How did life on Earth originally develop from random organic compounds into living, evolving cells? It may have relied on impacts by enormous meteorites and comets — the same sort of catastrophic events that helped bring an end to the dinosaurs’ reign 65 million years ago. In fact, ancient impact craters might be precisely where life was able to develop on an otherwise hostile primordial Earth.
“This is bigger than finding any dinosaur. This is what we’ve all searched for – the Holy Grail of science,” Chatterjee said.
Our planet wasn’t always the life-friendly “blue marble” that we know and love today. At one point early in its history it was anything but hospitable to life as we know it.
“When the Earth formed some 4.5 billion years ago, it was a sterile planet inhospitable to living organisms,” Chatterjee said. “It was a seething cauldron of erupting volcanoes, raining meteors and hot, noxious gasses. One billion years later, it was a placid, watery planet teeming with microbial life – the ancestors to all living things.”
Exactly how did this transition happen? That’s the Big Question in paleontology, and Chatterjee believes he may have found the answer lying within some of the world’s oldest and largest impact craters.
After studying the environments of the oldest known fossil-containing rocks in Greenland, Australia and South Africa, Chatterjee said these could be remnants of ancient craters and may be the very spots where life began in deep, dark and hot environments — similar to what’s found near thermal vents in today’s oceans.
Larger meteorites that created impact basins of about 350 miles in diameter inadvertently became the perfect crucibles, according to Chatterjee. These meteorites also punched through the Earth’s crust, creating volcanically driven geothermal vents. They also brought the basic building blocks of life that could be concentrated and polymerized in the crater basins.
In addition to new organic compounds — and, in the case of comets, considerable amounts of water — impacting bodies may also have brought the necessary lipids needed to help protect RNA and allow it to develop further.
“RNA molecules are very unstable. In vent environments, they would decompose quickly. Some catalysts, such as simple proteins, were necessary for primitive RNA to replicate and metabolize,” Chatterjee said. “Meteorites brought this fatty lipid material to early Earth.”
Based on research in Australia by University of California professor David Deamer, the ingredients for all-important cell membranes were delivered to Earth via meteorites and existed in water-filled craters.
“This fatty lipid material floated on top of the water surface of crater basins but moved to the bottom by convection currents,” suggests Chatterjee. “At some point in this process during the course of millions of years, this fatty membrane could have encapsulated simple RNA and proteins together like a soap bubble. The RNA and protein molecules begin interacting and communicating. Eventually RNA gave way to DNA – a much more stable compound – and with the development of the genetic code, the first cells divided.”
And the rest, as they say, is history. (Well, biology really, and no small amount of chemistry and paleontology… and some astrophysics… well you get the idea.)
Chatterjee recognizes that further experiments will be needed to help support or refute this hypothesis. He will present his findings Oct. 30 during the 125th Anniversary Annual Meeting of the Geological Society of America in Denver, Colorado.
Left landing gear tire visibly failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp. Watch approach and landing test video below[/caption]
The privately built Dream Chaser ‘space taxi’ that was damaged after landing during its otherwise successful first ever free-flight glide test on Saturday, Oct 26, is repairable and the program will live on to see another day, says the developer Sierra Nevada Corp., (SNC).
The Dream Chaser engineering test vehicle skidded off the runway and landed sideways when its left landing gear failed to deploy at the last second during touchdown on runway 22L at Edwards Air Force Base, Calif., said Mark Sirangelo, corporate vice president for SNC Space Systems, at a media teleconference.
The primary goal of the Oct. 26 drop test was to see whether the Dream Chaser mini-shuttle would successfully fly free after being released by an Erickson Air-Crane from an altitude of over 12,000 feet and glide autonomously for about a minute to a touchdown on the Mojave desert landing strip.
“We had a very successful day with an unfortunate anomaly at the end of the day on one of the landing gears,” said Sirangelo.
Dream Chaser is one of three private sector manned spaceships being developed with funding from NASA’s commercial crew program known as Commercial Crew Integrated Capability (CCiCap) initiative to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station – totally lost following the space shuttle retirement.
