Cloudless Europe Seen From Space

Image credit: ESA

As the weather is starting to cool in Europe after a particularly hot summer, the European Space Agency snapped this picture of the continent with pretty much cloudless skies. The composite image was built up from a series of pictures snapped by the ESA’s Meteosat Second Generation 1 (MSG-1). The satellite was launched almost exactly a year ago and is positioned above Europe in geostationary orbit.

As most Europeans breathe a sigh of relief as this record-breaking summer draws to a close, the extreme weather conditions experienced in recent weeks have given us a rare view of an almost cloud-free Europe, taken by Europe?s weather satellite MSG-1, launched a year ago this week.

This enhanced composite image was taken on 10 August 2003, at midday (12:00 UT) and shows a virtually cloud-free Europe. Only the UK and Finland are partially obscured by cloud. Meteosat Second Generation 1 (MSG-1) is the first of a new generation of weather satellites, developed in close cooperation between the European Space Agency (ESA) and EUMETSAT, the European Organisation for the Exploitation of Meteorological Satellites.

Built by ESA and operated by EUMETSAT, MSG-1 was launched by Ariane, a year ago on 28 August at 22:45 UT, from Europe?s spaceport in French Guiana. MSG-1 is positioned in geostationary orbit, at 10.5?W 36 000 kilometres above the Earth. This image illustrates the excellent performance of the innovative radiometer carried by MSG-1.

The MSG system will provide an essential service for weather experts for at least the next 12 years. This continuity of service is important not only to make short-term forecasts, but also to investigate global weather trends in the longer term.

Original Source: ESA News Release

NASA Releases a Map of the Whole Earth

Image credit: NASA

NASA has released a new image of the entire Earth based on images taken during the Shuttle Radar Topography Mission. The global data set greatly improves maps of the Earth’s surface between 60-degrees North and South of the equator – 80% of the globe. Previous maps of the United States have a similar resolution as the SRTM30 data – about 1 km – but the rest of the world is often inaccurate. SRTM is capable of producing even higher-resolution maps, down to 30 metres.

A brand new look and understanding of the place we call home. That’s what you’ll get in a complete global topographic data set generated by NASA and the National Imagery and Mapping Agency (NIMA).

Produced by the Shuttle Radar Topography Mission, the global data set, called “SRTM30,” greatly improves maps of Earth’s land mass located between 60 degrees north and 60 degrees south of the equator. That’s roughly from the southern tip of Greenland to below the southern tip of South America.

Until now, the primary source of digital elevation data for scientists and analysts involved in global studies has been the U.S. Geological Survey’s “GTOPO30,” published in 1996, it consists of elevation measurements spaced every 30-arc-seconds. An arc-second is a measure of latitude and longitude used by geographers that corresponds to about 30.9 meters, or 101.4 feet, at the equator. This allows identification of features roughly the size of Disneyland in California. The SRTM30 map matches the GTOPO30 resolution, but with its seamless quality, the map represents a leap in global-scale accuracy.

“SRTM30 is a powerful demonstration of the benefits which accrue from NASA’s human space flight program and satellite radar mapping technology,” said John LaBrecque, manager, Solid Earth and Natural Hazards Program, NASA Headquarters, Washington.

“The quality of previous maps of the Earth varied considerably, because they were compiled from various data gathered by generations of explorers and surveyors. In some places these maps are inaccurate. Using NASA technology, six Space Shuttle astronauts mapped 80 percent of Earth’s land surface in just 10 days to produce the first 3-D map of the Earth’s surface at a known and uniform accuracy,” he said.

The need for accurate topographic maps is everywhere from planning a hike to building a new highway. Knowing the exact shape and location of mountain peaks and river valleys is as important to the safe and efficient flight of aircraft as it is to the management of water resources and the control of forest fires.

Newly released images, representing the new SRTM30 data products, depict Earth in two ways: as an image with all the continents shown (a common map-making method known as a Mercator projection); and as three globe images of Earth as viewed from points in space centered over the Americas, Africa and the western Pacific. Two visualization methods were combined to produce the images: shading and color-coding of topographic height. The shaded image was derived by computing topographic slope in the northwest-southeast direction, so northwest slopes appear bright and southeast slopes appear dark. Color-coding depicts the lowest elevations in green, rising through yellow and tan, to white at the highest elevations.

