If Earth Had Saturn’s Rings, This is What it Would Look Like

A graphic depicting Earth and Saturn's rings to scale. Credit: John Brady/Astronomy Central.

We Earthlings love to dream, conjure and extrapolate. If you pose a question such as, “What if Earth had Saturn’s rings?” with all the resources available these days someone will not only answer the question but create some beautiful graphics to depict it! Yesterday, we saw this amazing graphic posted on reddit of a to-scale depiction of how Earth would look like with Saturn’s rings, and thanks to those who helped find the original source, the original image was created by John Brady at Astronomy Central. (We apologize… we originally credited the wrong person).

Of course, “What if Earth had Saturn’s rings?” is not a new question. In fact we’ve discussed it previously on Universe Today, and in 2013, illustrator and author Ron Miller put together some incredible visualizations of what Earth’s skies would look like with Saturn’s rings.

Also, last year someone on imgur put together a wonderful set of images of Earth with Saturn’s rings, as it would look from Earth’s Moon:

This video depicts rings around Earth, but the scale of the rings are not the size of Saturn’s:

Phil Plait discussed the problems that might arise for us if there were Earthrings, such as the rings would change the amount of sunlight reaching the Earth, and our view of the night sky would be hampered. And then Earth could potentially be shredded by ring debris.

Oh well, we can dream, can’t we?

See more great size comparisons of things in our Solar System and Universe at John Brady’s post on Astronomy Central, including a look at how many Earth’s would span across Saturn’s rings.

Elon Musk Releases Dramatic Imagery of Mostly Successful Falcon 9 1st Recovery Attempt, Hard Landing on Drone Ship

Rocket hits hard at ~45 deg angle, smashing legs and engine section. Credit: SpaceX/Elon Musk

Rocket hits hard at ~45 deg angle, smashing legs and engine section. Credit: SpaceX/Elon Musk
See video below[/caption]

Dramatic new photos and video of the daring and mostly successful attempt by Space X to land their Falcon 9 booster on an ocean-going “drone ship” were released this morning, Friday, Jan. 16, by SpaceX CEO and founder Elon Musk.

Musk posted the imagery online via his twitter account and they vividly show just how close his team came to achieving total success in history’s first attempt to land and recover a rocket on a tiny platform in the ocean.

Here’s the video: “Close, but no cigar. This time.”

The rocket landing and recovery attempt was a secondary objective of SpaceX, that immediately followed the spectacular nighttime blastoff of the Falcon 9 on Jan. 10 carrying the SpaceX Dragon cargo freighter spacecraft on a critical resupply mission for NASA bound for the space station.

The history making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a miniscule platform at sea using a rocket assisted descent by the first stage Merlin engines aided by steering fins.

The first stage rocket reached an altitude of over 100 miles after firing nine Merlins as planned for nearly three minutes. It had to be slowed from traveling at a velocity of about 2,900 mph (1300 m/s). The descent maneuver has been likened to someone balancing a rubber broomstick on their hand in the middle of a fierce wind storm.

The imagery shows the last moments of the descent as the rocket hits the edge of the drone ship at a 45 degree angle with its four landing legs extended and Merlin 1D engines firing.

Before impact, fins lose power and go hardover. Engines fights to restore, but … Credit: SpaceX/Elon Musk
Before impact, fins lose power and go hardover. Engines fights to restore, but … Credit: SpaceX/Elon Musk

Musk tweeted that the first stage Falcon 9 booster ran out of hydraulic fluid and thus hit the barge.

“Rocket hits hard at ~45 deg angle, smashing legs and engine section,” Musk explained today.

Lacking hydraulic fluid the boosters attached steering fins lost power just before impact.

“Before impact, fins lose power and go hardover. Engines fights to restore, but …,” Musk added.

Residual fuel and oxygen combine.  Credit: SpaceX/Elon MuskSpaceX/Elon Musk
Residual fuel and oxygen combine. Credit: SpaceX/Elon MuskSpaceX/Elon Musk

This ultimately caused the Falcon 9 to crash land as the legs and engine section were smashed and destroyed as the fuel and booster burst into flames. The ship survived no problem.