The unmanned approach and landing test (ALT) accomplished 99% of its objectives and was only marred by the mechanical failure of the left tire to drop down and deploy for a safe and smooth rollout.
SNC released a short 1 minute video of the test flight – see below – showing the helicopter drop, dive, glide and flare to touchdown. The failure of the landing gear to drop is clearly seen. But the video cuts away just prior to touchdown and does not show the aftermath of the skid or damage to the vehicle.
“The Dream Chaser spacecraft automated flight control system gently steered the vehicle to its intended glide slope. The vehicle adhered to the design flight trajectory throughout the flight profile. Less than a minute later, Dream Chaser smoothly flared and touched down on Edwards Air Force Base’s Runway 22L right on centerline,” said SNC in a statement with the video.
The vehicle is “repairable and flyable again,” Sirangelo noted.
More good news is that the ships interior was not damaged and the exterior can be fixed.
Dream Chaser measures about 29 feet long with a 23 foot wide wing span and is about one third the size of NASA’s space shuttle orbiters.
Since there was no pilot in the cockpit no one was injured. That also meant that no evasive action could be taken to drop the gear.
“We don’t think it’s actually going to set us back,” Sirangelo noted. “In some interesting way, it might actually accelerate it.
NASA’s commercial crew initiative aims at restoring America’s manned spaceflight access to low Earth orbit and the International Space Station (ISS) – perhaps by 2017 – following the forced shutdown of the Space Shuttle program in 2011.
Until an American commercial space taxi is ready for liftoff, NASA is completely dependent on the Russian Soyuz capsule for astronaut rides to the ISS at a cost of roughly $70 million per seat.
Because Congress continues to significantly cut NASA’s budget further delays can be expected – inevitably meaning more payments to Russia and no savings for the American tax payer.
SNC was awarded $227.5 million in the current round of NASA funding and must successfully complete specified milestones, including up to five ALT drop tests to check the aerodynamic handling in order to receive payment.
This particular vehicle had been intended to fly two test flights. Further drop tests were planned with a new test vehicle to be constructed.
The way forward is being evaluated.
“We don’t think there is going to be any significant delay to the program as a result of this. This was meant to be a test vehicle with a limited number of flights,” Sirangelo said.
SNC and NASA have assembled a team to investigate the cause of the anomaly.
“SNC cannot release any further video at this time,” said SNC.
Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the space shuttle.
Speak about destruction. A comet slammed into Earth’s atmosphere 28 million years ago and basically killed everything with fire below, leaving a huge deposit of yellow silica glass in its wake, a team of astronomers say.
The evidence — a black pebble found by an Egyptian geologist within this vast tract of glass — is believed to be a part of the comet’s nucleus or heart and not just an ordinary meteorite. The team says this could be the first hard evidence, so to speak, of a comet striking Earth.
The temporary “shockwave of fire” hit 2,300 square miles (roughly 6,000 square kilometers) of Egyptian sand, turning the grains into glass. Given the area’s rich archaeological history, it’s probably not too much of a surprise that a small portion of this is visible in a brooch that belonged to ancient boy-king Tutankhamun.
“It’s a typical scientific euphoria when you eliminate all other options and come to the realization of what it must be,” said lead author Jan Kramers of the University of Johannesburg in a statement.
Besides silica, the cosmic blast furnace left teeny-tiny diamonds in its wake, forming from carbon. “Normally they form deep in the earth, where the pressure is high, but you can also generate very high pressure with shock. Part of the comet impacted and the shock of the impact produced the diamonds,” said Kramers.
More information on this find should be available soon when the discovery is published in Earth and Planetary Science Letters. The authors first discussed their find in a public lecture Oct. 10. It will be interesting to see what other scientific teams think of this hypothesis, so stay tuned for the reaction.
Source: University of the Witwartersrand, Johannesburg
It’s amazing to think that for the majority of human history, we had almost no understanding about the Sun. We didn’t know what it was made of, how it formed, or how it produced energy. We didn’t know how big it was, and we didn’t know how far away it was.
We orbit the Sun at a distance of about 150 million kilometers. This number is actually an average, since we follow an elliptical path. At its closest point, the Earth gets to 147 million km, and at its most distant point, it’s 152 million km.