The SRTM30 map is one of a series of land surface products emerging from the very successful Shuttle Radar Topography Mission (SRTM). SRTM has produced more detailed topographic data for North and South America that resolves features approximately 90 feet square, or 10 times the global SRTM30 database.

The SRTM data were processed at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., into research-quality digital elevation data. NIMA is providing additional processing to develop official mapping products. The U.S. Geological Survey Earth Resources Observation Systems Data Center in Sioux Falls, S.D. provides final archiving and distribution of the SRTM data products.

The SRTM mission is a cooperative project of NASA, NIMA, German and Italian space agencies. The project is part of NASA’s mission to understand and protect our home planet.

The new images are available on the JPL Planetary Photojournal at:

http://photojournal.jpl.nasa.gov/catalog/PIA03394

http://photojournal.jpl.nasa.gov/catalog/PIA03395

http://photojournal.jpl.nasa.gov/catalog/PIA03396
Information about the Shuttle Radar Topography Mission is available at:

http://www.jpl.nasa.gov/srtm/

Original Source: NASA News Release

Satellites Could Provide Early Warning for Forest Fires

Image credit: NASA

New software developed at NASA’s Jet Propulsion Laboratory may give firefighters a new tool for spotting forest fires before they get a chance to really get going. The software will link various NASA Earth science satellites together into a virtual web of sensors. If one satellite spots a blaze, it can instruct the other satellites to take more detailed photographs of the area. Controllers can then report the fire to officials as well as scientists interested in how early forest fires behave. Similar software is being considered for other natural events, like floods.

If a forest catches fire and no one is around to see it, can it call for help? The forest cannot call, but thanks to new technology developed by NASA, firefighters may get the word faster through new, high-tech eyes in the sky.

New software developed by NASA’s Jet Propulsion Laboratory, Pasadena, Calif., helps link NASA’s Earth science satellites together to form a virtual web of sensors with the ability to monitor the globe far better than individual satellites. An imaging instrument flying on one satellite can detect a fire or other hazard, and automatically instruct a different satellite that has the ability to take more detailed pictures to take a closer look. If the images show that a potential hazard does exist, the responding satellite provides data to ground controllers, who then report the fire to forest officials and to an interested science team.

“Essentially, we are adding the response mechanism to the detection process,” said Dr. Steve Chien, JPL principal scientist in artificial intelligence. “This is a first step to enabling users of satellite remote sensing data to specify the kind of data they want, such as forest fires or floods, rather than the traditional request to, say, look at northern Montana.”

One of the core components in this collaborative effort is the Science Goal Monitor system being developed at NASA’s Goddard Space Flight Center, Greenbelt, Md. The system enables scientists to specify what to look for and how to react in descriptive rather than technical terms. Then the system monitors science streams of data to identify occurrences of the key events previously specified by the scientist.

“When an event occurs, the system autonomously coordinates the execution of the scientist’s desired reactions between different observatories or satellites,” said Jeremy Jones, Goddard’s task leader for the monitor system. “This is designed to be adaptable to many different types of phenomena and supports a wide variety of sensor web configurations.”

Using the sensor web method, investigators no longer have to rely on after-the-fact data analysis to determine what happened. The information can be used to rapidly respond to hazardous events such as forest fires.

For example, moderate-resolution imaging instruments that fly on both NASA’s Terra and Aqua spacecraft observe the entire globe every day. The instruments’ data are automatically processed on the ground within hours of acquisition by the Rapid Response System at the Goddard Space Flight Center. If this processing detects a hot spot, scientific criteria can be used to automatically redirect the Earth Observing 1 satellite to provide high-resolution images. When that information comes back to a scientist for interpretation, it is made available to forest officials to determine the appropriate response. All this can happen in 24 to 48 hours, compared to a typical lead time of 14 days for preplanned observations.

The satellite sensor web demonstration is a collaborative effort between JPL and the Goddard Space Flight Center. The Rapid Response project is a joint Goddard Space Flight Center effort with the University of Maryland, College Park, led by Dr. Chris Justice.

Original Source: NASA/JPL News Release

Northeast Blackout Seen From Space

The National Oceanic and Atmospheric Administration posted satellite images online that showed the extent of the power blackout that affected more than 50 million people late last week. The photos show the areas both before and after the lights went out and demonstrate the dramatic change in power. The images were acquired by the agency’s Defense Meteorological Satellite Program (DMSP) on August 14 at 9:03 pm EDT.

