Why People Resist the Notion of Climate Change

Image Credit: NASA

One of the most striking features of the climate change ‘debate’ is that it’s no longer a debate. Climate scientists around the world agree that climate change is very real — the Earth is warming up and we are the cause.

Yet while there is consensus even among the most reserved climate scientists, a portion of the public persistently disagrees. A recent Pew Research Center — an organization that provides information on demographic trends across the U.S. and the world — survey found that roughly four-in-ten Americans see climate change as a global threat. Climate scientists are racking their brains in an attempt to find out why.

Yale law professor Dan Kahan has done extensive research which reveals how our deep-rooted cultural dispositions might interfere with our perceptions of reality.

Why We Resist Climate Change

In 2010 Kahan led a study, “Cultural Cognition of Scientific Consensus,” which found that individuals tend to weigh evidence and credit experts differently based on cultural considerations. Psychological mechanisms allow individuals to selectively credit or dismiss evidence and experts, depending on whether the views presented match the dominant view of their group.

“There is an interdependence between people’s prior beliefs about risk and their exposure to and understanding of information,” Kahan told Universe Today. “People are motivated to search out information in a biased way. They look more for information that is consistent with their views than for information that is going to refute their views.”

Kahan’s study was administered online to 1,500 U.S. adults. Preliminary analyses wanted to determine if the public thought there was a scientific consensus regarding climate change and if there was a scientific consensus regarding human activity as the cause.

A majority — 55 percent — of the subjects reported their opinion that most scientists agree that global temperatures are rising, 12 percent believed most scientists do not find that global temperatures are rising, and 33 percent believed that scientists are divided on the topic. On whether or not human activity is the cause, 45 percent believed scientists agree that human activity is the cause, 15 percent believed scientists don’t think human activity is the cause, and 40 percent believed scientists are divided on the topic.

The public is generally not in a position to investigate the data for themselves or even read a scientific paper full of unfamiliar acronyms, plots and equations. Instead they turn to experts for assistance. Often times in determining who is credible, individuals will trust those who share similar world views and personal values. They tend to seek information congenial to their cultural predispositions.

For Kahan’s first experiment, the subjects read the biographical information of an expert scientist. They had to decide whether he was credible, having earned a Ph.D. from an elite university and now serving as a faculty member of another elite university. Those who listed themselves as hierarchical — believing in stratified social roles (generally conservatives) —  were more likely to find the expert scientist credible, while those who listed themselves as communitarian — expecting individuals to secure their own well-being (generally liberals) — were more likely to find the expert scientist not credible.

These fictional individuals were identified as credible or not based on their biographies only.
These fictional individuals were identified as credible or not based on their biographies only. Credit: Kahan et al. 2010

However, a second experiment showed the subjects not only the resume of the expert scientist but his position as well. Half the subjects were shown evidence that the expert believed in climate change, placing us at a high risk, while the other half of the subjects were shown evidence that the expert didn’t believe in climate change, placing us at a low risk.

The position imputed by the expert scientist dramatically affected the responses of the subjects. When the expert scientist supported a high risk position, 23 percent of the hierarchs and 88 percent of the communitarians found him credible. In contrast, when the expert scientist supported a low risk position, 86 percent of the hierarchs and 47 percent of the communitarians found him credible.

Whether the expert scientist was considered credible was highly associated with whether he took the position dominant in the subject’s cultural group. The subjects “have dispositions that are connected to their values that then will affect how they make sense of information,” Kahan said.

Image Credit: Kahan et al. 2010
The percentage of subjects who found the author credible depending on whether he supported a high risk (climate change is real) or low risk (climate change is not real) position. Credit: Kahan et al. 2010

At the end of the day the conclusion is simple: we’re human.  And this leads us to take the path of least resistance: we choose to believe in what those around us believe.

So it’s not that people aren’t sufficiently rational. “They’re too rational,” Kahan said. “They’re too good at extracting from the information you’re giving them, which sends the message that tells them what position they should take given the kind of person they are.”

Moving Forward

Kahan’s study shows that scientific consensus alone will not sway the public. The public will remain polarized despite efforts to increase trust in scientists or simply awareness of scientific research. Instead the key is to use science communication strategies, which reduce the likelihood the public will find climate change threatening.

In a more recent study, published in Nature, Kahan analyzed two techniques of science communication that may help break the connection between cultural predispositions and the evaluation of information.

The first technique is to frame the information in a manner that doesn’t threaten people’s values. In this study, Kahan and his colleagues asked participants to once again assess the credibility of climate change. But before doing so the subjects had to read an article.

One article was a study suggesting that carbon dissipates from the atmosphere much slower than scientists had previously thought. As a result, if we stopped producing carbon today, there would still be catastrophic effects: rising sea level, drought, hurricanes, etc. Another article (shown to a different group) gave information on geo-engineering or nuclear power — potential technological advances that may help reduce the effects of climate change. A final control group read an unrelated article on traffic lights.

Logically all of these articles had nothing to do with whether climate change is valid. But psychologically these articles did determine the meaning that people attached to the evidence of climate change. In all cases the hierarchs were less likely than the communitarians to say climate change is valid. But the gap was 29 percent smaller among the group that was first exposed to geo-engineering than the group that was exposed to regulating carbon.

“The evidence of whether there is a problem doesn’t depend on what you’re going to do about it,” Kahan said. “But psychologically it can make a difference.”

People tend to resist scientific evidence that may lead to restrictions on their personal activities, or evidence that threatens them as individuals  But if they are presented with information in a way that upholds their identities, they react with an open mind.

The second technique is to ensure that climate change is vouched for by a diverse set of experts. If a particular group is able to identify with that expert, then that group will be more open-minded in addressing the study. This will help reduce the initial polarization between hierarchs and communitarians.

Kahan argues that science “needs better marketing.” It needs to combine climate change with meanings that are affirming rather than threatening to people. When groups can identify with the expert, or are presented with possible solutions to climate change, the individuals in that group will stop attaching the issues to identity.

According to Kahan, in order to move forward, science communication needs to change the narrative. It needs to mitigate the connection between climate change and the individual. In order for there to be a public consensus on climate change it has to be presented in a less threatening manner.

This doesn’t mean that science communication has to avoid the nasty truth about climate change in order to finally reach a public consensus. Instead it has to spin climate change in a positive way — a way that is less threatening to the individual.