Distances in the Solar System are so vast that astronomers use this distance as a standard for measurement, and so the average distance from the Earth to the Sun is called an astronomical unit. Instead of saying that Pluto is 5.87 billion kilometers away from the Sun, astronomers say that it’s 39 astronomical units, or AUs.
You might be surprised to know that the distance from the Sun to the Earth was only determined within the last few hundred years. There were just too many variables. If astronomers knew how big it was, they could figure out how far away it was, or vice versa, but both of these numbers were mysteries.
Ancient astronomers, especially the Greeks, tried estimating the distance to the Sun in several different ways: measuring the length of shadows on Earth, or comparing the size of the Moon and its orbit to the Sun. Unfortunately, their estimates were off at least by a factor of 10.
The key to figuring out the distance to the Sun came from observing Venus as it passed directly in front of the Sun. This rare event, known as a Transit of Venus, happens only twice every 108 years. Once devised, the best opportunities for taking this precise measurement came during the Venus transits of 1761 and 1769. Astronomers were dispatched to remote corners of the globe to observe the precise moment when Venus began to move in front of the Sun, and when it had moved completely across the surface.
By comparing these measurements, astronomers could use geometry to calculate exactly how far away the Sun is. Their initial calculations put the distance at 24,000 times the radius of the Earth. Not bad considering our modern measurement of 23,455 times the radius of the Earth.
Modern astronomers can use radar and laser pulses to calculate the distance to objects in the Solar System. For example, they fire an intense beam of radio waves at a distant object, like Mercury, and then calculate how long it takes for the waves to bounce off the planet and return to Earth. Since the speed of light is well known, the return travel time tells you how far away the planet is.
Astronomy has truly helped us find our place in the Universe. It nice to be living in a time when many of these big mysteries have been solved. I don’t know about you, but I can’t wait to see what’s around the corner of the next discovery.
The engineering test article of the commercial Dream Chaser spaceship being developed by Sierra Nevada Corp (SNC) suffered some significant damage during its critical 1st ever approach-and-landing (ALT) drop test on Saturday, Oct. 26, in California due to an unspecified type of malfunction with the deployment of the left landing gear.
The Dream Chaser mini-shuttle suffered “an anomaly as it touched down on the Runway 22L at Edwards Air Force Base, Calif.,” according to a post-test statement from NASA.
A report at NASA Spaceflight.com indicated that the Dream Chaser “flipped over on the runway” after touchdown.
The full extent of damage to the winged vehicle or whether it can be repaired and reflown is not known at this time. No photos or details explaining the damage have yet emerged – beyond brief press releases issued by SNC and NASA.
The performance of the vehicles’ nose skid, brakes, tires and other flight systems is being tested to prove that it can safely land an astronaut crew returning from the space station after surviving the searing heat of re-entry from Earth orbit.
This initial atmospheric drop test was conducted in an automated mode. There was no pilot on board and no one was hurt on the ground.
“No personnel were injured. Damage to property is being assessed,” said NASA. “Edwards Air Force Base emergency personnel responded to scene as a precaution.
“Support personnel are preparing the vehicle for transport to a hangar.”
Dream Chaser is one of three private sector manned spaceships being developed with funding from NASA’s commercial crew program known as Commercial Crew Integrated Capability (CCiCap) initiative to develop a next-generation crew transportation vehicle.
The NASA seed money aims at restoring America’s manned spaceflight access to low Earth orbit and the International Space Station (ISS) – perhaps by 2017 – following the forced shutdown of the Space Shuttle program in 2011.
Until one of the American commercial space taxis is ready for liftoff, NASA is completely dependent on the Russian Soyuz capsule for astronaut rides to the ISS at a cost of roughly $70 million per seat.
SNC was awarded $227.5 million in the current round of NASA funding and must complete specified milestones including up to five ALT drop tests to check the aerodynamic handling.
To date this test vehicle has successfully accomplished a series of runway tow and airborne captive carry tests.