Three Gorges Dam Seen From Above

Image credit: ESA

China’s Three Gorges Dam was recently photographed from above by the European Space Agency’s CHRIS instrument on the Proba satellite. Since the sluice gates were closed in June, the water levels have risen 135 metres, and the dam will begin generating its first commercial electricity in August. More than 600,000 people were forced to abandon their homes, and the same number again will have to leave before the waters reach their planned 175 metre depth.

Water churns through diversion holes in the world?s largest dam – China?s Three Gorges project on the Yangtze River, imaged here by ESA?s Proba satellite this week. Seen to the left, the waters behind the dam have risen to a level of 135 metres since the sluice gates were first closed in early June, and in August Three Gorges is due to generate its first commercial hydroelectricity.

The Three Gorges project is set to create a new 600-km-long body of water on the face of the 21st century Earth: the thick concrete dam walls stand 190 metres tall and already they hold back an estimated 10 billion cubic metres of water. More than 600,000 people have had to abandon their homes to the rising reservoir, and as many again will have to relocate before the waters reach their final planned level of 175 metres.

Water flows through dam diversion holes
It can be clearly seen in the image how the river has burst its banks and is inundating the land upriver of the dam. The waters of the world?s third-longest river appear brown in colour because they are heavy with sediment.

Many environmentalists have campaigned against the ?20 billion-plus Three Gorges project due to the drowning of multiple cultural heritage sites, the fear that reservoir will collect industrial pollution and sewage that cannot now be washed to the sea, and the risk posed to downstream populations if the dam should ever break. But the Chinese government says the project will tame the flood-prone Yangtze River and generate much-needed electricity for economic development.

This 18-metre resolution image was acquired by the CHRIS sensor onboard Proba on 30 July 2003.

About Proba
Proba (Project for On Board Autonomy) is a micro-satellite the size of a small box, launched by ESA in October 2001 and operated from ESA’s Redu Ground Station (Belgium). Orbiting 600 km above the Earth?s surface, Proba was designed to be a one-year technology demonstration mission but has since had its lifetime extended as an Earth Observation mission. It now routinely provides scientists with detailed environmental images thanks to CHRIS – a Compact High Resolution Imaging Spectrometer developed by UK-based Sira Electro-Optics Ltd – the main payload on the 100 kg spacecraft.

Proba boasts an ?intelligent? payload, has the ability to observe the same spot on Earth from a number of different angles and can record images of an 18.6 km square area to a resolution of 18 m. More than 60 scientific teams across Europe are making use of Proba data. A follow-on mission, Proba-2, is due to be deployed by ESA around 2005.

Original Source: ESA News Release

Satellite Confirms Ozone Recovery

Image credit: NASA

Observations from three NASA satellites have confirmed that the rate of ozone depletion in the Earth’s upper atmosphere is decreasing. The observations were made by SAGE I, SAGE II, and HALOE satellites which scanned the upper stratosphere since 1997. Their observations are consistent with the decline of man-made chemicals in the atmosphere which contribute to ozone depletion. The ozone layer protects the Earth’s surface from sun’s harmful ultraviolet radiation.

NASA satellite observations have provided the first evidence the rate of ozone depletion in the Earth’s upper atmosphere is decreasing. This may indicate the first stage of ozone layer recovery.

From an analysis of ozone observations from NASA’s first and second Stratospheric Aerosol and Gas Experiment (SAGE) and the Halogen Occultation Experiment (HALOE) satellite instruments, scientists have found less ozone depletion in the upper stratosphere (22-28 miles altitude) after 1997. The American Geophysical Union Journal of Geophysical Research has accepted a paper for publication on these results.

This decrease in the rate of ozone depletion is consistent with the decline in the atmospheric abundance of man-made chorine and bromine-containing chemicals that have been documented by satellite, balloon, aircraft and ground based measurements.

Concerns about ozone depletion in the upper atmosphere or stratosphere led to ratification of the Montreal Protocol on Substances that Deplete the Ozone Layer by the international community in 1987. The protocol restricts the manufacture and use of human-made, ozone-depleting compounds, such as chlorofluorocarbons and halons.