“Residual fuel and oxygen combine.”

“Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day!” said Musk.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted within hours after the launch and recovery attempt.

As I wrote on launch day here at Universe Today, despite making a ‘hard landing’ on the vessel dubbed the ‘autonomous spaceport drone ship,’ the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

Whereas virtually every other news outlet quickly declared the landing attempt a “Failure” in the headline, my assessment as a scientist and journalist was the complete opposite!!

In my opinion the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night (Jan. 11 UK time), discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

“Is it safe? Was SpaceX brave or foolhardy? Why is this significant? Will SpaceX succeed in the future?” the BBC host asked me.

I replied; “It was a 99% success” and more …..

“Am super proud of my crew for making huge strides towards reusability on this mission. You guys rock!” Musk declared in a later tweet.

SpaceX achieved virtually all of their objectives in the daunting feat except for a soft landing on the drone ship.

This was a bold experiment involving re-lighting one of the first stage Merlin 1D engines three times to act as a retro rocket to slow the stages descent and aim for the drone ship.

Four attached hypersonic grid fins and a trio of Merlin propulsive burns succeeded in slowing the booster from hypersonic velocity to subsonic and guiding it to the ship.

The drone ship measures only 300 feet by 170 feet. That’s tiny compared to the Atlantic Ocean.

The first stage was planned to make the soft landing by extending four landing legs to a width of about 70 feet to achieve an upright landing on the platform with a accuracy of 30 feet (10 meters).

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing, that could come as early as a few weeks on the launch of the DSCOVR mission in late January or early February.

“Upcoming flight already has 50% more hydraulic fluid, so should have plenty of margin for landing attempt next month.”

Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day! Credit: SpaceX/Elon Musk
Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day! Credit: SpaceX/Elon Musk

Musk’s daring vision is to recover, refurbish and reuse the first stage and dramatically reduce the high cost of access to space, by introducing airline like operational concepts.

It remains to be seen whether his vision of reusing rockets can be made economical. Most of the space shuttle systems were reused, except for the huge external fuel tanks, but it was not a cheap proposition.

But we must try to cut rocket launch costs if we hope to achieve routine and affordable access to the high frontier and expand humanity’s reach to the stars.

The Falcon 9 launch itself was a flawless success, blasting off at 4:47 a.m. EST on Jan. 10 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The Dragon CRS-5 spacecraft was loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, the CATS science payload, student research investigations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person crew serving aboard the ISS.

It successfully rendezvoused at the station on Jan. 12 after a two day orbital chase, delivering the critical cargo required to keep the station stocked and humming with science.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Having a Rough Winter? Here it is … From Space

The northeastern US and southeastern Canada, as seen from space on January 13, 2015. Image is from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. acquired top image on January 13, 2015.

Yes, its been a snowy, icy winter in parts of the US, Canada and Europe and these satellite images look about as miserable as it’s felt for some of us. And no, those aren’t icicles hanging off the coast of Maine and Nova Scotia; those are called ‘cloud streets,’ which are long parallel bands of cumulus clouds that form when cold air blows over warmer waters (like the ocean) and a warmer air layer (temperature inversion) rests over the top of both.

But don’t let the recent cold weather and snow fool you. The Earth as a whole continues to warm, and NASA and NOAA announced today that their analysis puts 2014 as Earth’s warmest year since 1880. 2014 was the 38th straight year with above average global annual temperatures, and December 2014 was the hottest December on record. Additionally, 6 of the 12 months last year set heat records. Even though you might feel cold right now, the last time there was a monthly average global temperatures that set a record for cold was in 1916.

OK, now back to the regularly scheduled feeling sorry for ourselves for the recent cold, snowy weather… see more satellite images below.