Science communication has to focus the public’s attention on what so many individuals value: efficiency, not being wasteful, innovation and moving forward. Only then will the public reach a consensus where there is now only polarization.

You are Here! Curiosity’s 1st Photo of Home Planet Earth from Mars

You are here! As an Evening Star in the Martian Sky. This evening-sky view taken by NASA's Mars rover Curiosity shows the Earth and Earth's moon as seen on Jan. 31, 2014, or Sol 529 shortly after sunset at the Dingo Gap inside Gale Crater. Credit: NASA/JPL-Caltech/MSSS/TAMU

You are here! – As an Evening Star in the Martian Sky
This evening-sky view taken by NASA’s Mars rover Curiosity shows the Earth and Earth’s moon as seen on Jan. 31, 2014, or Sol 529 shortly after sunset at the Dingo Gap inside Gale Crater.
Credit: NASA/JPL-Caltech/MSSS/TAMU
See more imagery of the Earth and Moon below!
Story updated[/caption]

18 months into her mission to discover a habitable zone on the Red Planet, NASA’s Curiosity rover has at last looked back to the inhabited zone of all humanity and snapped her 1st image of all 7 Billion Earthlings living on the Home Planet.

“Look Back in Wonder… My first picture of Earth from the surface of Mars,” tweeted Curiosity today.

You are there! See yourselves in the spectacular imagery from the Red Planet’s surface at the ‘Dingo Gap’ inside Gale Crater – above and below.

Car sized Curiosity captured the evocative image of Earth as an evening star in the Martian sky just days ago on Jan. 31, 2014, or Sol 529, some 80 minutes after sunset.

And what’s more is that the evening sky view even includes the Earth’s Moon!

Annotated evening-sky view taken by NASA's Mars rover Curiosity shows the  Earth and Earth's moon - enlarged in inset - as seen on Jan. 31, 2014, or Sol 529 shortly after sunset at the Dingo Gap sand dune.  Credit: NASA/JPL-Caltech/MSSS/TAMU
Annotated evening-sky view taken by NASA’s Mars rover Curiosity shows the Earth and Earth’s moon – enlarged in inset – as seen on Jan. 31, 2014, or Sol 529 shortly after sunset at the Dingo Gap sand dune. Credit: NASA/JPL-Caltech/MSSS/TAMU

Earth shines brilliantly as the brightest beacon in the Martian twilight sky view taken from the 1 ton rovers current location at the edge of a sand dune dubbed the ‘Dingo Gap.’

“A human observer with normal vision, if standing on Mars, could easily see Earth and the moon as two distinct, bright “evening stars,” said NASA in a statement issued today.

Curiosity’s View Past Tall Dune at edge of ‘Dingo Gap’  This photomosaic from Curiosity’s Navigation Camera (Navcam) taken at the edge of the entrance to the Dingo Gap shows a 3 foot (1 meter) tall dune and valley terrain beyond to the west, all dramatically back dropped by eroded rim of Gale Crater. View from the rover’s current position on Sol 528 (Jan. 30, 2014). The rover team may decide soon whether Curiosity will bridge the dune gap as a smoother path to next science destination. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer- kenkremer.com
1st Curiosity Snapshot of Earth taken from here –
Curiosity’s View Past Tall Dune at edge of ‘Dingo Gap’ sand dune
This photomosaic from Curiosity’s Navigation Camera (Navcam) taken at the edge of the entrance to the Dingo Gap shows a 3 foot (1 meter) tall dune and valley terrain beyond to the west, all dramatically back dropped by eroded rim of Gale Crater. View from the rover’s current position on Sol 528 (Jan. 30, 2014). The rover team may decide soon whether Curiosity will bridge the dune gap as a smoother path to next science destination.
Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer- kenkremer.com

Curiosity used both of her high resolution mast mounted color cameras to collect a series of Earth/Moon images flittering across the Martian sky.

The Earth and the Moon in this evening-sky view taken by Curiosity’s telephoto Mastcam right -eye camera  on Jan. 31, 2014, or Sol 529 shortly after sunset at the Dingo Gap. Moon’s brightness was enhanced to aid visibility. Credit: NASA/JPL-Caltech/MSSS/TAMU
The Earth and the Moon in this evening-sky view taken by Curiosity’s telephoto Mastcam right -eye camera on Jan. 31, 2014, or Sol 529 shortly after sunset at the Dingo Gap. Moon’s brightness was enhanced to aid visibility. Credit: NASA/JPL-Caltech/MSSS/TAMU

Processing has removed the numerous cosmic ray strikes – see raw image below.

Right now Curiosity’s handlers are pondering whether to climb over the 1 meter tall sand dune and cross into the smooth terrain of the valley beyond the ‘Dingo Gap’ – as an alternate path to minimize damaging encounters with sharp edged Martian rocks that are puncturing holes and ripping tears into the robots six wheels.

To be clear, these are not the first images of the Earth from Mars orbit or Mars surface.

NASA’s Mars Exploration Rover Spirit imaged Earth from the surface in March 2004, soon after landing in Gusev Crater in January 2004.

Two of NASA’s other Red Planet explorers also imaged Earth; Mars Global Surveyor in 2003 and Mars Reconnaissance Orbiter in 2007.

More recently, NASA’s Cassini orbiter at Saturn spied the Earth and Moon during the Wave at Saturn event in July 2013 from a distance of 898 million miles (1.44 billion kilometers).

And still more images of the Earth from NASA’s Mariner 10 and Juno Jupiter orbiter in my recent planetary exploration story – here

The most famous and distant of all is the ‘Pale Blue Dot’ image of Earth taken by NASA’s Voyager 1 probe in 1990 from about 6 billion kilometers (3.7 billion miles) away.

