Hey Citizen Scientists! Help NASA Analyze Images Taken from the Space Station

Astronaut Karen Nyberg looks out at Earth from the International Space Station's Cupola. You can too! Credit: NASA.

Calling all citizen scientists, geography buffs, fans of the International Space Station and those who love that orbital perspective!

CosmoQuest has a brand new project in coordination with NASA and the Astronomical Society of the Pacific (ASP) where you can help identify features in photographs taken by astronauts from the space station.

The project is called Image Detective. I’ve tried it out, and wow, THIS is a lot of fun!

Now, I absolutely love seeing the images taken of Earth from the ISS, and I routinely follow all the astronauts on board on social media so I can see their latest images. And I also love the concept of regular, everyday people doing science. Plus I’m a big fan of CosmoQuest and their ‘quest’ to bring science to the public.

But still, the setup CosmoQuest has is really great and the process is easy. Citizen scientists are asked to help identify geographic features (natural or human-made) and then determine the location on Earth where the photo is centered.

I found that last part to be the most difficult, but I’ve been known to have trouble reading a map … so I’m hoping that I can improve a bit with more practice.

“The astronauts’ photos of Earth are visually stunning, but more than that, they can be used to study our changing Earth,” said our good friend Dr. Pamela Gay, who is the Director of Technology and Citizen Science at ASP. “From erupting volcanoes, to seasonal flooding, these images document the gradual changes that happen to our landscape. The trick is, we need to make these images searchable, and that means taking the time to sort through, analyze, and label (add metadata) the unidentified images within the database of 1.5 million plus photos.”

You can try it out here: http://cosmoquest.org/ImageDetective.

The team says that Image Detective spreads the significant work necessary to label all of the images out to citizen scientists across the world.

“This is a unique, powerful, and beautiful image data set that has already yielded excellent research science. But the data set needs the many eyes and minds of citizen scientists to reach its full potential as a publicly available, searchable catalog,” said Dr. Jennifer Grier, a Senior Scientist and Senior Education and Communication Specialist at Planetary Science Institute (PSI) and CosmoQuest’s lead support scientist. “With the additions that citizen scientists as detectives can make, professional research scientists will be able to conduct more research into our changing world, and do so much more effectively.”

NASA’s OSIRIS-REx Asteroid Sampler Slingshots Around Earth Friday, Sept. 22 – Catch It If You Can!

Artist's concept shows the OSIRIS-REx spacecraft passing by Earth on Sept. 22, 2017. Credits: NASA's Goddard Space Flight Center/University of Arizona
Artist’s concept shows the OSIRIS-REx spacecraft passing by Earth on Sept. 22, 2017. Credits: NASA’s Goddard Space Flight Center/University of Arizona

KENNEDY SPACE CENTER, FL – Barely a year after NASA’s OSIRIS-REx robotic asteroid sampler launched on a trailblazing mission to snatch a soil sample from a pristine asteroid and return it to Earth for research analysis, the probe is speeding back home for a swift slingshot around our home planet on Friday Sept. 22 to gain a gravity assist speed boost required to complete its journey to the carbon rich asteroid Bennu and back.

As it swings by Earth NASA’s first ever asteroid sample return mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), will pass only 11,000 miles (17,000 kilometers) above Earth just before 12:52 p.m. EDT on Friday.

And NASA is asking the public to try and ‘Catch It If You Can’ – by waving hello and/or taking snapshots during and after the probes high speed flyby.

Plus you can watch NASA Facebook Live event at Noon Friday: https://www.facebook.com/NASAGoddard/

OSIRIS-REx will be approaching Earth at a velocity of about 19,000 mph on Friday as it begins flying over Australia during the Earth Gravity Assist (EGA) maneuver.

Since blastoff from the Florida Space Coast on Sept. 8, 2016 the probe has already racked up almost 600 million miles on its round trip journey from Earth and back to set up Friday’s critical gravity assist maneuver to Bennu and back.

As OSIRIS-REx continues along its flight path the spacecraft will reach its closest point to Earth over Antarctica, just south of Cape Horn, Chile. It will gain a velocity boost of about 8400 mph.

The spacecraft will also conduct a post flyby science campaign by collecting images and science observations of Earth and the Moon four hours after closest approach to calibrate its five science instruments.

NASA’s OSIRIS-REx asteroid sampling spacecraft, return capsule and payload fairings inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center is being processed for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The allure of Bennu is that it is a carbon rich asteroid – thus OSIRIS-REx could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview with the spacecraft in the cleanroom at NASA’s Kennedy Space Center.

The do or die gravity assist plunge is absolutely essential to set OSIRIS-REx on course to match the asteroid’s path and speed when it reaches the vicinity of asteroid Bennu a year from now in October 2018.

“The Earth Gravity Assist is a clever way to move the spacecraft onto Bennu’s orbital plane using Earth’s own gravity instead of expending fuel,” says Lauretta, of the University of Arizona, Tucson.

Just how close to Earth will OSIRIS-REx be during its flyby on Friday? The spacecraft will come within 11,000 miles (17,000 km) of the Earth’s surface as it passes over Antarctica at 12:52 a.m. EDT. on Sept. 22, 2017. Credits: NASA’s Goddard Space Flight Center/University of Arizona

Bennu’s orbit around the Sun is tilted at a six-degree inclination with respect to Earth’s orbital plane.

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

Numerous NASA spacecraft – including NASA’s just completed Cassini mission to Saturn – utilize gravity assists around a variety of celestial bodies to gain speed and change course to save vast amounts of propellant and time in order to accomplish science missions and visit additional target objects that would otherwise be impossible.

The flyby will be a nail-biting time for NASA and the science team because right afterwards the refrigerator sized probe will be out of contact with engineers – unable to receive telemetry for about an hour.

“For about an hour, NASA will be out of contact with the spacecraft as it passes over Antarctica,” said Mike Moreau, the flight dynamics system lead at Goddard, in a statement.

“OSIRIS-REx uses the Deep Space Network to communicate with Earth, and the spacecraft will be too low relative to the southern horizon to be in view with either the Deep Space tracking station at Canberra, Australia, or Goldstone, California.”

NASA says the team will regain communication with OSIRIS-REx roughly 50 minutes after closest approach over Antarctica at about 1:40 p.m. EDT.

The post flyby science campaign is set to begin at 4:52 p.m. EDT, Friday, Sept. 22.

United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter. Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018. Credit: Ken Kremer/kenkremer.com

The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.

Everything with the launch went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu,” OSIRIS-Rex Principal Investigator Dante Lauretta told me in the prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final launch preparations.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

1 day to Earth flyby for OSIRIS-Rex

NASA and the mission team is also inviting the public to get engaged by participating in the Wave to OSIRIS-REx social media campaign.

“Individuals and groups from anywhere in the world are encouraged to take photos of themselves waving to OSIRIS-REx, share them using the hashtag #HelloOSIRISREx and tag the mission account in their posts on Twitter (@OSIRISREx) or Instagram (@OSIRIS_REx).

Participants may begin taking and sharing photos at any time—or wait until the OSIRIS-REx spacecraft makes its closest approach to Earth at 12:52p.m. EDT on Friday, Sept. 22.”

The probe’s flight path during the flyby will pass through the ring of numerous satellites orbiting in geosynchronous orbit, but none are expected to be within close range.