Winter storms brought snow and ice to a large portion of the U.S. Midwest and Northeast. NASA’s Aqua satellite acquired this image on January 10, 2015. Credit: NASA.
Winter storms brought snow and ice to a large portion of the U.S. Midwest and Northeast. NASA’s Aqua satellite acquired this image on January 10, 2015. Credit: NASA.
Snow and 'cloud streets' over the Black Sea on January 8, 2015. Image is from  the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. Credit: NASA.
Snow and ‘cloud streets’ over the Black Sea on January 8, 2015. Image is from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. Credit: NASA.

Here’s a video from NASA about the latest findings on Earth’s changing climate:

Sources: NASA Earth Observatory (US/Canada images), NASA Earth Observatory (Black Sea image), NASA, NOAA Find 2014 Warmest Year in Modern Record

Astronauts Safely Back inside US Space Station Segment after False Ammonia Leak Alarm

Astronauts Barry WiImore (foreground) and Terry Virts re-entered the U.S. segment wearing protective masks on Jan. 14, 2015. Credit: NASA TV

Nearly twelve hours after the threat of a leak of toxic ammonia forced the crew into a middle of the night evacuation from the US side of the International Space Station this morning (Jan. 14) and a hatch closure, top level managers from the partner space agencies gave the all clear and allowed the astronauts and cosmonauts to reopen access to the American portion of the orbiting outpost.

The six person crew hailing from the US, Italy and Russia were allowed to open the sealed hatch to the U.S. segment later this afternoon after it was determined that the ammonia leak was quite fortunately a false alarm.

No ammonia leak was actually detected. But the crew and mission control had to shut down some non essential station systems on the US segment in the interim.

All the Expedition 42 crew members were safe and in good health and never in danger, reported NASA.

The station crews and mission control teams must constantly be prepared and train for the unexpected and how to deal with potential emergencies, such as today’s threat of a serious chemical leak.

After a thorough review of the situation by the International Space Station mission management team, the crew were given the OK by flight controllers to head back.

They returned inside at 3:05 p.m. EST. Taking no chances, they wore protective masks and sampled the cabin atmosphere and reported no indications of any ammonia.

Fears that a leak had been detected resulted from the sounding of an alarm at around 4 a.m. EST.

The alarm forced Expedition 42 station commander Barry Wilmore and Flight Engineer Terry Virts of NASA and Flight Engineer Samantha Cristoforetti of the European Space Agency to don protective gas masks and move quickly into the Russian segment, sealing the hatch behind them to the US segment.

Inside the Russian segment, they joined the remainder of Expedition 42, namely cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia, also living and working aboard the ISS and rounding out the crew of four men and two women.

he International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA
The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. US segment on top in this view. Credit: NASA

“The alarm is part of the environmental systems software on the station designed to monitor the cabin’s atmosphere. At the same time, the station’s protection software shut down one of two redundant cooling loops (Thermal Control System Loop B),” NASA said in an update.

Ammonia is a toxic substance used as a coolant in the stations complex cooling system that is an essential requirement to continued operation of the station.

Ammonia is a gas at room temperature that is extremely dangerous to inhale or when it comes in contact with skin, eyes and internal organs.

Precautions must be taken if a leak is feared in a confined space such as the ISS. It has about the same habitable volume as a four bedroom house.

As a professional chemist, I’ve worked frequently with ammonia in research and development labs and manufacturing plants and know the dangers firsthand. It can cause severe burns and irritations and worse.

There have been prior ammonia leaks aboard the ISS facility that forced a partial evacuation similar to today’s incident.

The ISS has been continuously occupied by humans for 15 years.

In the case of a life threatening emergency, the crew can rapidly abandon the station aboard the two docked Russian Soyuz capsules. They hold three persons each and serve as lifeboats.

Fortunately, the perceived ammonia leak this morning was not real and apparently was caused by a false alarm.

“This morning’s alarm is suspected to have been caused by a transient error message in one of the station’s computer relay systems, called a multiplexer-demultiplexer. A subsequent action to turn that relay box off and back on cleared the error message and the relay box is reported by flight controllers to be in good operating condition,” according to a NASA statement.