“Ozone is still decreasing but just not as fast,” said Mike Newchurch, associate professor at the University of Alabama, Huntsville, Ala., and lead scientist on the study. “We are still decades away from total ozone recovery. There are a number of remaining uncertainties such as the effect of climate change on ozone recovery. Hence, there is a need to continue this precise long-term ozone data record,” he said.

“This finding would have been impossible had either SAGE II or HALOE not lasted so long past their normal mission lifetime,” said Joe Zawodny, scientist on the SAGE II satellite instrument science team at NASA’s Langley Research Center, Hampton, Va.

SAGE II is approaching the 19th anniversary of its launch, and HALOE has been returning data for 11 years. Scientists also used international ground networks to confirm these data from satellite results.

SAGE I was launched on the Applications Explorer Mission-B spacecraft in 1979; the Earth Radiation Budget Satellite carried SAGE II into orbit in 1984. The Space Shuttle Discovery carried HALOE into space on the Upper Atmosphere Research Satellite in 1991.

NASA’s Earth Science Enterprise funded this research in an effort to better understand and protect our home planet. The ozone layer protects the Earth’s surface from the sun’s harmful ultraviolet rays. Ultraviolet radiation can contribute to skin cancer and cataracts in humans and harm other animals and plants. Ozone depletion in the stratosphere also causes the ozone hole that occurs each spring over Antarctica.

Original Source: NASA News Release

New Satellite Image of the Aral Sea

Image credit: ESA

A new image taken by the European Space Agency’s Envisat satellite shows how much the Aral Sea has evaporated. Located in Central Asia, the Aral Sea used to be the fourth largest lake in the world, but rivers that feed the lake were diverted for cotton agriculture. It’s now half its former surface area and one-quarter its original volume and continuing to shrink. The picture was taken using the Medium Resolution Imaging Spectrometer (MERIS) instrument which has a resolution of 300 metres.

Earth?s youngest desert is shown in this July MERIS satellite image of the Aral Sea in Central Asia. Once the fourth largest lake in the world, over the last 40 years the Aral Sea has evaporated back to half its original surface area and a quarter its initial volume, leaving a 40,000 square kilometre zone of dry white-coloured salt terrain now called the Aralkum Desert.

As its water level has dropped 13 metres since the 1960s the Sea has actually split into two ? the larger horseshoe-shaped body of water and a smaller almost unconnected lake a little to its north. This Small Aral Sea is the focus of international preservation efforts, but the Large Aral Sea has been judged beyond saving (the shallowness of its eastern section is clear in the image). It is expected to dry out completely by 2020.

Towards the bottom right can be seen the sands of the Qyzylqum Desert. Already stretching across an area greater than Italy, this desert is set to extend further west in future, eventually merging with its younger Aralkum sibling. The distinctive darker area to the south of the Large Aral Sea is the delta of the Amu Darya river. Its waters support environmentally-unique tugai forests found only in Central Asia, along with land used for rice and cotton cultivation.

The grey area seen in the otherwise whitish zone between the two arms of the Large Aral Sea was once Vozrozhdeniye (‘Rebirth’) Island, the isolated site of biological warfare experimentation during the Cold War, now joined to the mainland and freely accessible by foot. In reaction to this development, a US-led international team last year moved in to destroy remaining anthrax stocks.

Located on the border between Uzbekistan and Kazakhstan, the Aral Sea shows what happens when the concept of sustainable development is disregarded. Starting in the 1960s, the waters of the two rivers feeding the Sea ? the Amu Darya, seen south, and the Syr Darya to the northwest ? were diverted by Soviet planners to irrigate thirsty cotton fields across the region. By the 1980s there was little water reaching the lake and it began to shrink.

For local people the results have been disastrous. The Aral Sea’s retreating shoreline has left ports landlocked and boats stranded on dry sand. Commercial fishing was forced to halt twenty years ago. The few remaining fishermen commute by car to the water’s edge. The waters that remain grow increasingly saline so only salt-resistant fish imported from elsewhere can endure them. Wildlife habitats have been destroyed and communities find themselves without clean water supplies.

The retreat of the waters has also altered the regional microclimate. Winters are colder and the summers hotter. Each year violent sandstorms pick up at least 150,000 tonnes of salt and sand from the dried-up lakebed and transport it across hundreds of kilometres.

The sandstorms are tainted with pesticide residue and have been linked to high regional rates of respiratory illnesses and certain types of cancer. The salty dust does harm to livestock pastures and has even been linked with melting glaciers up in the distant Pamir Mountains, on the Afghanistan border.