Members of the OSIRIS-REx mission team celebrate the successful spacecraft launch on Sept. 8, 2016 atop ULA Atlas V at the post-launch briefing at the Kennedy Space Center, FL. Principal Investigator Dante Lauretta is 4th from right, NASA Planetary Science Director Jim Green is center, 5th from left. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Dr Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson, and Dr. Ken Kremer, Universe Today point to NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at the Kennedy Space Center on Aug. 20, 2016. Credit: Ken Kremer/kenkremer.com

NASA’s Kennedy Space Center Closes as Deadly Hurricane Irma Targets Direct Hit on Florida Forcing Millions to Evacuate

Storm clouds from looming Cat 4 Hurricane Irma obscure the view of the iconic Vehicle Assembly Building and Launch Complex 39A as seen from Titusville, forcing NASA to close the Kennedy Space Center until the storm passes. Credit: Ken Kremer/kenkremer.com
Storm clouds from looming Cat 4 Hurricane Irma obscure the view of the iconic Vehicle Assembly Building and Launch Complex 39A as seen from Titusville, FL forcing NASA to close the Kennedy Space Center until the storm passes. Credit: Ken Kremer/kenkremer.com

TITUSVILLE/CAPE CANAVERAL, FL– NASA and Air Force officials have ordered the closure of the Kennedy Space Center and Cape Canaveral Air Force Station as deadly Cat 4 Hurricane Irma relentlessly targets a direct hit on Florida and forces millions of residents and tourists to evacuate catastrophic consequences coming tonight, Saturday, Sept. 9 and throughout the weekend.

The Kennedy Space Center Visitor Complex also announced its closure.

The Florida Space Coast base and Visitor Complex closings were ordered just hours after SpaceX successfully launched the secretive X-37B military spaceplane to orbit for the U.S. Air Force on a Falcon 9 rocket from historic pad 39A on the Kennedy Space Center on Thursday, Sept. 7.

“NASA’s Kennedy Space Center in Florida is closing Friday, Sept. 8 through at least Monday, Sept. 11, due to the approach of Hurricane Irma, KSC officials said.

“Irma could potentially bring heavy rain and strong winds to the spaceport. Essential personnel will make final preparations to secure center facilities and infrastructure.”

“I have declared Hurricane Condition II (HURCON II) as of 9:00 p.m. today [9/9],” declared Brig Gen. Wayne R. Monteith, Commander, 45th Space Wing.

“As we enter HURCON II, we continue to monitor Hurricane Irma’s progress. HURCON II indicates surface winds in excess of 58 mph could arrive in the area of the base within 24 hours.”

“This is a deadly major storm,” said Florida Gov. Rick Scott at an update briefing today. “Our state has never seen anything like it.”

“We are under a state of emergency!”

18 million people are currently under Hurricane warnings throughout Florida and the dire warnings from the Governor have been nothing short of catastrophic.

Here’s the latest Hurricane Irma storm track from the National Hurricane Center (NHC) updated to Saturday evening, Sept 9.

Hurricane Irma Cone forecast on Sept. 9, 2017 from the National Hurricane Center. Credit: NHC

It is being closely tracked in incredibly high resolution by the new NASA/NOAA GOES-16 (GOES-R) satellite launched late last year on a ULA Atlas V in Nov 2016.

Only a ride out team of roughly 130 or so KSC personnel based at the Emergency Operations Center (EOC) inside the Launch Control Center will remain on site to monitor spaceport facilities over the weekend and beyond.

“We’re closed until further notice except for Ride-Out Team. Stay safe!” said KSC officials.

“Ride-Out Team to remain in place until #Irma passes.”

At the Emergency Operations Center (EOC) located inside the Launch Control Center at the Kennedy Space Center; Brady Helms, Wayne Kee, and John Cosat discuss #Irma on Sept. 9, 2017. Credit: NASA KSC

Both KSC and the Cape’s Air Force Base will remain closed until Irma passes and until further notice and the facilities are deemed safe.

“After the storm has left the area, Kennedy’s Damage Assessment and Recovery Team will evaluate all center facilities and infrastructure for damage. The spaceport will reopen after officials determine it is safe for employees to return.”

USAF X-37B military mini-shuttle lifts off at 10 a.m. EDT Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

State officials also ordered the mandatory evacuation of the Cape’s surrounding barrier islands including Merritt Island which is home to the space center and Cocoa Beach, as of Friday at 3 p.m. EDT.

This is the second year in a row that a deadly looming hurricane has forced the closure of KSC and Cape Canaveral Air Force Station.

When Hurricane Matthew struck last October 2016 it left over $100 million in damages to NASA and AF installations and ironically caused the postponed of the advanced GOES-16 (GOES-R) weather satellite now tracking Irma with unprecedented clarity and timing.

NASA’s iconic VAB and the Launch Control Center (right, front) are home to the ‘ride out’ crew remaining on site at the Kennedy Space Center during Hurricane Irma to monitor facilities as the storm passes by on Sept. 10 – in this view taken Sept. 8, 2017. Credit: Ken Kremer/kenkremer.com

Strong wind gusts and heavy downpours have already drenched Titusville and other local Space Coast cities periodically today, Sat., Sept 9.

NASA’s iconic VAB was barely visible from my perch along Titusville river front, ghostlike in appearance when it peeked only rarely through the clouds.

Storm clouds from looming Cat 4 Hurricane Irma obscure the view of the iconic Vehicle Assembly Building and Launch Complex 39A as seen from Titusville, FL forcing NASA to close the Kennedy Space Center until the storm passes. Credit: Ken Kremer/kenkremer.com

As I write this late Saturday, Sept. 9, Irma is just hours and less than 100 miles away from striking the Florida Keys with a predicted impact of an unsurvivable storm surge.

The eye is currently off the north coast of Cuba and moving in a west northwesterly WNW direction at 7 MPH.

Hurricane Irma as seen from the International Space Station. Credit: Randy Bresnik/NASA

Monster storm Irma is the size of Texas. The outer bands are already lashing the Florida Keys.

Landfall is currently projected to be on the west coast of Florida, perhaps around the Tampa area and causing catastrophic storm surges, flooding and destruction of property and homes.

“Millions of Floridians will see major impacts with DEADLY DEADLY DEADLY storm surge and life threatening winds,” elaborated Gov. Scott.

“There is a serious threat of significant storm surge flooding along the entire west coast of Florida.

This has increased to 15 feet of impact above ground level.”

“Think about that. 15 feet is devastating and will cover your house. A typical first story is 7 to 10 feet. The storm surge will rush in and could kill you.”

“This is a life threatening situation,” warned Scott. “Central Florida is under a hurricane warning and will see dangerous and life threatening wind and torrential rainfall of more than a foot. Rainfall has already started and wind will begin tonight.”

“We could also see tornadoes.”

Hurricane Irma’s clouds Extend over the Florida Peninsula in this GOES East satellite image at 9:30 p.m. EDT Sept. 9, 2017. At 8 PM EDT the eye of Hurricane Irma was near latitude 23.3 North, longitude 80.8 West. That’s about 110 miles (175 km) southeast of Key West, FL. Credit: NASA/GOES

90+ MPH wind gusts are expected virtually statewide.

Widespread power outages are expected. Over 190,000 power outages have already been reported as of Saturday evening.

Millions more are expected to lose power – including half of all residents says Florida Power and Light (FPL) !

Hundreds of power crews are already prepositioned in place to get the juice flowing as soon as possible after Irma marches northward.