Meanwhile, NASA’s sister rover Opportunity is exploring clay mineral outcrops by the summit of Solander Point on the opposite side of Mars at the start of her 2nd Decade investigating the Red Planet’s mysteries.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

Curiosity Mastcam raw image showing the Earth in the Martian twilight sky on Jan. 31, 2014 above Gale crater rim amidst numerous cosmic ray strikes. Credit: NASA/JPL-Caltech/MSSS
Curiosity Mastcam raw image showing the Earth in the Martian twilight sky on Jan. 31, 2014 amidst numerous cosmic ray strikes. . Credit: NASA/JPL-Caltech/MSSS
Curiosity photographed You and all of humanity looking from somewhere above the eroded rim of Gale Crater -  a portion of which is seen in this photomosaic taken by the same Mastcam camera  on Feb 1, 2014, Sol 530, at the Dingo Gap sand dune.  Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Curiosity photographed You and all of humanity looking from somewhere above the eroded rim of Gale Crater – a portion of which is seen in this photomosaic taken by the same Mastcam camera on Feb 1, 2014, Sol 530, at the Dingo Gap sand dune. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/Ken Kremer- kenkremer.com
Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Jan. 31, 2014 (Sol 529) were assembled to show some recent damage to several of its six wheels.  Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
Photomosaic shows new holes and tears in several of rover Curiosity’s six wheels caused by recent driving over sharp edged Martian rocks on the months long trek to Mount Sharp. Raw images taken by the MAHLI camera on Curiosity’s arm on Jan. 31, 2014 (Sol 529) were assembled to show some recent damage to several of its six wheels. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

Earth’s Water Story Gets A Plot Twist From Space Rock Search

Artist's conception of asteroids and a gas giant planet. Credit: Harvard-Smithsonian Center for Astrophysics

We at Universe Today have snow on our minds these days with all this Polar Vortex talk. From out the window, the snowflakes all look the same, but peer at flakes under a microscope and you can see all these different designs pop up. Turns out that our asteroid belt between Mars and Jupiter is also much more diverse than previously believed, all because astronomers took the time to do a detailed survey.

Here’s the interesting thing: the diversity, the team says, implies that Earth-like planets would be hard to find, which could be a blow for astronomers seeking an Earth 2.0 somewhere out in the universe if other research agrees.

To jump back a couple of steps, there’s a debate about how water arose on Earth. One theory is that back billions of years ago when the solar system was settling into its current state — a time when planetesimals were crashing into each other constantly and the larger planets possibly migrated between different orbits — comets and asteroids bearing water crashed into a proto-Earth.

Artist's conception of asteroids or comets bearing water to a proto-Earth. Credit: Harvard-Smithsonian Center for Astrophysics
Artist’s conception of asteroids or comets bearing water to a proto-Earth. Credit: Harvard-Smithsonian Center for Astrophysics

“If true, the stirring provided by migrating planets may have been essential to bringing those asteroids,” the astronomers stated in a press release. “This raises the question of whether an Earth-like exoplanet would also require a rain of asteroids to bring water and make it habitable. If so, then Earth-like worlds might be rarer than we thought.”

To take this example further, the researchers found that the asteroid belt comes from a mix of locations around the solar system. Well, a model the astronomers cite shows that Jupiter once migrated much closer to the sun, basically at the same distance as where Mars is now.

When Jupiter migrated, it disturbed everything in its wake and possibly removed as much as 99.9 per cent of the original asteroid population. And other planet migrations in general threw in rocks from everywhere into the asteroid belt. This means the origin of water in the belt could be more complicated than previously believed.

You can read more details of the survey in the journal Nature. Data was gathered from the Sloan Digital Sky Survey and the research was led by Francesca DeMeo, a Hubble postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics.

Source: Harvard-Smithsonian Center for Astrophysics

Dusty, Windy And Damp: Five NASA Probes To Hunt Down Climate Change in 2014

Artist's conception of NASA's Orbiting Carbon Observatory, which will examine carbon dioxide in the atmosphere (and its effect on climate change) after an expected launch in July 2014. Credit: NASA

How badly will climate change affect our planet? Different models tell us different things, and that’s partly because we need more precise information about the factors that warm the world. How much is sea level rising? What are the levels of carbon dioxide in the atmosphere? All of these things must be known.

NASA expects to launch five Earth science missions this year, which is the biggest roster in more than a decade. They’ll track rainfall, seek water hiding in soil, and examine carbon dioxide and ocean winds around the world. Here’s a quick rundown of the busy launch schedule:

Global Precipitation Measurement (GPM) Core Observatory (Feb. 27): This will be the first of a series of satellites to look at snow and rain from space. “This new information will help answer questions about our planet’s life-sustaining water cycle, and improve water resource management and weather forecasting,” NASA stated. This joint spacecraft with the Japanese Aerospace Exploration Agency (JAXA) will launch from Japan’s Tanegashima Space Center on a H-IIA rocket. GPM was built at NASA’s Goddard Space Flight Center in Maryland.

ISS-RapidScat (June 6): This sensor will sit on the International Space Station and monitor ocean winds (including storms and hurricanes). What’s interesting about this mission is its use of old parts, NASA points out, as well as the decision to mount it on a station rather than take the more expensive route of making it a separate satellite. The probe will launch on a SpaceX Dragon spacecraft (aboard a SpaceX Falcon 9 rocket) from Florida’s Cape Canaveral Air Force Station as part of a regular commercial resupply flight.

Artist's conception of how ISS-RapidScat will work. Credit: NASA/JPL-Caltech/Johnson Space Center
Artist’s conception of how ISS-RapidScat will work. Credit: NASA/JPL-Caltech/Johnson Space Center

Orbiting Carbon Observatory (OCO)-2 (July): NASA plans to take a second crack at this type of satellite after the OCO launch failure in 2009. The satellite will seek out carbon dioxide to better understand where it is emitted (in both natural and artificial processes) and how it moves through the water, air and land. This will launch from California’s Vandenberg Air Force Base on a Delta II rocket. OCO-2 will be managed by NASA’s Jet Propulsion Laboratory in California.

Cloud-Aerosol Transport System (CATS) (Sept. 12): This technology demonstration project will use lasers, in three wavelengths, to examine tiny particles borne into the atmosphere from phenomena such as pollution, smoke, dust and volcanoes. “These aerosol particles pose human health risks at ground level and influence global climate through their impact on cloud cover and solar radiation in Earth’s atmosphere,” NASA stated. This will also leave Earth aboard a SpaceX resupply flight from Cape Canaveral.

Soil Moisture Active Passive (SMAP) mission (November): Will check out the moisture level of soil, with the aim of refining “predictions of agricultural productivity, weather and climate,” NASA stated. Also managed by JPL, this satellite will spend its time in an almost-polar “sun-synchronous” orbit that keeps the sun’s illumination below constant during SMAP’s turns around the Earth. SMAP will launch from Vandenberg on a Delta II rocket.