“Meanwhile, flight controllers are continuing to analyze data in an effort to determine what triggered the alarm that set today’s actions in motion.”

“Work to reactivate cooling loop B on the station will continue throughout the night and into the day Thursday. The crew members are expected to resume a normal complement of research activities on Thursday as well.”

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
This view shows the US side of the ISS that was evacuated today, Jan. 14, 2015, by the crew due to possible ammonia leak. The SpaceX CRS-5 Dragon is attached to the Harmony module. Credit: NASA TV

The evacuation came just two days after a commercial SpaceX Dragon cargo freighter successfully rendezvoused and berthed at the station on Monday, Jan. 12.

The crew had just opened the hatch to Dragon and begun unloading the goodies stored aboard.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

Ammonia Leak Alarm on the ISS Forces Evacuation of US Side, Crew Safe

The International Space Station seen by a departing space shuttle in 2009. Credit: NASA

Breaking News: A possible ammonia leak aboard the US side of the International Space Station (ISS) has forced a partial evacuation of the entire crew to the Russian side earlier this morning, Wednesday, Jan. 14.

All six crew members from the US, Italy and Russia are safe and in good shape at this time, says NASA and Roscosmos, the Russian Federal Space Agency.

Hatches between the US and Russian segments were sealed shut, pending further analysis.

Read my late day update – here.

Mission controllers are in the process of assessing whether it’s a real leak or a false alarm due to a faulty sensor or a computer problem. It’s not completely clear at this time.

The latest indications at 11 a.m. EST, Jan. 14, are that it may be a false alarm, says NASA.

“The security of a crew was guaranteed thanks to correct actions of the cosmonauts, astronauts and the crew of the Mission control centres in Moscow and Houston. Further plan of actions in the US modules must be prepared in Houston,” according to Roscosmos.

“For now NASA colleagues are analyzing situation”, – noted the head of Russian Mission Control Centre Maxim Matushin

Ammonia is a toxic substance used as a coolant in the stations complex cooling system that is an essential requirement to continued operation of the station.

There have been prior ammonia leaks aboard the ISS facility.

NASA announced that an alarm sounded in the US segment at about 4 a.m. EST. indicating a possible ammonia leak. As a result, all six Expedition 42 astronauts and cosmonauts evacuated the US segment.

“Flight controllers in Mission Control at NASA’s Johnson Space Center in Houston saw an increase in pressure in the station’s water loop for thermal control system B then later saw a cabin pressure increase that could be indicative of an ammonia leak in the worst case scenario,” according to a NASA announcement.

Therefore as a precaution after the alarm sounded earlier today, the crew was directed to isolate themselves in the Russian segment this morning while teams are evaluating the situation. The crew powered down non-essential equipment in the U.S. segment of the station according to established procedures, said NASA.

“In an exchange at 7:02 a.m. with Expedition 42 Commander Barry Wilmore of NASA, spacecraft communicator James Kelly said flight controllers were analyzing their data but said it is not yet known if the alarm was actually triggered by a leak or whether the situation was caused by a faulty sensor or by a problem in a computer relay box that sends data and commands to various systems on the station.”

The evacuation comes just two days after a commercial SpaceX Dragon cargo freighter successfully rendezvoused and berthed at the station on Monday, Jan. 11.

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
This view shows the US side of the ISS that was evacuated today, Jan. 14, 2015, by the crew due to possible ammonia leak. The SpaceX CRS-5 Dragon is attached to the Harmony module. Credit: NASA TV

The ISS has been continuously occupied by humans for 15 years.

The current six person crew includes astronauts and cosmonauts from three nations; America, Russia and Italy including four men and two women serving aboard the massive orbiting lab complex.