As a precaution earlier this week Scott already ordered all schools and government offices closed statewide until further notice.

Florida hurricane shelters are filling up in some areas and overflowing in others. 385 designated shelters are open already and more are coming. Over 375,000 people have already taken shelter.

Finding open gas stations is increasingly problematical because many are now closing as the storms impact is imminent. Tanker trucks had been replenishing empty storage tanks as best as possible throughout the state over the past few days.

“We are working to keep gas stations open,” said Scott.

8 to 18 inches of rain are expected across the state.

Storm surge warnings are in effect especially for the west coast notably in the Tampa and Sarasota areas where it could reach 5 – 10 feet in Tampa Bay and even higher to 10 to 15 feet along the southwest Florida coast is possible.

“Millions of Floridians will see life threatening winds starting tonight,” Scott warned.

“This is a life-threatening situation.”

“Over 6.5 million have been ordered to evacuate. Get out now if you have been ordered to do so.”

That’s 6.5 million people ordered to evacuate out of the total state population of 20 million – unfathomable.

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Storm clouds from looming Cat 4 Hurricane Irma obscure the view of the iconic Vehicle Assembly Building and Launch Complex 39A as seen from Titusville, FL on Sept. 9, 2017, forcing NASA to close the Kennedy Space Center until the storm passes. Credit: Ken Kremer/kenkremer.com

Secret X-37B Military Mini-Shuttle Set for SpaceX Blastoff/Landing Sept. 7 as Cat 5 Hurricane Irma Forces Florida State of Emergency – Watch Live

SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Although its far from sunny in the so called ‘Sunshine State’ the secret X-37B military mini-shuttle is set for a SpaceX blastoff and booster landing combo Thursday, Sept. 7 – even as the looming threat from Cat 5 Hurricane Irma forced Florida’s Governor to declare a statewide ‘State of Emergency.’

Launch preparations were in full swing today on Florida’s Space Coast for liftoff of the hi tech USAF X-37B reusable spaceplane- hoping to escape to orbit for the first time atop a SpaceX Falcon 9 rocket and just in the nick of time tomorrow, before the impending threat of monster storm Irma potentially lashes the launch pad at NASA’s Kennedy Space Center in the center of the states long peninsula.

Hurricane Irma Cone forecast on Sept 7, 2017 from the National Hurricane Center. Credit: NHC

Irma is packing winds of 185 mph and one of the strongest Atlantic storms ever. It is being closely tracked in incredibly high resolution by the new NASA/NOAA GOES-16 (GOES-R) satellite launched late last year on a ULA Atlas V in Nov 2016.

I witnessed the entire SpaceX Falcon 9 rocket and payload stack being rolled horizontally up the incline to the top of Launch Complex 39A late this afternoon, Sept. 6, during our media visit for up-close camera setup.

Up close head on view of SpaceX Falcon 9 rocket rolling horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Rather remarkably the relatively dismal weather forecast has brightened considerably in the final hours leading to Thursday’s scheduled launch and the forecast heavy rain showers and thunder have dissipated in the time remaining between now and liftoff.

The X-37B reusable mini-shuttle is a secretive technology testing spaceplane flying on its fifth mission overall.

Up close side view of SpaceX Falcon 9 rocket and nose cone housing the X-37B OTV-5 spaceplane slated for liftoff from Launch Complex 39A at the Kennedy Space Center on Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

The path to launch was cleared following the successful engine test firing of the Falcon 9 first stage I witnessed late last week, Thursday afternoon, Aug. 30.

During the hold down static fire test all nine Merlin 9 stage engine were ignited and fired up to full throttle for several seconds. See my static fire story here.

SpaceX conducts successful static fire test of the Falcon 9 first stage rocket at 4:30 p.m. EDT on Aug. 31, 2017 on Launch Complex 39A on NASA’s Kennedy Space Center, Fl., as seen from nearby Playalinda causeway. Liftoff of the USAF X-37B OTV-5 mini-shuttle mission is scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Although the exact launch time remains a closely guarded U.S. Air Force secret, liftoff of the X-37B is slated to occur sometime during a 5 hour long window.

The launch window for the X-37B on the OTV-5 mission opens at 9:50 a.m. EDT (13:50 UTC) and spans until 2:55 p.m. EDT (18:55 UTC) Sept. 7 from seaside Launch Complex 39A on NASA’s Kennedy Space Center.

SpaceX will offer their own live webcast beginning approximately 15 minutes before launch starting at about 9:35 a.m. EDT.

You can watch the launch live at NASA TV at the SpaceX hosted Webcast at – spacex.com/webcast

In the event of delay for any reason, the next launch opportunity is Friday, Sept 8 at approximately the same time and window.

However amidst the heavy duty Hurricane Irma preparations all around, nothing is certain. Local area schools in Brevard County have closed and local residents are preparing their homes and apartments to hunker down, buying food and essentials putting up storm shutters, topping off gas and energy supplies and more.

“If for any reason we cannot launch tomorrow we will reevaluate whether or not we can still support another attempt on Friday, said Wayne R. Monteith, Brig Gen, USAF, Commander, 45th Space Wing.

The weather forecast overall is about 50% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. But the opportunity varies within the long window and the exact launch time is currently classified.

“Hurricane Irma is forecast to be approximately 900 miles southeast of the Spaceport during Thursday’s launch attempt, so while Irma certainly bears watching, the stalled boundary will be the main factor in Thursday’s weather,” noted the 45th Space Wing Weather Squadron.

The primary concerns on Sept. 7 are for cumulus clouds and for thick clouds in the flight path.

The odds drop to 40% favorable for the 24 hour scrub turnaround day on Friday, Sept 8

The USAF X-37B Orbital Test Vehicle is set for blastoff on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle from Launch Complex 39A (LC-39A) at Kennedy Space Center in Florida. Photo: Boeing/USAF

Everything is currently on track for Thursday’s launch of the 230 foot tall SpaceX Falcon 9 on the X-37B OTV-5 mission.

“The Air Force Rapid Capabilities Office is undergoing final launch preparations for the fifth mission of the X-37B Orbital Test Vehicle [OTV],” the Secretary of the Air Force Public Affairs announced. “The OTV is scheduled to launch on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle.

SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017 ahead of liftoff of the X-37B OTV-5 spaceplane mission on Sept. 7, 2017. Credit: Julian Leek

The X-37B will be launched for the fifth time on the OTV-5 mission atop a SpaceX Falcon 9 on Sept. 7 from Launch Complex 39A on the Kennedy Space Center Florida into low Earth orbit.

The Boeing-built X-37B is processed for flight at KSC using refurbished NASA space shuttle processing facilities now dedicated to the reusable mini-shuttle, also known as the Orbital Test Vehicle (OTV). It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

The OTV-5 mission marks the first launch of an X-37B spaceplane by SpaceX.

All four prior OTV missions launched on the United Launch Alliance Atlas V and ended with runway landings in either California or Florida.

“The many firsts on this mission make the upcoming OTV launch a milestone for the program,” said Randy Walden, the director of the Air Force Rapid Capabilities Office.

“It is our goal to continue advancing the X-37B OTV so it can more fully support the growing space community.”

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

SpaceX will also attempt another land landing of the 156-foot-tall Falcon 9 first stage back at Landing Zone-1 (LZ-1) at the Cape.

The Falcon 9 first stage is equipped with a quartet of landing legs and grid fins to enable the rocket recycling plan.