Back in the days of the USSR, planners spoke casually of diverting Siberian rivers to save the Aral Sea. Today that certainly will not happen. Instead Central Asian governments have come together to establish the International Fund for Saving the Aral Sea. But their economies are too dependent on cotton exports to end all irrigation.

The Small Aral Sea is still thought to be saveable, and several dikes have been constructed to cut it off from the Large Aral Sea ? preventing water loss and salt contamination – but shifting water levels have so far defeated these efforts. The channel connecting the two should soon dry up anyway, preserving the Small Aral Sea at least. Meanwhile researchers are studying the salty Aralkum Desert ? effectively the newest land surface on Earth ? to see how best to promote plant growth and stabilise the dusty dry lakebed.

Original Source: ESA News Release

Gravity Map Released

Image credit: NASA

The Gravity Recovery and Climate Experiment (Grace) mission has created the most accurate map of the Earth’s gravity field. The joint NASA-German Aerospace Center mission consists of two spacecraft connected by a cable which is able to measure fluctuations in the Earth’s gravity to a precision of a few centimetres. They found that the gravity field can fluctuate by as much as 200 metres around the world. This gravity map will give future water level measurements better accuracy, and help scientists better understand the slow redistribution of mass on the planet.

The joint NASA-German Aerospace Center Gravity Recovery and Climate Experiment (Grace) mission has released its first science product, the most accurate map yet of Earth’s gravity field. Grace is the newest tool for scientists working to unlock secrets of ocean circulation and its effects on climate.

Created from 111 days of selected Grace data, to help calibrate and validate the mission’s instruments, this preliminary model improves knowledge of the gravity field so much it is being released to oceanographers now, months in advance of the scheduled start of routine Grace science operations. The data are expected to significantly improve our ability to understand ocean circulation, which strongly influences weather and climate.

Dr. Byron Tapley, Grace principal investigator at UT’s Center for Space Research, called the new model a feast for oceanographers. “This initial model represents a major advancement in our knowledge of Earth’s gravity field. “Pre- Grace models contained such large errors many important features were obscured. Grace brings the true state of the oceans into much sharper focus, so we can better see ocean phenomena that have a strong impact on atmospheric weather patterns, fisheries and global climate change.”

Grace is accomplishing that goal by providing a more precise definition of Earth’s geoid, an imaginary surface defined only by Earth’s gravity field, upon which Earth’s ocean surfaces would lie if not disturbed by other forces such as ocean currents, winds and tides. The geoid height varies around the world by up to 200 meters (650 feet).

“I like to think of the geoid as science’s equivalent of a carpenter’s level, it tells us where horizontal is,” Tapley said. “Grace will tell us the geoid with centimeter-level precision.”

So why is knowing the geoid height so important? JPL’s Dr. Lee-Lueng Fu, scientist on Topex/Poseidon and Jason project said, “The ocean’s surface, while appearing flat, is actually covered with hills and valleys caused by currents, winds and tides, and also by variations in Earth’s gravity field. “Scientists want to separate out these gravitational effects, so they can improve the accuracy of satellite altimeters like Jason and Topex/Poseidon, which measure sea surface height, ocean heat storage and global ocean circulation. This will give us a better understanding of ocean circulation and how it affects climate.”

Dr. Michael Watkins, Grace project scientist at JPL, put improvements to Earth’s gravity model into perspective. “Scientists have studied Earth’s gravity for more than 30 years, using both satellite and ground measurements that were of uneven quality. “Using just a few months of our globally uniform quality Grace data, we’ve already improved the accuracy of Earth’s gravity model by a factor of between 10 and nearly 100, depending on the size of the gravity feature. In some locations, errors in geoid height based upon previous data were as much as 1 meter (3.3 feet). Now, we can reduce these errors to a centimeter (0.4 inches) in some instances. That’s progress.”

Dr. Christoph Reigber, Grace co-principal investigator at GeoForschungsZentrum Potsdam, said, “As we continue to assess and refine Grace’s instruments and subsystems, we’re confident future monthly gravity solutions will be even better than the map we’re releasing now. “Those solutions will allow us to investigate processes associated with slow redistribution of mass inside Earth and on its land, ocean and ice surfaces. Our initial attempts to identify such small gravity signals with Grace look very promising.”