They comprise Expedition 42 Commander Barry “Butch” Wilmore and Terry Virts from NASA, Samantha Cristoforetti from the European Space Agency (ESA) and cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

In the case of a life threatening emergency, the crew can rapidly abandon the station aboard the two docked Russian Soyuz capsules. They hold three persons each.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Dragon Captured at Station Loaded with Critical Supplies and Science

The Canadarm2 has the SpaceX Dragon in its grips on Jan 12, 2015. Credit: NASA TV

The commercial SpaceX cargo Dragon, loaded with over 2.6 tons of critically needed supplies and science experiments, was captured by the crew aboard the International Space Station (ISS) this morning (Jan. 12) while soaring over the Mediterranean Sea.

The SpaceX Dragon CRS-5 cargo vessel arrived at the station following a flawless two day orbital pursuit and spectacular nighttime blastoff atop the SpaceX Falcon 9 on Jan. 10 at 4:47 a.m. EST from Cape Canaveral Air Force Station in Florida.

Note: This breaking news story is being updated. Check back frequently for updates.

Dragon was successfully berthed and bolted into place a few hours later at 8:54 a.m. EST.

Working at the robotics work station inside the seven windowed domed cupola, Expedition 42 Commander Barry “Butch” Wilmore of NASA, with the assistance of Flight Engineer Samantha Cristoforetti of the European Space Agency, successfully captured the Dragon spacecraft with the station’s Canadian-built robotic arm at 5:54 a.m. EST.

Wilmore grappled Dragon with the station’s 57-foot-long (17-meter-long) robotic arm at 5:54 a.m. EST, about 18 minutes ahead of schedule, in an operation shown live on NASA TV, back-dropped by breathtaking views of “our beautiful Earth” passing by some 260 miles (410 kilometers) below.

Among the goodies aboard are belated Christmas presents for the crew. The Falcon 9 and Dragon were originally scheduled to liftoff in December and arrive in time for the Christmas festivities.

The cargo freighter flew beneath the station to arrive at the capture point 32 feet (10 meters) away. Dragon’s thrusters were disabled at the time of grappling.

Robotics officers at Houston Mission Control then began remotely maneuvering the arm to berth Dragon at the Earth-facing port on the station’s Harmony module starting at 7:45 a.m. EST.

Dragon is being attached via the common berthing mechanism (CBM) using four gangs of four bolts apiece to accomplish a hard mate to Harmony. The overall grappling and berthing process requires a few hours.

Dragon was successfully berthed and bolted into place at 8:54 a.m. EST and its now part of the space station.

The crew will conduct leak pressure checks, remove the docking mechanism and open the hatch later today or tomorrow.

#Dragon is about 90 feet from #ISS, closing in on its capture point.  Credit: NASA TV
#Dragon is about 90 feet from #ISS, closing in on its capture point. Credit: NASA TV

CRS-5 marks the company’s fifth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

Overall this is the sixth Dragon to arrive at the ISS.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere that directly impact the global climate.

CATS is loaded aboard the unpressurized trunk of Dragon.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education, which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS which exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed, hopefully by late 2015, on an alternate rocket, the Atlas V.

SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, carrying the Dragon resupply spacecraft to the International Space Station.   Credit: John Studwell/AmericaSpace
SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL, carrying the Dragon resupply spacecraft to the International Space Station. Credit: John Studwell/AmericaSpace

Dragon will remain attached to the ISS for about four weeks until Feb. 10.

SpaceX also had a secondary objective of recovering the Falcon 9 booster’s first stage via an unprecedented precision guided landing on an ocean-going “drone.”

The history making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

In my opinion the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV

SpaceX Successfully Launches Cargo Ship to Station and Hard Lands Rocket on “Drone Ship”

The SpaceX Falcon 9 rocket is thundering away from Cape Canaveral Air Force Station on its way to a Monday-morning rendezvous with the International Space Station. The booster’s nine Merlin engines are generating 1.3 million pounds of thrust as the vehicle begins its climb to orbit. Credit: NASA

SpaceX successfully launched their commercial Falcon 9 rocket and Dragon cargo ship on a critical mission for NASA bound for the space station this morning, Jan. 10, while simultaneously accomplishing a hard landing of the boosters first stage on an ocean-floating “drone ship” platform in a very good first step towards the bold company goal of recovery and re-usability in the future.