Up close view of SpaceX Falcon 9 landing legs for the X-37B OTV-5 spaceplane slated for liftoff from Launch Complex 39A at the Kennedy Space Center on Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

This marks the 7th time SpaceX attempts a ground landing at the Cape.

The booster will touch down about 8 minutes after launch and generate multiple sonic booms screaming loudly across the surrounding region and beyond.

“The fifth OTV mission will also be launched into, and landed from, a higher inclination orbit than prior missions to further expand the X-37B’s orbital envelope.”

The daylight first stage precision guided landing should offer spectators a thrilling up close view of the rocket reusability technology envisioned by SpaceX’s billionaire CEO Elon Musk to drastically slash the high costs of launching to space.

Technicians work on the Air Force X-37B Orbital Test Vehicle 4, which landed at NASA’s Kennedy Space Center Shuttle Landing Facility in Florida May 7, 2017. Credit: Secretary of the Air Force Public Affairs.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane is about a quarter the size of a NASA space shuttle. The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m).

The X-37B was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

Since then most but not all of the spaceplane’s goals have been shrouded in secrecy.

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Completes Critical Space Communications Network with Spectacular Launch of Final TDRS Science Relay Satellite

NASA’s Tracking and Data Relay Satellite-M (TDRS-M), which is the third and final in a series of next generation science communications satellites, was successfully launched Aug. 18, 2017 at 8:29 a.m. EDT by a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. TDRS-M has been placed into orbit following separation from the upper stage. Credit: Ken Kremer/kenkremer.com
NASA’s Tracking and Data Relay Satellite-M (TDRS-M), which is the third and final in a series of next generation science communications satellites, was successfully launched Aug. 18, 2017 at 8:29 a.m. EDT by a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. TDRS-M has been placed into orbit following separation from the upper stage. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Today marked the end of an era for NASA as the last of the agency’s next generation Tracking and Data Relay Satellites (TRDS) that transmit the critical science data and communications for the Hubble Space Telescope and human spaceflight missions to the International Space Station, successfully rocketed to orbit this morning, Fri. Aug 18 from the Florida Space Coast.

The spectacular liftoff of the strangely fish-like TDRS-M science relay comsat atop a United Launch Alliance Atlas V rocket occurred at 8:29 a.m. EDT a.m. (2:29 GMT) Aug. 18 from Space Launch Complex 41 at Cape Canaveral Air Force Station.

The weather cooperated with relatively thin but artistic clouds and low winds and offered spectators a spectacular launch show that will not forget.

NASA’s $408 million next generation Tracking and Data Relay Satellites (TRDS) looks like a giant alien fish or cocooned creature. But actually plays an unparalleled role in relaying critical science measurements, research data and tracking observations gathered by the International Space Station (ISS), Hubble and a plethora of Earth science missions.

“TDRS is a critical national asset have because of its importance to the space station and all of our science missions, primarily the Hubble Space Telescope and Earth science missions that use TDRS,” said Tim Dunn, NASA’s TDRS-M launch director.

NASA’s Tracking and Data Relay Satellite-M (TDRS-M), which is the third and final in a series of next generation science communications satellites, was successfully launched Aug. 18, 2017 at 8:29 a.m. EDT by a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. TDRS-M has been placed into orbit following separation from the upper stage. Credit: Ken Kremer/kenkremer.com

TDRS-M will provide high-bandwidth communications to spacecraft in low-Earth orbit. The TDRS network enables continuous communication with the International Space Station, the Hubble Space Telescope, the Earth Observing System and other programs supporting human space flight, said satellite builder Boeing, the prime contractor for the mission.

TDRS-M is the last of three satellites to be launched in the third generation of TDRS satellites. It is also the final satellite built based on Boeing’s 601 spacecraft bus series.

NASA plans to switch to much higher capacity laser communications for the next generation of TDRS-like satellites and therefore opted to not build a fourth third generation satellite after TDRS-M.

Inside the Astrotech payload processing facility in Titusville, FL,NASA’s massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com

“The TDRS fleet is a critical connection delivering science and human spaceflight data to those who can use it here on Earth,” said Dave Littmann, the TDRS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“TDRS-M will expand the capabilities and extend the lifespan of the Space Network, allowing us to continue receiving and transmitting mission data well into the next decade.”

Launch of ULA Atlas V on TDRS-M mission for NASA from Cape Canaveral Air Force Station in Florida on Aug. 18, 2017 at 8:29 a.m. EDT. Credit: Julian Leek

TDRS-M joins a constellation of 9 TDRS satellites already in orbit and ups the fleet to ten orbiting satellites.

Evolution of NASA’s Tracking and Data Relay Satellite (TDRS) System. Credit: NASA

The Atlas V rocket and Centaur upper stage delivered TDRS-M to its desired preliminary orbit.
“Trajectory analysis in. Injection accuracy was within 1% of prediction #TDRSM,” tweeted ULA CEO Torey Bruno.

Several hours after the launch ground controllers reported the satellite was in good health.

On tap now is a four month period or orbit checkout by prime contractor Boeing as well as a series of five significant orbit raising maneuvers from its initial orbit to Geostationary orbit over the Pacific Ocean.

“This TDRS-M milestone is another step forward in Boeing’s commitment to developing technologies to support future NASA near-Earth, moon, Mars and deep space missions – and to do so affordably, drawing on our 40-plus years of strong Boeing-NASA partnership,” said Enrico Attanasio, executive director, Department of Defense and Civil Programs, Boeing Satellite Systems.

Ground controllers will then move it to its final orbit over the Atlantic Ocean.

NASA plans to conduct additional tests before putting TDRS-M into service early next year over the Atlantic.

Blastoff of NASA’s Tracking and Data Relay Satellite-M (TDRS-M) on Aug. 18, 2017 at 8:29 a.m. EDT by a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida – as seen from the VAB roof. Credit: Ken Kremer/kenkremer.com

The importance of the TDRS constellation of satellites can’t be overstated.

Virtually all the communications relay capability involving human spaceflight, such as the ISS, resupply vehicles like the SpaceX cargo Dragon and Orbital ATK Cygnus and the soon to launch human space taxis like crew Dragon, Boeing Starliner and NASA’s Orion deep space crew capsule route their science results voice, data, command, telemetry and communications via the TDRS network of satellites.

The TDRS constellation enables both space to space and space to ground communications for virtually the entire orbital period.

The two stage Atlas V rocket stands 191 feet tall.

TDRS-M, spacecraft, which stands for Tracking and Data Relay Satellite – M is NASA’s new and advanced science data relay communications satellite that will transmit research measurements and analysis gathered by the astronaut crews and instruments flying abroad the International Space Station (ISS), Hubble Space Telescope and over 35 NASA Earth science missions including MMS, GPM, Aura, Aqua, Landsat, Jason 2 and 3 and more.

The TDRS constellation orbits 22,300 miles above Earth and provide near-constant communication links between the ground and the orbiting satellites.

TRDS-M will have S-, Ku- and Ka-band capabilities. Ka has the capability to transmit as much as six-gigabytes of data per minute. That’s the equivalent of downloading almost 14,000 songs per minute says NASA.

The TDRS program is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

TDRS-M is the third satellite in the third series of NASA’s American’s most powerful and most advanced Tracking and Data Relay Satellites. It is designed to last for a 15 year orbital lifetime.

The first TDRS satellite was deployed from the Space Shuttle Challenger in 1983 as TDRS-A.