Source: NASA

Latest Data Shows Global Climate Continues Warming Trend

Chart of the temperature anomalies for 1950-2013, also showing the phase of the El Niñ0-La Niña cycle. (Image Credit: NASA/GSFC/Earth Observatory, NASA/GISS)

The latest statistics are in from 2013 and both NASA’s and NOAA’s measurements of global temperatures show Earth continued to experience temperatures warmer than those measured several decades ago.

NASA scientists say 2013 tied with 2009 and 2006 for the seventh warmest year since 1880, continuing a long-term trend of rising global temperatures, while NOAA – which uses a different method of analyzing temperature data – said that 2013 tied with 2003 as 4th-warmest year globally since 1880.

“The long-term trends are very clear, and they’re not going to disappear,” said climatologist Gavin Schmidt from NASA’s Goddard Institute for Space Studies (GISS). “It isn’t an error in our calculations.”

Land and ocean global temperatures in 2013 from both NASA and NOAA. Via NASA.
Land and ocean global temperatures in 2013 from both NASA and NOAA. Via NASA.

NASA data shows that since 1950, average temperatures have increased 1.1°F to an average of 58.3° in 2013.

NOAA data shows the average temperature across global land and ocean surfaces was 1.12 degrees above the 20th-century average. This is the 37th consecutive year that the annual temperature was above the long-term average.

This coincides with another recent study that showed the so-called “pause” in global warming is not happening, and that the temperatures over the past 15 years are still on the rise.

Both NASA and NOAA scientists say the increase in greenhouse gas levels continue to drive the temperature increase.

Additionally, with the exception of 1998, the 10 warmest years in the 134-year record all have occurred since 2000, with 2010 and 2005 ranking as the warmest years on record.

NASA says the average temperature in 2013 was 58.3 degrees Fahrenheit (14.6 Celsius), which is 1.1 F (0.6 C) warmer than the mid-20th century baseline. The average global temperature has risen about 1.4 degrees F (0.8 C) since 1880, according to the new analysis. Exact rankings for individual years are sensitive to data inputs and analysis methods.

“Long-term trends in surface temperatures are unusual and 2013 adds to the evidence for ongoing climate change,” GISS climatologist Gavin Schmidt said. “While one year or one season can be affected by random weather events, this analysis shows the necessity for continued, long-term monitoring.”

Scientists emphasize that weather patterns always will cause fluctuations in average temperatures from year to year, but the continued increases in greenhouse gas levels in Earth’s atmosphere are driving a long-term rise in global temperatures. Each successive year will not necessarily be warmer than the year before, but with the current level of greenhouse gas emissions, scientists expect each successive decade to be warmer than the previous.

More from NASA:

Carbon dioxide is a greenhouse gas that traps heat and plays a major role in controlling changes to Earth’s climate. It occurs naturally and also is emitted by the burning of fossil fuels for energy. Driven by increasing man-made emissions, the level of carbon dioxide in Earth’s atmosphere presently is higher than at any time in the last 800,000 years.

The carbon dioxide level in the atmosphere was about 285 parts per million in 1880, the first year in the GISS temperature record. By 1960, the atmospheric carbon dioxide concentration, measured at the National Oceanic and Atmospheric Administration’s (NOAA) Mauna Loa Observatory in Hawaii, was about 315 parts per million. This measurement peaked last year at more than 400 parts per million.

While the world experienced relatively warm temperatures in 2013, the continental United States experienced the 42nd warmest year on record, according to GISS analysis. For some other countries, such as Australia, 2013 was the hottest year on record.

The temperature analysis produced at GISS is compiled from weather data from more than 1,000 meteorological stations around the world, satellite observations of sea-surface temperature, and Antarctic research station measurements, taking into account station history and urban heat island effects. Software is used to calculate the difference between surface temperature in a given month and the average temperature for the same place from 1951 to 1980. This three-decade period functions as a baseline for the analysis. It has been 38 years since the recording of a year of cooler than average temperatures.

The GISS temperature record is one of several global temperature analyses, along with those produced by the Met Office Hadley Centre in the United Kingdom and NOAA’s National Climatic Data Center in Asheville, N.C. These three primary records use slightly different methods, but overall, their trends show close agreement.

You can read NASA’s press release here, and NOAA’s here. Here is a link to a presentation of the data released today from Gavin Schmidt of NASA and Tom Karl, director of NOAA’s Climatic Data Center.

Editor’s note: First quote from Gavin Schmidt is from Jacob Ward on Twitter.

LEDs: Light Pollution Solution or Night Sky Nemesis?

New LED lighting along Michigan Street in downtown Duluth, Minn. has brightened and whitened up the area considerably compared to the days of high-pressure sodium lighting. Credit: Bob King

You may have noticed a change underway in your city lighting. High pressure sodium lights, with their familiar orange glow, are quickly being replaced by new, energy efficient  blue-white LED (light emitting diode) lighting. Is this the beginning of a new assault on the night or an opportunity to use light more wisely? Many of us first became aware of LEDs in amplifiers, computers and the flashlights we use for seeing our star charts at night. More recently, LEDs became a big hit with Christmas lighting. And why not? Although they cost considerably more, the bulbs last much longer, use a fraction of the energy compared to incandescent and sodium lighting and don’t contain materials like mercury – common in fluorescent lighting – that can harm the environment. A typical incandescent bulb lasts about 750 hours while an LED bulb can glow for up to 50,000 hours. What’s not to like?

Small individually colored LED lights. LEDs are an electronic light based on semiconductors instead of
Small individually colored LED lights. LEDs light up when an electric current excites electrons inside a semidconductor to produce photons of light. Click to learn more. Credit: Piccolo Namek

The changeover to LED street lighting is already underway in my own city of Duluth, Minn. U.S. I noticed this one night this fall while driving home from work. Buildings and intersections that had been orange the night before were bathed in a far more intense blue-white light. Don’t get me wrong. Our city engineers deserve high marks for adhering to good lighting standards by packaging the new lights in shielded housings with minimal light spill upwards and to the sides. Light in those directions not only creates unwanted glare but seriously brightens the night sky, robbing many of the joys of stargazing.

Comparison of  lighting colors and intensity of the new LED streetlights (left) and the older high-pressure sodium vapor lamps.
Comparison of lighting colors and intensity of the new LED streetlights (left) and the older high-pressure sodium vapor lamps.