The spectacular night time launch of the private SpaceX Falcon 9 rocket lit up the skies all around the Florida Space Coast and beyond following a flawless on time liftoff at 4:47 a.m. EST from Cape Canaveral Air Force Station.

The nine Merlin 1D engines of the 208 foot-tall Falcon 9 generated 1.3 million pounds of liftoff thrust as the rocket climbed to orbit on the first SpaceX launch of 2015.

The Dragon CRS-5 mission is on its way to a Monday-morning rendezvous with the International Space Station (ISS).

It is loaded with more than two tons of supplies and NASA science investigations for the six person crew aboard the massive orbiting outpost.

A secondary goal of SpaceX was to conduct a history-making attempt at recovering the 14 story tall Falcon 9 first stage via a precision landing on an ocean-going landing platform known as the “autonomous spaceport drone ship.”

SpaceX CEO Elon Musk quickly tweeted that good progress was made, and as expected, more work needs to be done.

This was an experiment involving re-lighting one of the first stage Merlin engines three times to act as a retro rocket to slow the stages descent and aim for the drone ship.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted soon after the launch and recovery attempt.

“Ship itself is fine. Some of the support equipment on the deck will need to be replaced…”

“Didn’t get good landing/impact video. Pitch dark and foggy. Will piece it together from telemetry and … actual pieces.”

Musk’s daring vision is to recover, refurbish and reuse the first stage and dramatically reduce the high cost of access to space, by introducing airline like operational concepts.

The ‘autonomous spaceport drone ship’ was positioned some 200 to 250 miles offshore of the launch site in the Atlantic Ocean along the rockets flight path, flying along the US Northeast coast to match that of the ISS.

The autonomous spaceport drone ship measure only 300 by 100 feet, with wings that extend its width to 170 feet. That’s tiny compared to the Atlantic Ocean.

Therefore the SpaceX team was successful in accomplishing a rocket assisted descent and pinpoint landing in the middle of a vast ocean, albeit not as slow as hoped.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing.

SpaceX rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station carrying the Dragon resupply spacecraft to the International Space Station.   Credit: NASA/Jim Grossmann
SpaceX rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station carrying the Dragon resupply spacecraft to the International Space Station. Credit: NASA/Jim Grossmann

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

“We are delighted to kick off 2015 with our first commercial cargo launch of the year,” said NASA Administrator Charles Bolden in a statement.

“Thanks to our private sector partners, we’ve returned space station resupply launches to U.S. soil and are poised to do the same with the transport of our astronauts in the very near future.”

“Today’s launch not only resupplies the station, but also delivers important science experiments and increases the station’s unique capabilities as a platform for Earth science with delivery of the Cloud-Aerosol Transport System, or CATS instrument. I congratulate the SpaceX and NASA teams who have made today’s success possible. We look forward to extending our efforts in commercial space to include commercial crew by 2017 and to more significant milestones this year on our journey to Mars.”

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Launch and Historic Landing Attempt Reset to Jan. 10

Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

The oft delayed launch of the SpaceX Falcon 9 rocket on the CRS-5 cargo resupply mission for NASA to the International Space Station (ISS) has been reset to Saturday, Jan. 10.

Liftoff is currently targeted for 4:47 a.m. EST Saturday, Jan. 10, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida following a postponement from Friday, Jan. 9.

The launch was unexpectedly scrubbed with one minute, 21 seconds left on the countdown clock for technical reasons earlier this week just prior to the targeted blastoff time of 6:20 a.m. EST on Tuesday, Jan. 6.

A thrust vector control actuator for the Falcon 9’s second stage failed to perform as expected, resulting in a launch abort, said NASA.

NASA and SpaceX decided to take another day to fully evaluate the issue and ensure a launch success.

The launch will be the first Falcon 9 liftoff for 2015.

The overnight launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Tuesday, Jan. 13.