TDRS-M was built by prime contractor Boeing in El Segundo, California and is the third of a three satellite series – comprising TDRS -K, L, and M. They are based on the Boeing 601 series satellite bus and will be keep the TDRS satellite system operational through the 2020s.

TDSR-K and TDRS-L were launched in 2013 and 2014.

Configuration diagram of NASA’s Tracking and Data Relay Satellites. Credit: NASA

The Tracking and Data Relay Satellite project is managed at NASA’s Goddard Space Flight Center.

TDRS-M was built as a follow on and replacement satellite necessary to maintain and expand NASA’s Space Network, according to a NASA description.

The gigantic satellite is about as long as two school buses and measures 21 meters in length by 13.1 meters wide.

It has a dry mass of 1800 kg (4000 lbs) and a fueled mass of 3,454 kilogram (7,615 lb) at launch.

Watch for Ken’s continuing onsite TDRS-M, CRS-12, ORS 5 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Station Crew Grapples SpaceX Dragon Delivering Tons of Science After Thunderous Liftoff: Launch & Landing Gallery

The SpaceX Dragon CRS-12 cargo craft is now attached to the International Space Station after arriving on Aug. 16, 2017. It delivered over 3 tons of science and supplies to the six person Expedition 52 crew. Credit: NASA TV
The SpaceX Dragon CRS-12 cargo craft is now attached to the International Space Station after arriving on Aug. 16, 2017. It delivered over 3 tons of science and supplies to the six person Expedition 52 crew. Credit: NASA TV

KENNEDY SPACE CENTER, FL – Following a two day orbital chase and ballet of carefully choreographed thruster firings, the SpaceX Dragon cargo capsule launched at lunchtime on Monday Aug. 14 with tons of science and supplies arrived in the vicinity of the International Space Station (ISS) this morning, Wednesday, Aug 16.

While Dragon maneuvered in ever so slowly guided by lasers, NASA astronaut Jack Fischer and ESA (European Space Agency) astronaut Paolo Nespoli carefully extended the stations robotic arm to reach out and grapple the gumdrop shaped capsule.

They deftly captured the Dragon CRS-12 resupply spacecraft slightly ahead of schedule at 6:52 a.m. EDT with the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm while working at a robotics work station in the seven windowed domed Cupola module.

The SpaceX Dragon cargo craft is pictured approaching the International Space Station on Wednesday morning Aug. 16, 2017. Credit: NASA

The million pound orbiting outpost was traveling over the Pacific Ocean north of New Zealand at the time of capture.

Liftoff of the SpaceX Falcon 9 took place precisely on time 2 days earlier with ignition of the 9 Merlin 1D first stage engines from seaside pad 39A at NASA’s Kennedy Space Center in Florida today (Aug. 14) at 12:31 p.m. EDT (1631 GMT).

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

The two stage Falcon 9 stands 213-foot-tall (65-meter-tall). The combined output of the 9 Merlin 1D first stage engines generates 1.7 million pounds of liftoff thrust, fueled by liquid oxygen and RP-1 propellants.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

See an exciting gallery of launch imagery and videos including the thrilling ground landing of the 156 foot tall first stage booster back at Cape Canaveral at Landing Zone-1 – from this author and several space colleagues.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

Monday’s picture perfect lunchtime liftoff of the unmanned SpaceX CRS-12 Dragon cargo freighter bound for the ISS and loaded with over 3 tons of science, research hardware and supplies including a hefty cosmic ray detector named ISS-CREAM, medical research experiments dealing with Parkinson’s disease, lung and heart tissue, vegetable seeds, dozens of mice and much more – came off without a hitch.

Ground controllers then carried out the remainder of the work to berth the SpaceX Dragon cargo spacecraft at the Earth facing port on the Harmony module of the International Space Station at 9:07 a.m. EDT.

This illustration of the International Space Station shows the current configuration with four visiting vehicle spaceships parked at the space station including the SpaceX Dragon CRS-12 cargo craft that arrived Aug. 16, 2017, the Progress 67 resupply ship and two Soyuz crew ships. Credit: NASA

The crew was perhaps especially eager for this Dragons arrival because tucked inside the more than 3 tons of cargo was a stash of delicious ice cream treats.

“The small cups of chocolate, vanilla and birthday cake-flavored ice cream are arriving in freezers that will be reloaded with research samples for return to Earth when the Dragon spacecraft departs the station mid-September,” said NASA.

Indeed the crew did indeed open the hatches today, early than planned, a few hours after arrival and completion of the requisite safety and leak checks.

The SpaceX Dragon cargo craft is pictured approaching the International Space Station on Wednesday morning Aug. 16, 2017. Credit: NASA TV

The whole sequence was broadcast on NASA TV that began live arrival coverage at 5:30 a.m showing numerous stunning video sequences of the rendezvous and grappling often backdropped by our precious Home Planet.

The current multinational Expedition 52 crew serving aboard the ISS comprises of Flight Engineers Paolo Nespoli from ESA, Jack Fischer, Peggy Whitson and Randy Bresnik of NASA and Sergey Ryazanskiy and Commander Fyodor Yurchikhin of Roscosmos.

Launch of SpaceX Falcon on Dragon CRS-12 mission to the ISS from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Julian Leek

The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

SpaceX holds a NASA commercial resupply services (CRS) contract that includes up to 20 missions under the original CRS-1 contract.

The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. 20 mice are also onboard. This will support dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

The Expedition 52 crew poses for a unique portrait. Pictured clockwise from top right are, Flight Engineers Paolo Nespoli, Jack Fischer, Peggy Whitson, Sergey Ryazanskiy, Randy Bresnik and Commander Fyodor Yurchikhin. Credit: NASA/Roscosmos/ESA

Video Caption: CRS-12 launch from Pad 39A on a Falcon 9 rocket. Pad camera views from the launch of the CRS-12 mission carrying 6415 pounds of supplies and equipment to the International Space Station on August 14, 2017. Credit: Jeff Seibert


The SpaceX Falcon 9/Dragon CRS-12 launch was the first of a rapid fire sequence of a triad of launches along the Florida Space Coast over the next 11 days of manmade wonder – Plus a Total Solar ‘Eclipse Across America’ natural wonder sandwiched in between !!

Launch of SpaceX Falcon on Dragon CRS-12 mission to the ISS from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Julian Leek

Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about the upcoming ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 , SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 17-18: “TDRS-M NASA comsat, SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com

Veteran Multinational Trio Launches on Soyuz and Arrives at International Space Station

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)
The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

An all veteran multinational trio of astronauts and cosmonauts rocketed to orbit aboard a Russian Soyuz capsule and safely arrived at the International Space Station (ISS) after a fast track rendezvous on Friday, July 28.

NASA astronaut Randy Bresnik, Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of ESA (European Space Agency) docked at the orbiting outpost at 5:54 p.m. EDT (2154 GMT) Friday just six hours after departing our Home Planet.

The three crewmates launched aboard the Russian Soyuz MS-05 spacecraft from the Baikonur Cosmodrome in Kazakhstan during a typically hot mid-summers night at 9:41 p.m. Baikonur time, or 11:41 a.m. EDT, 1541 GMT, as the booster and Baikonur moved into the plane of the space station’s orbit. They blasted to space from the same pad as Yuri Gagarin, the first man in space.

The entire launch sequence aboard the Soyuz rocket performed flawlessly and delivered the Soyuz capsule to its targeted preliminary orbit flowing by the planned opening of the vehicles solar arrays and antennas.