Grace senses minute variations in gravitational pull from local changes in Earth’s mass by precisely measuring, to a tenth of the width of a human hair, changes in the separation of two identical spacecraft following the same orbit approximately 220 kilometers (137 miles) apart. Grace will map the variations from month to month, following changes imposed by the seasons, weather patterns and short-term climate change.

Original Source: University of Texas News Release

Mars Express Says Goodbye to the Earth and Moon

Image credit: ESA

Now well on its way to the Red Planet, the European Space Agency’s Mars Express spacecraft took a farewell image of the Earth and Moon. The photo was snapped on July 3 when the spacecraft was 8 million kilometres away from the Earth. The picture was taken as part of a series of tests the ESA is doing to make sure the Mars Express’ cameras and instruments are working properly. Once it reaches Mars in late December, the spacecraft will be able to resolve objects on the surface of Mars as small as 2 metres.

A unique view of our home planet and its natural satellite ? the Moon – is one of the first data sets coming from ESA’s Mars Express.

?It is very good news for the mission,? says ESA’s Mars Express Project Scientist, Agustin Chicarro. These and other data, such as those recording the major constituents of Earth as seen from space, are the actual proof that the instruments on board Mars Express, launched 2 June 2003, are working perfectly.

The routine check-outs of Mars Express’s instruments and of the Beagle-2 lander, performed during the last weeks, have been very successful. “As in all space missions little problems have arisen, but they have been carefully evaluated and solved. Mars Express continues on its way to Mars performing beautifully”, comments Chicarro.

The views of the Earth/Moon system were taken on 3 July 2003 by Mars Express’s High Resolution Stereo Camera (HRSC), when the spacecraft was 8 million kilometres from Earth. The image taken shows true colours; the Pacific Ocean appears in blue, and the clouds near the Equator and in mid to northern latitudes in white to light grey. The image was processed by the Instrument Team at the Institute of Planetary Research of DLR, Berlin (Germany). It was built by combining a super resolution black and white HRSC snap-shot image of the Earth and the Moon with colour information obtained by the blue, green, and red sensors of the instrument.

?The pictures and the information provided by the data prove the camera is working very well. They provide a good indication of what to expect once the spacecraft is in its orbit around Mars, at altitudes of only 250-300 kilometres: very high resolution images with brilliant true colour and in 3D,? says the Principal Investigator of the HRSC, Gerhard Neukum, of the Freie Universit?t of Berlin (Germany). This camera will be able to distinguish details of up to 2 metres on the Martian surface.

Another striking demonstration of Mars Express’s instruments high performance are the data taken by the OMEGA spectrometer. Once at Mars, this instrument will provide the best map of the molecular and mineralogical composition of the whole planet, with 5% of the planetary surface in high resolution. Minerals and other compounds such as water will be charted as never before. As the Red Planet is still too far away, the OMEGA team devised an ingenious test for their instrument: to detect the Earth?s surface components.

As expected, OMEGA made a direct and unambiguous detection of major and minor constituents of the Earth?s atmosphere, such as molecular oxygen, water and carbon dioxide, ozone and methane, among other molecules. “The sensitivity demonstrated by OMEGA on these Earth spectra should reveal really minute amounts of water in both Martian surface materials and atmosphere,” says the Principal Investigator of OMEGA, Jean Pierre Bibring , from the Institut d’Astrophysique Spatiale, Orsay, France.

The experts will carry on testing Mars Express?s instruments up till the arrival to the Red Planet, next December. The scientists agree on the fact that these instruments will enormously increase our understanding of the morphology and topography of the Martian surface, of the geological structures and processes – active now and in the past, and eventually of Mars?s geological evolution. With such tools, Mars Express is also able to address the important ?water? question, namely how much water there is today and how much there was in the past. Ultimately, this will also tell us whether Mars had environmental conditions that could favour the evolution of life.

Original Source: ESA News Release

Earth Could Have Formed Quickly

Our Earth might have formed a lot earlier that astronomers previously believed, maybe as quickly as 10 million years after the birth of the Sun. In fact, all of the inner planets might have started forming as soon as 10,000 years after the Sun ignited 4.5 billion years ago. Within 10 million years, the Earth had reached 64 percent of its mass, and later collided with a Mars-sized object to provide additional mass and create the Moon. Scientists originally believed that the Earth took 50 million years to form.