Still, everything was not OK. The LED street lights were INTENSELY bright, much more so than the “old-fashioned” sodiums. Looking up was like staring into the sun. If you have the opportunity, step under an orange sodium street light and then under an LED. You’ll be amazed at the difference in light intensity. To gauge the approximate difference in brightness between the two, I pulled out my camera and took a light meter reading on the pavement beneath an LED lamp and then under a high-pressure sodium lamp. The LED was brighter by more than more than one camera “stop” or more than twice as bright.

You can’t complain about the color rendition – the whiter LED light is far better – but the increased intensity doesn’t bode well for stargazers.

Direct comparison of two consecutive light standards - LED in the foreground, high pressure sodium behind it. Credit: Bob King
Direct comparison of two consecutive light standards – LED in the foreground, high pressure sodium behind it. Notice that both lights are well-shielded, ie. no part of the bulb extends beyond its housing. Credit: Bob King

As long as LEDs are shielded, light spill and glare are relatively well-controlled, but light reflected from the ground also goes up into space to light the sky. Here in the northern U.S. where snow typically covers the ground from November through March, winter night skies are the most light polluted; LED street lighting will only exacerbate the situation.

Inexpensive LED wall pack lighting lights a sidewalk and produces large amounts of glare and wasted light. Credit: Bob King
Inexpensive LED wall pack lighting lights a sidewalk and produces large amounts of glare and wasted light. Credit: Bob King

In the big picture however, that’s only a minor headache. LEDs are a wonderful technology, but the benefits they provide in cost savings and long life ultimately guarantee their proliferation in ornamental, building and parking lot illumination. Much of that lighting is unshielded and heavy on glare, making driving at night more difficult, wasting energy and preserving what dark sky remains more challenging. Indeed, the transition is already underway.

Unshielded LED ornamental lighting at a new housing development. Credit: Bob King
Brilliant, unshielded LED ornamental lighting at a new housing development. The full moon is seen at top. Credit: Bob King

Like an outbreak of mushrooms, LED “wall pack” lights – the ones that shine directly outward without any shielding – have started to appear on the outside walls of buildings as a cheap solution for lighting up walkways and parking lots. They’re replacing the equally bad but half as bright sodium lamps. Ornamental LED lamps in a new housing development in town recently turned night into day. Residents complained and wrote letters to the editor. To their credit, the owners dimmed the lights, but the fixtures were poorly designed to start and still too bright for many.

Closeup of LED ornamental light fixtures. Credit: Bob King
Closeup of LED ornamental light fixtures with little shielding. Credit: Bob King

One additional issue with LED ornamental and street lighting has to do with color. Although natural color LED lighting is available, high-efficiency LED lights emit a much bluer light than sodium vapor. Blue-rich light not only increases the amount of glare sensed by the human eye but also the amount of visible light pollution. Other effects of light trespass and glare include sleeping problems and even an increased risk for certain cancers. We humans need the night more than we know.

LEDs are only part of the problem of course. The real issue is the ever-increasing amount of light pollution worldwide and the potential for new LEDs to make it worse. True, we can take advantage of the  ability to adjust and dim current lighting to more suitable levels. LEDs are also highly directional, making it easy to point them just where they’re needed. Finally, new high-efficiency more natural (less blue) LEDs are now available that can help reduce light pollution.

 

First electric lighting: New York City around 1880.
First electric lighting: New York City around 1880.

I encourage everyone to learn all you can about the new lighting and work with you local city councils and town boards to use the light wisely, particularly in new developments, parking lots and for building illumination. There’s no question that LED lighting can be used wisely to make everyone happy – stargazers, drivers, shoppers and walkers. For help and more information, the International Dark-Sky Association (IDA) is a great place to start. Here are some additional resources:

* IDA Simple Guidelines for Lighting Regulations for Small Communities, Urban Neighborhoods and Subdivisions – Great background information on what you’ll need to know before you approach your town board
* Sample Light Ordinances
* Great examples of dark sky compliant ornamental LED light fixtures

China’s Yutu Moon Rover and Chang’e-3 Lander – Gallery of New Images & 1st Earth Portrait

The Earth from the Moon – by Chang’e-3 on Christmas Day Lander camera snapped this image on Christmas Day 2013. Credit: Chinese Academy of Sciences

The Earth from the Moon – by Chang’e-3 on Christmas Day
Lander camera snapped this image on Christmas Day 2013. Credit: Chinese Academy of Sciences[/caption]

Nearly a month after the stunningly successful soft landing on the Moon by China’s first lunar mission on Dec. 14, 2013, the Chinese Academy of Sciences has at last released far higher quality digital imagery snapped by the Chang’e-3 lander and Yutu moon rover.

This release of improved images is long overdue.

And perhaps the best news of all involves a belated Christmas present to humanity – the publication of never before seen and absolutely stunning images of the Earth from the Moon captured by the lander on Christmas Day 2013.

We haven’t seen the Earth from the Moon’s surface in 4 decades – not since the 1970’s.

Photo taken by the extreme ultraviolet camera on Dec. 16, 2013 shows the observation of the Earth's plasmasphere by the Chang’e-3 lander. Credit: Chinese Academy of Sciences
Photo taken by the extreme ultraviolet camera on Dec. 16, 2013 shows the observation of the Earth’s plasmasphere by the Chang’e-3 lander. Credit: Chinese Academy of Sciences

Until now, most of the Chang’e-3 mission images we’ve seen have essentially been rather low resolution pictures of pictures – that is screenshots or photos taken of the imagery that has been flashed onto large projection screens at the Beijing Aerospace Control Center, and then distributed by Chinese government media outlets.

So they have been degraded several times over.

Portrait photo of Yutu moon rover taken by camera on the Chang'e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface.  Credit: Chinese Academy of Sciences
Portrait photo of Yutu moon rover taken by camera on the Chang’e-3 moon lander on Dec. 15, 2013 shortly after rolling all 6 wheels onto lunar surface. Credit: Chinese Academy of Sciences

I’ve collected a gallery of the new Chang’e-3 lunar photos here for all to enjoy – see above and below.

The gallery includes photos taken during the final moments of the descent and landing on Dec. 14, 2013, as well as portraits and 360 degree moonscape panoramas taken by both spacecraft after Yutu rolled its wheels onto the loose lunar soil 7 hours later on Dec. 15, and the fabulous new images of Earth in visible and UV light.