Development of crew versions of the SpaceX Dragon and Boeing CST-100 capsules are also being funded by NASA’s commercial crew program office.
Dream Chaser can carry a crew of up to seven and is the only reusable, lifting body shuttle type vehicle with runway landing capability among the three competitors.
During Saturday’s test, SNC was performing the first in a series of free-flight approach-and-landing tests with the Dream Chaser prototype test vehicle known as the ETA.
The prototype spaceship was released as planned from its carrier aircraft, an Erickson Air-Crane helicopter, at approximately 11:10 a.m. Pacific Standard Time (2:10 p.m. EDT), said SNC in a statement.
The post release flare and touchdown appeared normal at first until the left landing gear deployment failed at some point after runway touchdown.
“Following release, the Dream Chaser spacecraft automated flight control system gently steered the vehicle to its intended glide slope. The vehicle adhered to the design flight trajectory throughout the flight profile. Less than a minute later, Dream Chaser smoothly flared and touched down on Edwards Air Force Base’s Runway 22L right on centerline,” according to the SNC press release.
SNC went on to say that reviews are in progress to determine the cause of the landing gear failure.
“While there was an anomaly with the left landing gear deployment, the high-quality flight and telemetry data throughout all phases of the approach-and-landing test will allow SNC teams to continue to refine their spacecraft design. SNC and NASA Dryden are currently reviewing the data. As with any space flight test program, there will be anomalies that we can learn from, allowing us to improve our vehicle and accelerate our rate of progress.”
The engineering test article (ETA) is a full sized vehicle.
Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the space shuttle.
“It’s not outfitted for orbital flight. It is outfitted for atmospheric flight tests,” said Marc Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman told Universe Today previously.
“The best analogy is it’s very similar to what NASA did in the shuttle program with the Enterprise, creating a vehicle that would allow it to do significant flights whose design then would filter into the final vehicle for orbital flight,” Sirangelo told me.
We’ll provide further details as they become known.
Juno Portrait of Earth
This false color composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
See below a gallery of Earth from Juno[/caption]
During a crucial speed boosting slingshot maneuver around Earth on Oct. 9, NASA’s Jupiter-bound Juno probe snapped a dazzling gallery of portraits of our Home Planet over the South American coastline and the Atlantic Ocean. See our mosaics of land, sea and swirling clouds above and below, including several shown in false color.
But an unexpected glitch during the do or die swing-by sent the spacecraft into ‘safe mode’ and delayed the transmission of most of the raw imagery and other science observations while mission controllers worked hastily to analyze the problem and successfully restore Juno to full operation on Oct. 12 – but only temporarily!
Because less than 48 hours later, Juno tripped back into safe mode for a second time. Five days later engineers finally recouped Juno and it’s been smooth sailing ever since, the top scientist told Universe Today.
“Juno is now fully operational and on its way to Jupiter,” Juno principal investigator Scott Bolton told me today. Bolton is from the Southwest Research Institute (SwRI), San Antonio, Texas.
“We are completely out of safe mode!”
With the $1.1 Billion Juno probe completely healthy once again and the nail-biting drama past at last, engineers found the time to send the stored photos and research data back to ground station receivers.
“The science team is busy analyzing data from the Earth flyby,” Bolton informed me.
The amateur image processing team of Ken Kremer and Marco Di Lorenzo has stitched together several portraits from raw images captured as Juno sped over Argentina, South America and the South Atlantic Ocean and within 347 miles (560 kilometers) of the surface. We’ve collected the gallery here for all to enjoy.
Several portraits showing the swirling clouds and land masses of the Earth’s globe have already been kindly featured this week by Alan Boyle at NBC News and at the Daily Mail online.
Raw images from the Junocam camera are collected in strips – like a push broom. So they have to be carefully reconstructed and realigned to match up. But it can’t be perfect because the spacecraft is constantly rotating and its speeding past Earth at over 78,000 mph.
So the perspective of Earth’s surface features seen by Junocam is changing during the imaging.
And that’s what is fascinating – to see the sequential view of Earth’s beautiful surface changing as the spacecraft flew over the coast of South America and the South Atlantic towards Africa – from the dayside to the nightside.
