It Should Be Easiest to Search for Young Earth-like Planets When They’re Completely Covered in Magma

Artist's impression of magma ocean planet. Credit: Mark Garlick

How did Earth evolve from an ocean of magma to the vibrant, life-supporting, blue jewel it is now? In its early years, the Earth was a blistering hot ball of magma. Now, 4.5 billion years later, it’s barely recognizable.

Is it possible to find exoplanets out there in the vast expanse, which are young molten globes much like young Earth was? How many of them can we expect to find? Where will we find them?

Continue reading “It Should Be Easiest to Search for Young Earth-like Planets When They’re Completely Covered in Magma”

Astronomers Have Found the Star/Exoplanet Combo That’s the Best Twin to the Sun/Earth

An artist's illustration of TOI 700d, an Earth-size exoplanet that TESS found in its star's habitable zone. Image Credit: NASA

At times, it seems like there’s an indundation of announcements featuring discoveries of “Earth-like” planets. And while those announcements are exciting, and scientifically noteworthy, there’s always a little question picking away at them: exactly how Earth-like are they, really?

After all, Earth is defined by its relationship with the Sun.

Continue reading “Astronomers Have Found the Star/Exoplanet Combo That’s the Best Twin to the Sun/Earth”

The Meteor Impact that Wiped Out the Dinosaurs Created a Vast Underground Hydrothermal System

A Three-dimensional cross-section of the hydrothermal system in the Chicxulub impact crater and its seafloor vents. The system has the potential for harboring microbial life. Illustration by Victor O. Leshyk for the Lunar and Planetary Institute.

The Chicxulub impact event was an enormous catastrophe that left a huge imprint on the Earth’s surface. Not only did it cause the mass extinction of the dinosaurs, it left a crater 180 km (112 miles) in diameter, and deposited a worldwide layer of concentrated iridium in the Earth’s crust.

But a new study shows that the impact also left its mark deep underground, in the form of a vast hydrothermal system that modified a massive chunk of the Earth’s crust.

Continue reading “The Meteor Impact that Wiped Out the Dinosaurs Created a Vast Underground Hydrothermal System”

The Coast of Antarctica is Starting to Turn Green

A bloom of green algae on the snow on Anchorage Island, Antarctica. Image Credit: Davey et al, 2020

The Antarctic Peninsula is the northernmost part of Antarctica, and has the mildest climate on the continent. In January, the warmest part of the year, the temperature averages 1 to 2 °C (34 to 36 °F). And it’s getting warmer.

Those warm temperatures allow snow algae to grow, and now scientists have used remote sensing to map those algae blooms.

Continue reading “The Coast of Antarctica is Starting to Turn Green”

Ocean Circulation Might Be the Key to Finding Habitable Exoplanets

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)
Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

We’ve found thousands and thousands of exoplanets now. And spacecraft like TESS will likely find thousands and thousands more of them. But most exoplanets are gassy giants, molten hell-holes, or frozen wastes. How can we find those needles-in-the-haystack habitable worlds that may be out there? How can we narrow our search?

Well, first of all, we need to find water. Oceans, preferably, since that’s where life began on Earth. And according to a new study, those oceans need to circulate in particular ways to support life.

Continue reading “Ocean Circulation Might Be the Key to Finding Habitable Exoplanets”

Magnetic north is migrating towards Siberia. Here’s why

This visualization depicts what a coronal mass ejection might look like like as it interacts with the interplanetary medium and magnetic forces. Credit: NASA / Steele Hill

The North Pole ain’t what it used to be. Well, the geographic North Pole stays fixed over time (mostly because we define it to stay fixed over time) but the magnetic north pole constantly moves. And over the past decade it’s been moving out of Canada towards Siberia four times faster than it has in the past couple centuries. Armed with data from the ESA’s Swarm satellite, scientists might finally know why: the shifting of our magnetic field north pole is caused by a titanic struggle between two competing massive magnetic plumes.

Continue reading “Magnetic north is migrating towards Siberia. Here’s why”

40 Years Ago, Mount St. Helens Blew its Top Off

Mt. St. Helens in May, 2020, in an image from the Operational Land Imager (OLI) on LandSat8. Image Credit: Joshua Stevens, Robert Simmon, and Jesse Allen, using Landsat data from the U.S. Geological Survey.

One day, my Grade Nine science class got way more interesting.

Suddenly, volcanoes weren’t just something in textbooks. Though I was in neighbouring British Columbia when Mt. St. Helens erupted, there was still a layer of ash on our cars and everything else. For a teenager with a burgeoning interest in science, it was awesome.

Continue reading “40 Years Ago, Mount St. Helens Blew its Top Off”

New Data Show How Phytoplankton Pumps Carbon Out of the Atmosphere at an Enormous Scale

One of the most fascinating things about planet Earth is the way that life shapes the Earth and the Earth shapes life. We only have to look back to the Great Oxygenation Event (GOE) of 2.4 billion years ago to see how lifeforms have shaped the Earth. In that event, phytoplanktons called cyanobacteria pumped the atmosphere with oxygen, extinguishing most life on Earth, and paving the way for the development of multicellular life.

Early Earth satisfied the initial conditions for life to appear, and now, lifeforms shape the atmosphere, the landscape, and the oceans in many different ways.

At the base of many of these changes is phytoplankton.

Continue reading “New Data Show How Phytoplankton Pumps Carbon Out of the Atmosphere at an Enormous Scale”

Anak Krakatau Erupted a Few Days Ago. Here’s What it Looked Like From Space

Plumes rise from Anak Krakatau on April 13th 2020 in this LandSat 8 OLI image. Image Credit: NASA Earth Observatory image by Lauren Dauphin, using Landsat data from the U.S. Geological Survey.

In between the Indonesian islands of Java and Sumatra lies the Sunda Strait. And in the Sunda Strait lies the much smaller island of Anak Krakatau, one of Earth’s active volcanoes. It’s erupted more than 50 times in the past 2,000 years, and now it’s doing it again.

Continue reading “Anak Krakatau Erupted a Few Days Ago. Here’s What it Looked Like From Space”

Venice From Space Looks Very Different This Year

The Venetian Lagoon is deserted during the Coronavirus pandemic shutdown. Image Credit: contains modified Copernicus Sentinel data (2019-20), processed by ESA, CC BY-SA 3.0 IGO

The Coronavirus shutdown has given us an unprecedented opportunity to look at our civilization a little differently. We all have our own ground-level view of life during this pandemic, but our satellites are giving us another look at this Earthly pause on a grand scale. The latest view comes from the European Space Agency’s Copernicus Sentinel-2 mission.

Continue reading “Venice From Space Looks Very Different This Year”