The Russian Soyuz MS-05 carrying NASA astronaut Randy Bresnik, Sergey Ryazanskiy of the Russian space agency Roscosmos, and Paolo Nespoli of ESA (European Space Agency) docked to the International Space Station at 5:54 p.m. on Friday, July 28, 2017. Credits: NASA Television

Following a rapid series of orbit raising maneuvers, the Soyuz reached the ISS after 4 orbits and six hours to successfully complete all the rendezvous and docking procedures.

The Soyuz docked at the Earth-facing Russian Rassvet module as the spaceships were flying some 250 mi (400 km) over Germany.

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

Following the standard pressurization and leak checks, the hatches between the spacecraft and station were opened from inside the ISS at about 9:45 p.m. EDT.

The new trio of Bresnik, Ryazanskiy and Nespoli then floated one by one from the Soyuz into the station and restored the outpost to a full strength crew of six humans.

The veteran space flyers join Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA who are already serving aboard.

Thus begins Expedition 52 aboard the million pound orbiting science complex.

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

This is the second space flight for both Bresnik and Ryazanskiy and the third for Nespoli.

Bresnik previously flew to the space station as a member of the STS-129 space shuttle Atlantis mission in November 2009. The 10 day mission delivered two Express Logistics Carriers (ELC racks) to the space station as part of approximately 30,000 pounds of replacement parts.

Bresnik performed two spacewalks for a total of 11 hours and 50 minutes during the STS-129 mission. He is slated to take command of the ISS as a member of Expedition 53.

The six person crew of Space Shuttle Atlantis walk out from crew quarters at 10:38 AM to greet the cheering crowd of media and NASA officials and then head out to pad 39 A to strap in for space launch with hours. Randy Bresnik is third from left. Credit: Ken Kremer/kenkremer.com

The new Expedition 52 crew will spend a four and a half month stint aboard the station and continue over 250 ongoing science investigations in fields such as biology, Earth science, human research, physical sciences and technology development.

Bresnik, Ryazanskiy and Nespoli are slated to stay aboard until returning to Earth in December.

Whitson, Fischer and Yurchikhin are in the home stretch of their mission and will retun to Earth in September. Shortly after their departure, NASA astronauts Mark Vande Hei and Joseph Acaba and Russian cosmonaut Alexander Misurkin will launch on the next Soyuz from Kazakhstan to join the Expedition 53 crew.

Whitson is the most experienced US astronaut with time in space. Her record setting cumulative time in space will exceed 600 days and include a 9 month stay on this flight upon her return to Earth.

She most recently launched to the ISS last year on Nov 17, 2016 aboard a Russian Soyuz capsule from the Baikonur Cosmodrome. This is her 3rd long duration stay aboard the station.

Whitson also holds the record for most spacewalks by a female astronaut. Altogether she has accumulated 53 hours and 23 minutes of EVA time over eight spacewalks.

The newly-expanded Expedition 52 crew expect to welcome a pair of unmanned US cargo ships carrying new research experiments and supplies, namely the SpaceX Dragon as soon as August and Orbital ATK Cygnus a month or two later, on NASA-contracted commercial resupply missions.

The SpaceX CRS-12 mission will carry investigations ”the crew will work on including a study developed by the Michael J. Fox Foundation of the pathology of Parkinson’s disease to aid in the development of therapies for patients on Earth. The crew will use the special nature of microgravity in a new lung tissue study to advance understanding of how stem cells work and pave the way for further use of the microgravity environment in stem cell research. Expedition astronauts also will assemble and deploy a microsatellite investigation seeking to validate the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations such as tracking severe weather and detecting natural disasters.”

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Clean Room Tour with NASA’s Next Gen Tracking Data Relay Satellite TDRS-M, Closeout Incident Under Review – Photos

Inside the Astrotech payload processing facility in Titusville, FL,NASA's massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com
Inside the Astrotech payload processing facility in Titusville, FL,NASA’s massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com

ASTROTECH SPACE OPERATIONS/KENNEDY SPACE CENTER, FL – The last of NASA’s next generation Tracking and Data Relay Satellites (TRDS) designed to relay critical science data and research observations gathered by the International Space Station (ISS), Hubble and dozens of Earth-orbiting Earth science missions is undergoing final prelaunch clean room preparations on the Florida Space Coast while targeting an early August launch – even as the agency reviews the scheduling impact of a weekend “closeout incident” that “damaged” a key component.

Liftoff of NASA’s $408 million eerily insectoid-looking TDRS-M science relay comsat atop a United Launch Alliance (ULA) Atlas V rocket currently scheduled for August 3 may be in doubt following a July 14 work related incident causing damage to the satellite’s Omni S-band antenna while inside the Astrotech Space Operations facility in Titusville, Florida.

“The satellite’s Omni S-band antenna was damaged during final spacecraft closeout activities,” NASA said in an updated status statement provided to Universe Today earlier today, July 16. NASA did not provide any further details when asked.

Everything had been perfectly on track as of Thursday, July 13 as Universe Today participated in an up close media tour and briefing about the massive probe inside the clean room processing facility at Astrotech Space Operations in Titusville, Fl.

On July 13, technicians were busily working to complete final spacecraft processing activities before its encapsulation inside the nose cone of the ULA Atlas V rocket she will ride to space, planned for the next day on July 14. The satellite and pair of payload fairings were stacked in separate high bays at Astrotech on July 13.

Alas the unspecified “damage” to the TDRS-M Omni S-band antenna unfortunately took place on July 14.

Up close clean room visit with NASA’s newest science data relay comsat – Tracking and Data Relay Satellite-M (TDRS-M) inside the Astrotech payload processing facility high bay in Titusville, FL. Two gigantic fold out antennae’s, plus space to ground antenna dish visible inside the ‘cicada like cocoon’ with solar arrays below. Omni S-band antenna at top. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

TDRS-M was built by Boeing and engineers are now analyzing the damage in a team effort with NASA. However it’s not known exactly during which closeout activity or by whom the damage occurred.

ULA CEO Tory Bruno tweeted that his company is not responsible and referred all questions to NASA. This may indicate that the antennae was not damaged during the encapsulation procedures inside the ULA payload fairing halves.

“NASA and Boeing are reviewing an incident that occurred with the Tracking and Data Relay Satellite (TDRS-M) on July 14 at Astrotech Space Operations in Titusville, Florida. The satellite’s Omni S-band antenna was damaged during final spacecraft closeout activities” stated NASA.

Up close look at the NASA TDRS-M satellite Omni S-band antenna damaged during clean room processing on July 14, 2017. Launch on ULA Atlas V is slated for Aug. 2017. Credit: Julian Leek

TDRS-M looks like a giant insect – or a fish depending on your point of view. It was folded into flight configuration for encapsulation in the clean room and the huge pair of single access antennas resembled a cocoon or a cicada. The 15 foot diameter single access antennas are large parabolic-style antennas and are mechanically steerable.

What does TDRS do? Why is it important? How does it operate?

“The existing Space Network of satellites like TDRS provide constant communications from other NASA satellites like the ISS or Earth observing satellites like Aura, Aqua, Landsat that have high bandwidth data that needs to be transmitted to the ground,” TDRS Deputy Project Manager Robert Buchanan explained to Universe Today during an interview in the Astrotech clean room.