Yutu moon rover imaged by camera on the Chang'e-3 moon lander on Dec. 16, 2013. Credit: Chinese Academy of Sciences
Yutu moon rover imaged by camera on the Chang’e-3 moon lander on Dec. 16, 2013. Credit: Chinese Academy of Sciences

Yutu and the lander are about to awaken from their self induced slumber which began at Christmas time to coincide with the dawn of the the utterly frigid two week long lunar night.

Temperatures plunged to below minus 180 degrees Celsius.

They went to sleep to conserve energy since there is no sunlight to generate power with the solar arrays.

Yutu portrait taken by the Chang’e-3 lander on Dec. 22, 2013.  China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades.  Credit: Chinese Academy of Sciences
Yutu portrait taken by the Chang’e-3 lander on Dec. 22, 2013. China’s 1st Moon rover ‘Yutu’ embarks on thrilling adventure marking humanity’s first lunar surface visit in nearly four decades. Credit: Chinese Academy of Sciences

After driving off the lander, Yutu – which means ‘Jade Rabbit’ – drove in a semicircle around the lander and headed south.

Jade Rabbit stopped at 5 designated places.

The pair of Chinese spacecraft then snapped images of one another at each location. Some of those images were included in this new batch.

So you can see the lander from 3 different perspectives collected here:

1st Photo of Chang'e-3 moon lander taken by the panoramic camera on the Yutu moon rover after it drove all 6 wheels onto the lunar surface on Dec. 15, 2013. Credit: CNSA
1st Photo of Chang’e-3 moon lander taken by the panoramic camera on the Yutu moon rover after it drove all 6 wheels onto the lunar surface on Dec. 15, 2013. Credit: Chinese Academy of Sciences
Side view Chang'e-3 moon lander in this image taken by the panoramic camera on the Yutu moon rover as it drove in a semicircle around the lander heading south. Credit: Chinese Academy of Sciences
Side view Chang’e-3 moon lander in this image taken by the panoramic camera on the Yutu moon rover as it drove in a semicircle around the lander heading south. Credit: Chinese Academy of Sciences
Photo of Chang'e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013. Credit: CNSA
Photo of Chang’e-3 moon lander emblazoned with Chinese national flag taken by the panoramic camera on the Yutu moon rover on Dec. 22, 2013 during 5th and final stop as it drove in a semicircle around the lander heading south. Yutu is looking north, lander looking south. Credit: Chinese Academy of Sciences

Here’s a pair of very cool 360 degree panoramas – taken by each spacecraft and showing the other.

This digitally-combined polar panorama shows a 360 degree color view of the moonscape around the Chang’e-3 lander after the Yutu moon rover drove onto the lunar surface leaving visible tracks behind.  Images were taken from Dec. 17 to Dec. 18, 2013.  Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree color view of the moonscape around the Chang’e-3 lander after the Yutu moon rover drove onto the lunar surface leaving visible tracks behind. Images were taken from Dec. 17 to Dec. 18, 2013. Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree black and white view of the moonscape around the Yutu moon rover after it drove off the Chang’e-3 lander at top and left visible tracks behind.  Images were taken on Dec. 23, 2013.  Credit: Chinese Academy of Sciences
This digitally-combined polar panorama shows a 360 degree black and white view of the moonscape around the Yutu moon rover after it drove off the Chang’e-3 lander at top and left visible tracks behind. Images were taken on Dec. 23, 2013. Credit: Chinese Academy of Sciences
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer
1st panorama around Chang’e-3 landing site after China’s Yutu rover drove onto the Moon’s surface on Dec. 15, 2013. The images were taken by Chang’e-3 lander following Dec. 14 touchdown. Panoramic view was created from screen shots of a news video assembled into a mosaic. Credit: CNSA/CCTV/screenshot mosaics & processing by Marco Di Lorenzo/Ken Kremer

Finally here’s imagery taken during the landing sequence by the descent imager in the final minutes before touchdown at Mare Imbrium, nearby the Bay of Rainbows, or Sinus Iridum region.

It is located in the upper left portion of the moon as seen from Earth. You can easily see the landing site with your own eyes.

And be sure to check my earlier story with an eye popping astronauts eye view video combining all the descent imagery – here.

Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang'e-3 lunar probe's landing at an altitude of 99 meters.  Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang’e-3 lunar probe’s landing at an altitude of 99 meters. Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang'e-3 lunar probe's landing at an altitude of 7.9 kilometers.  Credit: Chinese Academy of Sciences
Photo taken by the descent imaging camera on Dec. 14, 2013 shows lunar landscape during Chang’e-3 lunar probe’s landing at an altitude of 7.9 meters. Credit: Chinese Academy of Sciences

The landmark Chang’e-3 mission marks the first time that China has sent a spacecraft to touchdown on the surface of an extraterrestrial body.

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Cygnus Commercial Carrier Hurtling towards Space Station Rendezvous Following Spectacular Antares Blastoff – Photo & Video Gallery

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 9. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 12. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com
See Photo Gallery below
Story updated[/caption]

WALLOPS ISLAND, VA – The Cygnus commercial resupply freighter is hurtling towards the International Space Station (ISS) at 17,500 MPH following the flawless Jan. 9 blastoff from NASA Wallops Island, Va., atop the Orbital Sciences Corp. Antares rocket.

Cygnus is bound for the ISS on its historic first operational mission to deliver over 1.5 tons of science experiments, provisions and belated Christmas presents to the six man crew aboard the massive orbiting outpost, under Orbital Science’s $1.9 Billion resupply contract with NASA.

See our up close photo and video gallery of the spectacular Jan 9. Launch – above and below.

The privately built Cygnus cargo vessel is in the midst of a two and a half day high speed orbital chase and is scheduled to rendezvous and dock with the station early Sunday morning, Jan 12.

The Orbital-1 ship is named the “SS C. Gordon Fullerton” in honor of NASA space shuttle astronaut C. Gordon Fullerton who later worked at Orbital Sciences and passed away in 2013.

The imagery was shot by remote cameras set up all around the NASA Wallops Launch Pad 0A as well as from the media viewing site some 2 miles away.

Orbital Sciences Antares rocket blasts off on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission bound for ISS.  Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com
Orbital Sciences Antares rocket blasts off on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission bound for ISS. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com

Currently, the Cygnus spacecraft is barely 12 hours from its carefully choreographed arrival at the station on Sunday morning.