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing.  Credit: Elon Musk/SpaceX
SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Overall, CRS-5 is the company’s fifth commercial resupply services mission to the International Space Station.

In additional to being a critical cargo mission required to keep the space station stocked with provisions for the crew and research experiments, the mission features a history making attempt to recover the first stage of the Falcon 9 rocket.

The rocket recovery and landing attempt is a key step towards carrying out SpaceX CEO Elon Musk’s bold vision of rocket reusability.

Towards that end, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the precision landing of his firm’s Falcon 9 rocket after it concludes its launch phase to the ISS.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, Jan. 3, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

However, the absolute overriding goal of the mission is to safely deliver NASA’s contracted cargo to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing on Jan. 5 at the Kennedy Space Center.

Landing on the off-shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5.   Science experiments from these students representing 18 school communities across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5.  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops – Experiments Will Refly on SpaceX CRS 5. Science experiments from these students, representing 18 school communities across America, were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares’ launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

They had been selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS, but were all lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The experiments have been reconstituted to fly on the CRS-5 mission.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The weather forecast stands at 80% GO for favorable conditions at launch time.

NASA Television live launch coverage begins at 3:30 a.m. EST on Jan. 10 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Robots Exploring Alien Volcanoes? NASA Lab Hopes To Get There One Day

Olympus Mons from Orbit
Olympus Mons from orbit. Credit: NASA

We’ve seen volcanoes or geysers erupting on the moons of Io and Enceladus. Volcanic remnants remain on Mars and the Moon. But it’s tough for rovers to get inside these challenging environments.

So NASA’s Jet Propulsion Laboratory is trying out a new robot here on Earth to one day, they hope, get inside volcanoes elsewhere in the Solar System.

The series is called VolcanoBot. The first prototype was tested last year inside the the active Kilauea volcano in Hawaii, and a second is set for further work later this year.

As you can see in the picture below, VolcanoBot has a set of small wheels and a host of electronics inside. The goal is to create 3-D maps of the environments in which they roam. And early results are showing some promise, NASA noted in a press release: VolcanoBot discovered the fissure it was exploring did not completely close up, which is something they did not expect.

The Jet Propulsion Laboratory's VolcanoBot 1 inside a lava tube at the Kilauea volcano in Hawaii. Credit: NASA/JPL-Caltech
The Jet Propulsion Laboratory’s VolcanoBot 1 inside a lava tube at the Kilauea volcano in Hawaii. Credit: NASA/JPL-Caltech

“We don’t know exactly how volcanoes erupt. We have models but they are all very, very simplified. This project aims to help make those models more realistic,” stated Carolyn Parcheta, a NASA postdoctoral fellow at the Jet Propulsion Laboratory in California who is leading the research.

“In order to eventually understand how to predict eruptions and conduct hazard assessments, we need to understand how the magma is coming out of the ground,” she added. “This is the first time we have been able to measure it directly, from the inside, to centimeter-scale accuracy.”

The research will continue this year with VolcanoBot 2, which has less mass, less size and has an advanced “vison center” that can turn about.

Artist's impression of the Cassini spacecraft making a close pass by Saturn's inner moon Enceladus to study plumes from geysers that erupt from giant fissures in the moon's southern polar region. Copyright 2008 Karl Kofoed/NASA. Click for full size version.
Artist’s impression of the Cassini spacecraft making a close pass by Saturn’s inner moon Enceladus to study plumes from geysers that erupt from giant fissures in the moon’s southern polar region. Copyright 2008 Karl Kofoed/NASA. Click for full size version.

Parcheta’s research recently attracted the attention of visitors to National Geographic’s website, who voted her #2 in a list of “great explorers” on the Expedition Granted campaign.

Remember that this is early-stage research, with no missions outside of Earth yet assigned. But this is a small step — or roll, in this case — to better understanding how volcanoes work generally, whether on our own planet or other locations.