“TRDS tracks those satellites using antennas that articulate. Those user satellites send the data to TDRS, like TDRS-M we see here and nine other TDRS satellites on orbit now tracking those satellites.”

“That data acquired is then transmitted to a ground station complex at White Sands, New Mexico. Then the data is sent to wherever those user satellites want the data to be sent is needed, such as a science data ops center or analysis center.”

Once launched and deployed in space they will “take about 30 to 40 days to fully unfurl,” Buchanan told me in the Astrotech clean room.

Astrotech is located just a few miles down the road from NASA’s Kennedy Space Center and the KSC Visitor Complex housing the finest exhibits of numerous spaceships, hardware items and space artifacts.

Preflight clean room processing inside the Astrotech payload processing facility preparing NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft for launch on ULA Atlas V in Aug. 2017. Credit: Julian Leek

At this time, the TDRS-M website countdown clock is still ticking down towards a ULA Atlas V blastoff on August 3 at 9:02 a.m. EDT (1302 GMT) from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, for a late breakfast delight.

The Aug. 3 launch window spans 40 minutes from 9:02 to 9:42 a.m. EDT.

Whether or not the launch date will change depends on the results of the review of the spacecraft’s health by NASA and Boeing. Several other satellites are also competing for launch slots in August.

“The mission team is currently assessing flight acceptance and schedule. TDRS-M is planned to launch Aug. 3, 2017, on an United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station in Florida,” NASA explained.

NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft will be encapsulated inside these two protective payload fairing halves inside the Astrotech payload processing facility high bay in Titusville, FL. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

TDRS-M, spacecraft, which stands for Tracking and Data Relay Satellite – M is NASA’s new and advanced science data relay communications satellite that will transmit research measurements and analysis gathered by the astronaut crews and instruments flying abroad the International Space Station (ISS), Hubble Space Telescope and over 35 NASA Earth science missions including MMS, GPM, Aura, Aqua, Landsat, Jason 2 and 3 and more.

The TDRS constellation orbits 22,300 miles above Earth and provide near-constant communication links between the ground and the orbiting satellites.

Preflight clean room processing inside the Astrotech payload processing facility preparing NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft for launch on ULA Atlas V in Aug. 2017. Credit: Julian Leek

TRDS-M will have S-, Ku- and Ka-band capabilities. Ka has the capability to transmit as much as six-gigabytes of data per minute. That’s the equivalent of downloading almost 14,000 songs per minute says NASA.

The TDRS program is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

TDRS-M is the third satellite in the third series of NASA’s American’s most powerful and most advanced Tracking and Data Relay Satellites. It is designed to last for a 15 year orbital lifetime.

The first TDRS satellite was deployed from the Space Shuttle Challenger in 1983 as TDRS-A.

TDRS-M was built by prime contractor Boeing in El Segundo, California and is the third of a three satellite series – comprising TDRS -K, L, and M. They are based on the Boeing 601 series satellite bus and will be keep the TDRS satellite system operational through the 2020s.

TDSR-K and TDRS-L were launched in 2013 and 2014.

The Tracking and Data Relay Satellite project is managed at NASA’s Goddard Space Flight Center.

TDRS-M was built as a follow on and replacement satellite necessary to maintain and expand NASA’s Space Network, according to a NASA description.

The gigantic satellite is about as long as two school buses and measures 21 meters in length by 13.1 meters wide.

It has a dry mass of 1800 kg (4000 lbs) and a fueled mass of 3,454 kilogram (7,615 lb) at launch.

Tracking and Data Relay Satellite artwork explains how the TDRS constellation enables continuous, global communications coverage for near-Earth spacecraft. Credit: NASA

TDRS-M will blastoff on a ULA Atlas V in the baseline 401 configuration, with no augmentation of solid rocket boosters on the first stage. The payload fairing is 4 meters (13.1 feet) in diameter and the upper stage is powered by a single-engine Centaur.

TDRS-M will be launched to a Geostationary orbit some 22,300 miles (35,800 km) above Earth.

“The final orbital location for TDRS-M has not yet been determined,” Buchanen told me.

The Atlas V booster is being assembled inside the Vertical Integration Facility (VIF) at SLC-41 and will be rolled out to the launch pad the day before liftoff with the TDRS-M science relay comsat comfortably encapsulated inside the nose cone.

NASA/contractor team poses with the Boeing built and to be ULA launched Tracking and Data Relay Satellite-M inside the inside the Astrotech payload processing facility clean room high bay in Titusville, FL, on July 13, 2017. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Carefully secured inside its shipping container, the TDRS-M satellite was transported on June 23 by a US Air Force cargo aircraft from Boeing’s El Segundo, California facility to Space Coast Regional Airport in Titusville, Florida, for preflight processing at Astrotech.

Watch for Ken’s onsite TDRS-M and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Satellite Images Show a Trillion Ton Iceberg Broke Off Antarctica

The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured this image of the gigantic new iceberg on July 12, 2017. NASA Earth Observatory image by Joshua Stevens, using MODIS data from LANCE/EOSDIS Rapid Response.

For several months, scientists have been keeping an eye on a piece of Antarctica’s Larsen C ice shelf, waiting for the inevitable. And now it has happened.

Sometime between July 10 and July 12, 2017 a trillion ton iceberg split off, “changing the outline of the Antarctic Peninsula forever,” said one scientist.

The new iceberg is now called A68, and at 2,240 square miles (5,800 square km) it is one of the biggest ever recorded, about the size of Delaware in the US, or twice the size of Luxembourg.

A fissure on the ice shelf first appeared several years ago, but seemed relatively stable until January 2016, when it began to lengthen. In January 2017 alone, the crack grew by 20 km, reaching a total length of about 175 km.

Witnessed by the Copernicus Sentinel-1 mission on 12 July 2017, a large iceberg has broken off the Larsen-C ice shelf, one of the largest icebergs on record. Credit: Modified Copernicus Sentinel data (2017), processed by ESA.

The calving of the iceberg was confirmed by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite and was reported this morning by Project MIDAS, an Antarctic research project based in the UK.

The MODIS instrument on NASA’s Aqua satellite also confirmed the complete separation of the iceberg.

Larsen C is a floating platform of glacial ice on the east side of the Antarctic Peninsula, is the fourth largest ice shelf ringing Earth’s southernmost continent. With the break-off of this iceberg, the Larsen C shelf area has shrunk by approximately 10 percent.

Some scientists say the Larsen C rift and iceberg calving is not a warning of imminent sea level rise, and linking climate change to this specific event is complicated. Adrian Luckman, Professor of Glaciology and Remote Sensing from Swansea University wrote a detailed explanation of this for The Conversation.

The new iceberg would barely fit inside Wales. Credit: Adrian Luckman / MIDAS

David Vaughan, glaciologist and Director of Science at British Antarctic Survey (BAS), said, “Larsen C itself might be a result of climate change, but, in other ice shelves we see cracks forming, which we don’t believe have any connection to climate change. For instance on the Brunt Ice Shelf where BAS has its Halley Station, there those cracks are a very different kind which we don’t believe have any connection to climate change.”

While Vaughan said they see no obvious signal that climate warming is causing the whole of Antarctica to break up, he added that there is little doubt that climate change is causing ice shelves to disappear in some parts of Antarctica at the moment.

“Around the Antarctic Peninsula, where we saw several decades of warming through the latter half of the 20th century, we have seen these ice shelves collapsing and ice loss increasing,” he said. “There are other parts of the Antarctica that which are losing ice to the oceans but those are affected less by atmospheric warming and more by ocean change.

