs are not the only things that can influence the ozone layer; sunspots, volcanoes and weather also play a role. Ultraviolet rays from sunspots boost the ozone layer, while sulfurous gases emitted by some volcanoes can weaken it. Cold air in the stratosphere can either weaken or boost the ozone layer, depending on altitude and latitude. These processes and others are laid out in a review just published in the May 4th issue of Nature: “The search for signs of recovery of the ozone layer” by Elizabeth Westhead and Signe Andersen.

Sorting out cause and effect is difficult, but a group of NASA and university researchers may have made some headway. Their new study, entitled “Attribution of recovery in lower-stratospheric ozone,” was just accepted for publication in the Journal of Geophysical Research. It concludes that about half of the recent trend is due to CFC reductions.

Lead author Eun-Su Yang of the Georgia Institute of Technology explains: “We measured ozone concentrations at different altitudes using satellites, balloons and instruments on the ground. Then we compared our measurements with computer predictions of ozone recovery, [calculated from real, measured reductions in CFCs].” Their calculations took into account the known behavior of the sunspot cycle (which peaked in 2001), seasonal changes in the ozone layer, and Quasi-Biennial Oscillations, a type of stratospheric wind pattern known to affect ozone.

What they found is both good news and a puzzle.

The good news: In the upper stratosphere (above roughly 18 km), ozone recovery can be explained almost entirely by CFC reductions. “Up there, the Montreal Protocol seems to be working,” says co-author Mike Newchurch of the Global Hydrology and Climate Center in Huntsville, Alabama.

The puzzle: In the lower stratosphere (between 10 and 18 km) ozone has recovered even better than changes in CFCs alone would predict. Something else must be affecting the trend at these lower altitudes.

The “something else” could be atmospheric wind patterns. “Winds carry ozone from the equator where it is made to higher latitudes where it is destroyed. Changing wind patterns affect the balance of ozone and could be boosting the recovery below 18 km,” says Newchurch. This explanation seems to offer the best fit to the computer model of Yang et al. The jury is still out, however; other sources of natural or manmade variability may yet prove to be the cause of the lower-stratosphere’s bonus ozone.

Whatever the explanation, if the trend continues, the global ozone layer should be restored to 1980 levels sometime between 2030 and 2070. By then even the Antarctic ozone hole might close–for good.

Original Source: NASA News Release