Source: Jet Propulsion Laboratory

Drone Ship at Sea Preparing for Bold SpaceX Rocket Recovery Landing Attempt

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Aiming to one day radically change the future of the rocket business, SpaceX CEO Elon Musk has a bold vision unlike any other in a historic attempt to recover and reuse rockets set for Jan. 6 with the goal of dramatically reducing the enormous costs of launching anything into space.

Towards the bold vision of rocket reusability, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the first stage of his firm’s Falcon 9 rocket after it concludes its launch phase to the International Space Station (ISS).

“Drone spaceport ship heads to its hold position in the Atlantic to prepare for a rocket landing,” tweeted Musk today (Jan. 5) along with a photo of the drone ship underway (see above).

The history making and daring experimental landing is planned to take place in connection with the Tuesday, Jan. 6, liftoff of the Falcon 9 booster and Dragon cargo freighter bound for the ISS on a critical resupply mission for NASA.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida.  Credit: SpaceX
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for January 6, 2015, from Cape Canaveral, Florida. Credit: SpaceX

The SpaceX Dragon CRS-5 mission is slated to blast off at 6:20 am EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Falcon 9 and Dragon have gone vertical in advance of the 6:20am ET launch on Jan. 6, 2015. Credit: SpaceX.
Falcon 9 and Dragon have gone vertical in advance of the 6:20 am ET launch on Jan. 6, 2015. Credit: SpaceX.

The absolute overriding goal of the mission is to safely deliver NASA’s contracted payload to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today (Jan. 5) at the Kennedy Space Center. Landing on the off shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Koenigsmann estimated the odds of success at the landing attempt at about 50% at best according to an estimate from Musk himself.

“It’s an experiment. There’s a certain likelihood that this will not work out right, that something will go wrong.”

The two stage Falcon 9 and Dragon stands 207.8 feet (63.3 meters) tall and is 12 feet in diameter. The first stage is powered by nine Merlin 1D engines that generate 1.3 million pounds of thrust at sea level and rises to 1.5 million pounds of thrust as the Falcon 9 climbs out of the atmosphere, according to a SpaceX fact sheet.

The first stage Merlins will fire for three minutes until the planned engine shutdown and main engine cutoff known as MECO, said Koenigsmann.

The rocket will be in space at an altitude of over 100 miles zooming upwards at 1300 m/s (nearly 1 mi/s).

Then, a single Merlin 1D will be commanded to re-fire for three separate times to stabilize and lower the rocket during the barge landing attempt.

Four hypersonic grid fins had been added to the first stage and placed in an X-wing configuration. They will be deployed only during the reentry attempt and will be used to roll, pitch, and yaw the rocket in concert with gamboling of the engines.

It will take about nine minutes from launch until the first stage reaches the barge, said Koenigsmann. That’s about the same time it takes for Dragon to reach orbit.

He added that, depending on the internet connectivity, SpaceX may or may not know the outcome in real time.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

Here’s a description from SpaceX:

“To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn—the boostback burn—adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle’s speed from 1300 m/s to about 250 m/s. The final burn is the landing burn, during which the legs deploy and the vehicle’s speed is further.”

“To complicate matters further, the landing site is limited in size and not entirely stationary. The autonomous spaceport drone ship is 300 by 100 feet, with wings that extend its width to 170 feet. While that may sound huge at first, to a Falcon 9 first stage coming from space, it seems very small. The legspan of the Falcon 9 first stage is about 70 feet and while the ship is equipped with powerful thrusters to help it stay in place, it is not actually anchored, so finding the bullseye becomes particularly tricky. During previous attempts, we could only expect a landing accuracy of within 10km. For this attempt, we’re targeting a landing accuracy of within 10 meters.”

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO, Elon Musk, briefs reporters, including Universe Today, in Cocoa Beach, FL, prior to a previous SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The cargo delivery is the entire point of the CRS-5 mission.

The official CRS-5 Mission Patch
The official CRS-5 Mission Patch

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, Antares launches are on hold.

Therefore the US supply train to the ISS is now wholly dependent on SpaceX.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com