NASA TV will provide live coverage starting at 5 a.m. EST Sunday – http://www.nasa.gov/multimedia/nasatv/

Orbital Sciences’ first dedicated Cygnus mission gets underway at 1:07 p.m. EST, Thursday, 9 January, with the launch of Antares from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Va. Credit: Mike Killian/mikekillianphotography.com
Orbital Sciences’ first dedicated Cygnus mission gets underway at 1:07 p.m. EST, Thursday, 9 January, with the launch of Antares from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Va. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace

“All Cygnus systems are performing as expected with no issues,” said Orbital Sciences in an update.

“The spacecraft has conducted five orbit-raising maneuvers and is on track for rendezvous with the International Space Station tomorrow morning [Sunday, Jan. 12].”

“Cygnus will maneuver to a distance of about 30 feet from the station,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle commander.

The third Antares rocket springs away from Pad 0A on a mission which firmly establishes Orbital Sciences Corp. as one of NASA’s Commercial Resupply Services (CRS) suppliers.   Credit: Mike Killian/mikekillianphotography.com
The third Antares rocket springs away from Pad 0A on a mission which firmly establishes Orbital Sciences Corp. as one of NASA’s Commercial Resupply Services (CRS) suppliers. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace

The goal of Orbital Sciences Cygnus – and the Space X Dragon – is to restore America’s cargo delivery capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles, by utilizing new and privately developed resupply freighters that will cuts costs.

Cygnus is packed with 2,780 pounds (1261 kg) of station supplies and vital research experiments.

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
This Cygnus is streaking to the ISS and docks on Jan. 12
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Docking mechanism to ISS at right. Credit: Ken Kremer – kenkremer.com

Expedition 38 crew members Engineers Mike Hopkins and Koichi Wakata aboard the station will reach out and with the stations 57 foot long Canadarm2 and grapple Cygnus with the robotic arm on Sunday at 6:02 a.m. EDT.

Hopkins and Wakata will then carefully maneuver the robot arm and guide Cygnus to its berthing port on the Earth-facing side of the Harmony node.

The installation begins around 7:20 a.m. EDT. And NASA TV will provide continuous live coverage of Cygnus rendezvous, docking and berthing operations.

Billowing smoke and flame in all directions, ORB-1 takes flight on Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com
Billowing smoke and flame in all directions, ORB-1 takes flight on Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com

The majestic blastoff of Orbital Science’s two stage Antares rocket took place from a beachside pad at NASA’s Wallop’s Flight Facility along the eastern shore of Virginia, Thursday, at 1:07 p.m. EST.

The station was flying about 260 miles over the Atlantic Ocean just off the coast of Brazil as Antares soared aloft.

Following the 10 minute ascent to orbit, Cygnus separated as planned from the ATK built upper stage about 30 minutes after launch. The Ukrainian supplied first stage fired for approximately four and one half minutes

The solar arrays deployed as planned once Cygnus was in Earth orbit to provide life giving energy required to command the spacecraft.

The picture perfect launch of the 133 foot tall Antares put on a spectacular sky show following a trio of delays since mid- December 2013.

The first postponement was forced when spacewalking astronauts were called on to conduct urgent repairs to fix an unexpected malfunction in the critical cooling system on board the station.

Then, unprecedented frigid weather caused by the ‘polar vortex’ forced a one day from Jan. 7 to Jan. 8.

Finally, an unexpected blast of solar radiation from the Earth’s Sun on Tuesday (Jan. 7) caused another 24 postponement because the highly energetic solar particles could have fried the delicate electronics controlling the rockets ascent with disastrous consequences.

Cygnus is loaded with science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

“The crew will unload Cygnus starting probably the next day after it docks at station,” said Culbertson.

Among the research items packed aboard the Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The student experiments selected are from 6 middle school and high school teams from Michigan, Texas, Colorado, and Washington, DC.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer.com
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer.com
Antares soars aloft on Jan. 9, 2014 from NASA Wallops.  Credit: Elliot Severn/SpaceFlight Insider
Antares soars aloft on Jan. 9, 2014 from NASA Wallops. Credit: Elliot Severn/SpaceFlight Insider
Antares soars from NASA Wallops. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace
Antares soars from NASA Wallops. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace
Antares rocket the night before launch beautifully reflected in icy water at NASA Wallops launch pad amidst bone chilling cold during remote camera setup for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Antares rocket the night before launch beautifully reflected in icy water at NASA Wallops launch pad amidst bone chilling cold during remote camera setup for the photos featured herein. Credit: Ken Kremer – kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein. Credit: Ken Kremer – kenkremer.com

NASA Antares Jan. 9, 2014 Launch Video



Video caption: U.S. Cargo Ship Launches to ISS on First Resupply Mission from NASA Wallops

Antares Private Rocket Thunders off Virginia Coast bound for Space Station – Marks 2nd US Commercial Launch This Week

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer
Story updated[/caption]

WALLOPS ISLAND, VA – A private Antares rocket thundered off a Virginia launch pad today (Jan. 9) bound for the International Space Station on a breakthrough mission that marks the second successful commercial rocket launch by an American aerospace company this week – a feat that’s sure to send shock waves reverberating around the globe as well as providing an absolutely crucial life line to the station.

The majestic blastoff of Orbital Science’s Antares rocket took place from a beach side pad at NASA’s Wallop’s Flight Facility along the eastern shore of Virginia, Thursday, at 1:07 p.m. EST.

A flock of birds flew by just as Antares soared off the pad – see my lucky shot above.

The milestone flight was conducted under Orbital’s $1.9 Billion contract to NASA as the firm’s first operational cargo delivery flight to the ISS using their own developed Cygnus resupply vehicle.

“Today’s launch gives the cargo capability to keep the station going,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle commander.

“Everything was right on the money.”

And with the ISS lifetime in Earth orbit now newly extended by the Obama Administration to 2024, the resupply freighters pioneered by Orbital Sciences and SpaceX – in partnership with NASA – are even more important than ever before to keep the station well stocked and humming with an ever increasing array of research projects.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

The goal was to restore America’s cargo and crew capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles.

Cygnus is packed chock full with a myriad of science experiments for dozens of new NASA science investigations as well as two dozen student science experiments from school across the country.

Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station. Credit: Ken Kremer - kenkremer.com
Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

Both the terrestrial and space weather forecasts improved dramatically in the final hours of the countdown and cooperated to allow today’s magnificent Antares launch.