Scientists said the loss of such a large piece is of interest because ice shelves along the peninsula play an important role in ‘buttressing’ glaciers that feed ice seaward, effectively slowing their flow.

“The interesting thing is what happens next, how the remaining ice shelf responds,” said Kelly Brunt, a glaciologist with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland in College Park. “Will the ice shelf weaken? Or possibly collapse, like its neighbors Larsen A and B? Will the glaciers behind the ice shelf accelerate and have a direct contribution to sea level rise? Or is this just a normal calving event?”

The U.S. National Ice Center will monitor the trajectory of the new iceberg, but they don’t expect it to travel far very fast, and it shouldn’t cause any immediate problems for navigation of ships.

See additional imagery and animations from Goddard Space Flight Center.

Sources and additional reading:
ESA, British Antarctic Survey, NASA.

Reused SpaceX Dragon Supply Ship Arrives Space Station, Cygnus Departs, Falcon 9 Launch & Landing: Photos/Videos

The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV
The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – The first ever reused Dragon supply ship successfully arrived at the International Space Station (ISS) two days after a thunderous liftoff from NASA’s Kennedy Space Center atop a SpaceX Falcon 9 rocket on Saturday, June 3. The first stage booster made a magnificent return to the Cape and erect ground landing some 8 minutes after liftoff.

Meanwhile the already berthed Orbital ATK Cygnus OA-7 supply ship departed the station on Sunday, June 4 after ground controllers detached it and maneuvered it into position for departure.

The commercial Dragon cargo freighter carrying nearly 3 tons of science and supplies for the multinational crew on the CRS-11 resupply mission reached the space stations vicinity Monday morning, June 5, after a two day orbital chase starting from the Kennedy Space Center and a flawless series of carefully choreographed thruster firings culminated in rendezvous.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, following a 48 hour delay due to a stormy weather scrub at the Florida Space Coast on Thursday, June 1.

The stunning Falcon 9 launch and landing events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

The Falcon 9 blastoff also counts as the 100th flight from KSC’s historic pad 39A which previously launched NASA’s Apollo astronauts on lunar landing missions and space shuttles for 3 decades

Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

By 8:30 a.m. Monday morning ground controllers had maneuvered Dragon to within 250 meters of the station and the imaginary keep out sphere around the orbiting complex.

Engineers carefully assessed the health of the Dragon and its systems to insure its ability to slowly and safely move in closer for capture by the crew.

When Dragon reached a distance of 11 meters, it was grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm Monday morning at 9:52 a.m. EDT, a few minutes ahead of schedule.

“Capture complete,” radioed Whitson as Dragon was captured at its grapple pin by the grappling snares at the terminus of the Canadarm2 robotic arm.

Dragon’s capture took place as the ISS was orbiting 250 miles over the South Atlantic Ocean as it was nearing the East coast of Argentina.

“Complete complete. Go for capture configuration,” replied Houston Mission control.

The newly arrived SpaceX Dragon CRS-11 resupply ship is installed to the Harmony module on June 5, 2017. The Progress 66 cargo craft is docked to the Pirs docking compartment and the Soyuz MS-04 crew vehicle is docked to the Poisk module. Credit: NASA

“We want to thank the entire team on the ground that made this possible, both in Hawthorne and in Houston. Really around the whole world, from support in Canada for this wonderful robotic arm, Kennedy Space Center’s launch support, to countless organizations which prepared the experiments and cargo,” Fischer radioed in response.

“These people have supplied us with a vast amount of science and supplies, really fuel for the engine of innovation we get to call home, the International Space Station. We have a new generation of vehicles now, led by commercial partners like SpaceX, as they build the infrastructure that will carry us into the future of exploration.”

“It’s also the first second mission to the ISS which was previously here as CRS-4. The last returned visitor was space shuttle Atlantis on the STS-135 mission,” Fischer said.

A little over two hours after it was captured by Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson, ground teams maneuvered the unpiloted SpaceX Dragon cargo craft for attachment to the Earth-facing port of the station’s Harmony module.

“Ground controllers at Mission Control, Houston reported that Dragon was bolted into place at 12:07 p.m. EDT as the station flew 258 statute miles over central Kazakhstan,” NASA reported.

The berthing of Dragon to Harmony was not broadcast live on NASA TV.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad and Cape Canaveral media viewing site – including an A/V compilation of sonic booms from the propulsive ground landing.

Video Caption: CRS-11 Launch from KSC Pad 39A with the first re-used Dragon capsule. SpaceX Falcon 9 launch of the CRS-11 mission to take supplies, equipment and experiments to the ISS, followed by the first stage landing at LZ-1 on the Cape Canaveral Air Force Station. Credit: Jeff Seibert

Video Caption: SpaceX Falcon 9/Dragon CRS 11 Launch 3 June 2017. Launch of SpaceX Falcon 9 on June 3, 2017 from pad 39A at the Kennedy Space Center, FL carrying 1st recycled Dragon supply ship bound for the International Space Station on the CRS-11 mission loaded with 3 tons of science and supplies – as seen in this remote video taken at the pad under cloudy afternoon skies. Credit: Ken Kremer/kenkremer.com

Video Caption: Sonic booms from the return of the CRS-11 booster to LZ-1 on June 3, 2017. Triple sonic booms signal the return of the Falcon 9 first stage to LZ-1 after launching the CRS-11 Dragon spacecraft to the ISS. Credit: Jeff Seibert

The gumdrop shaped 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The CRS-11 cargo ship will support over 62 of the 250 active research investigations and experiments being conducted by Expedition 52 and 53 crew members.

The flight delivered investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

40 new micestonauts are also aboard inside the rodent research habitat for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The therapy will also examine whether bone can be regenerated for the first time. No drug exists for bone regeneration.

The unpressurized trunk of the Dragon spacecraft also transported 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Blastoff of 1st recycled SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on June 3, 2017 delivering Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

NASA decided to use the SpaceX weather related launch delay to move up the departure of the “SS John Glenn” Cygnus cargo ship by over a month since it was already fully loaded and had completed its mission to deliver approximately 7,600 pounds of supplies and science experiments to the orbiting laboratory and its Expedition 51 and 52 crew members for Orbital ATK’s seventh NASA-contracted commercial resupply mission called OA-7.

Named after legendary Mercury and shuttle astronaut John Glenn – 1st American to orbit the Earth – the supply ship had spent 44 days at the station.

The “SS John Glenn” will now remain in orbit a week to conduct the third SAFFIRE fire experiment as well as deploy four small Nanoracks satellites before Orbital ATK flight controllers send commands June 11 to deorbit the spacecraft for its destructive reentry into the Earth’s atmosphere over the Pacific Ocean.

The Orbital ATK Cygnus cargo craft, with its prominent Ultra Flex solar arrays, is pictured moments after being released from the International Space Station on June 4, 2017 . Credit: NASA TV

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

……….

SpaceX Falcon 9 aloft carrying 1st reused Dragon on CRS-11 resupply flight to the International Space Station on June 3, 2017 from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek
Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek
Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com
3 June 2017 launch of SpaceX Falcon 9 on CRS-11 mission to the ISS – as seen from Port Orange, FL. Credit: Gerald DaBose
Landing of SpaceX Falcon 9 1st stage following launch of Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on June 3, 2017 to the ISS. Credit: Jean Wright
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com