The launch of the two stage, 133 foot tall Antares put on a spectacular sky show that may – because of crystal clear skies – have been visible to millions of spectators spread across the US east coast from the Carolina’s to Connecticut.

Antares beautiful liftoff on Thursday comes on the heels of Monday’s (Jan. 6) SpaceX Falcon 9 liftoff .

Furthermore, it marks a grand success for the innovative US strategy of forging low cost, reliable and effective access to space by handing the task of building the rockets and cargo vehicles to US commercial companies for routine jobs in Earth orbit while NASA focuses on investing in deep space exploration.

“Today’s launch demonstrates how our strategic investments in the American commercial spaceflight industry are helping create new jobs here at home and keep the United States the world leader in space exploration,” NASA Administrator Charles Bolden said in a NASA statement.

“American astronauts have been living and working continuously in space for the past 13 years on board the International Space Station, and we’re once again sending them supplies launched from U.S. soil.”

“In addition to the supplies, the passion and hard work of many researchers and students are being carried by Cygnus today. I congratulate Orbital and the NASA teams that made this resupply mission possible.”

Antares soars to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer – kenkremer.com

The fourth launch attempt was finally the charm after a trio of postponements since mid- December 2013 to fix the malfunctioning cooling system on the station, unprecedented frigid weather and then an unexpected blast of solar radiation from the Sun on Tuesday (Jan. 7) that could have fried the delicate electronics controlling the rockets ascent with disastrous consequences.

Gorgeous Wallops Sunrise greets Antares rocket poised at Launch Pad 0A on Virginia shoreline.  A blast of solar radiation on Jan. 7 postponed Antares blastoff from Jan 8 to Jan 9, 2014. Credit: Mike Killian/mikekillianphotography.com
Gorgeous Wallops Sunrise greets Antares rocket poised at Launch Pad 0A on Virginia shoreline. A blast of solar radiation on Jan. 7 postponed Antares blastoff from Jan. 8 to Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com

Both the Antares and Cygnus are private vehicles built by Orbital Sciences under a $1.9 Billion supply contract with NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware to the ISS.

Orbital Sciences commercial competitor, SpaceX, is likewise under contract with NASA to deliver 20,000 kg of supplies to the ISS with the SpaceX Falcon 9/Dragon architecture.

Antares majestic contrail soaring to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer - kenkremer.com
Antares majestic contrail as it experiences maximum dynamic pressure (MAX-Q) and flies down range over Atlantic ocean soaring to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer – kenkremer.com

Both the Orbital Sciences Antares/Cygnus and SpaceX Falcon 9/Dragon vehicles were developed from the start with seed money from NASA in a public-private partnership.

The flight is designated the Orbital-1, or Orb-1 mission.

A total of eight Antares/Cygnus missions to the space station are scheduled over the next two to three years by Orbital under its Commercial Resupply Services (CRS) contract with NASA.

Two additional Antares/Cygnus flight are slated for this year.

They are slated to lift off around May 1 and early October, said Culbertson.

This launch follows a pair of successful launches in 2013, including the initial test launch in April and the 1st demonstration launch to the ISS in September.

Cygnus is loaded with approximately 2,780 pounds / 1,261 kilograms of cargo for the ISS crew for NASA including science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

33 cubesats are also on board that will be deployed over time by the 6 person crew living aboard the ISS.

Among the research items packed aboard the Antares/Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The student experiments selected are from middle school and high school teams from Michigan, Texas, Colorado, and Washington, DC.

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

There is also an ant farm aboard with ant colonies from Colorado, North Carolina and of course host state Virginia too. The goal is to study ant behavior in space in zero gravity and compare that to ants on Earth living under normal gravity.

Cygnus will rendezvous with the station on Sunday, Jan 12.

Expedition 38 crew members aboard the station will grapple Cygnus with the stations robotic arm Sunday at 6:02 a.m. EDT.

NASA TV will provide live coverage of Sunday’s docking.

Antares commercial rocket built by Orbital Sciences Corp. glistens at dusk on Jan. 7 amidst bone chilling cold ahead of blastoff scheduled for Jan. 8, 2014 from NASA Wallops Island, Virginia. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket built by Orbital Sciences Corp. glistens at dusk on Jan. 7 amidst bone chilling cold ahead of blastoff on Jan. 9, 2014 from NASA Wallops Island, Virginia. Credit: Ken Kremer – kenkremer.com

Watch for my ongoing Antares launch reports from on site at NASA Wallops.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Cygnus is loaded with 2780 pounds of cargo and 23 student experiments. Credit: Ken Kremer – kenkremer.com

Satellite Image of the “Polar Vortex” Over the US

This image was captured by NOAA's GOES-East satellite on January 6, 2014 at 1601 UTC/11:01 a.m. EST. A frontal system that brought rain to the coast is draped from north to south along the U.S. East Coast. Behind the front lies the clearer skies bitter cold air associated with the Polar Vortex.

If you live in the north and eastern part of the US, you’re probably experiencing some frigid weather. You’re probably also hearing people talk about something called a “polar vortex.”

Just what is a polar vortex and why is it making the temperatures so cold?

This image was captured by NOAA’s GOES-East satellite on Jan. 6, 2014, at 11:01 a.m. EST (1601 UTC). A frontal system that brought rain and snow to the US East coast is seen draped from north to south, and behind the front lies the clearer skies bitter cold air associated with the polar vortex. Also visible in the image is snow on the ground in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Michigan, Iowa and Missouri. The clouds over Texas are associated with a low pressure system centered over western Oklahoma that is part of the cold front connected to the movement of the polar vortex.

NASA explains that the polar vortex is a “whirling and persistent large area of low pressure, found typically over both North and South poles.”

Weather reports say the northern polar vortex was pushing southward over western Wisconsin and eastern Minnesota on Monday, Jan. 6, 2014, and was bringing frigid temperatures to half of the continental United States. It is expected to move northward back over Canada toward the end of the week.

More about the polar vortex:

Both the northern and southern polar vortexes are located in the middle and upper troposphere (lowest level of the atmosphere) and the stratosphere (next level up in the atmosphere). The polar vortex is a winter phenomenon. It develops and strengthens in its respective hemispheres’ winters as the sun sets over the polar region and temperatures cool. They weaken in the summer. In the Northern Hemisphere, they circulate in a counterclockwise direction, so the vortex sitting over western Wisconsin is sweeping in cold Arctic air around it.

Source: NASA