It’s rare to get such views since only a few spacecraft have swung by Earth in this manner – for example Galileo and MESSENGER – on their way to distant destinations.
Coincidentally this week, the Cygnus cargo carrier departed the ISS over South America.
Fortunately, the Juno team knew right from the start that the flyby of Earth did accomplish its primary goal of precisely targeting Juno towards Jupiter – to within 2 kilometers of the aim point, despite going into safe mode.
“We are on our way to Jupiter as planned,” Juno Project manager Rick Nybakken, told me in a phone interview soon after the flyby of Earth. Nybakken is from NASA’s Jet Propulsion Lab in Pasadena, CA.
“None of this affected our trajectory or the gravity assist maneuver – which is what the Earth flyby is,” he said.
It also accelerated the ships velocity by 16,330 mph (26,280 km/h) – thereby enabling Juno to be captured into polar orbit about Jupiter on July 4, 2016.
The safe mode did not impact the spacecraft’s trajectory one smidgeon!
It was likely initiated by an incorrect setting for a fault protection trigger for the spacecraft’s battery when Juno was briefly in an eclipse during the flyby.
Nybakken also said that the probe was “power positive and we have full command ability,” while it was in safe mode.
Safe mode is a designated fault protective state that is preprogrammed into spacecraft software in case something goes amiss. It also aims the craft sunwards thereby enabling the solar arrays to keep the vehicle powered.
The Earth flyby maneuver was necessary because the initial Atlas V rocket launch on Aug. 5, 2011 from Cape Canaveral Air Force Station, FL was not powerful enough to place Juno on a direct trajectory flight to Jupiter.
As of today, Juno is more than was 6.7 million miles (10.8 million kilometers) from Earth and 739 million miles (7.95 astronomical units) from Jupiter. It has traveled 1.01 billion miles (1.63 billion kilometers, or 10.9 AU) since launch.
With Juno now on course for our solar system’s largest planet, there won’t be no any new planetary images taken until it arrives at the Jovian system in 2016. Juno will then capture the first ever images of Jupiter’s north and south poles.
We have never seen Jupiter’s poles imaged from the prior space missions, and it’s not possible from Earth.
During a year long mission at Jupiter, Juno will use its nine science instruments to probe deep inside the planet to reveal its origin and evolution.
“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”
Based on what we’ve seen so far, Junocam is sure to provide spectacular views of the gas giants poles and cloud tops.
Commercial space took another major leap forward this morning, Oct 22., when the privately developed Cygnus cargo vehicle undocked from the International Space Station on its historic maiden flight and successfully completed a highly productive month long stay during its demonstration mission – mostly amidst the US government shutdown.
The Cygnus was maneuvered about 10 meters (30 feet) away from the station and held in the steady grip of the stations fully extended robotic arm when astronauts Karen Nyberg and Luca Parmitano unlatched the arm and released the ship into free space at 7:31 a.m. EDT today – signifying an end to joint flight operations.
The next Cygnus resupply vessel is due to blast off in mid-December and is already loaded with new science experiments for microgravity research and assorted gear and provisions.
After the Expedition 37 crew members quickly pulled the arm back to a distance 1.5 meters away from Cygnus, ground controllers issued a planned “abort” command to fire the ships thrusters and safely depart from the massive orbiting lab complex.
“It’s been a great mission. Nice work today!” radioed Houston Mission Control at NASA’s Johnson Space Center.
The vehicles were flying over the Atlantic Ocean and off the east coast of Argentina as Cygnus left the station some 250 miles (400 km) overhead in low Earth orbit.
The event was carried live on NASA TV and Cygnus was seen moving rapidly away.
Barely five minutes later Cygnus was already 200 meters away, appeared very small in the cameras view and exited the imaginary “Keep Out Sphere” – a strictly designated safety zone around the million pound station.
The Cygnus resupply ship delivered about 1,300 pounds (589 kilograms) of cargo, including food, clothing, water, science experiments, spare parts and gear to the six person Expedition 37 crew.
After the crew unloaded all that cargo, they packed the ship with 2,850 pounds of no longer needed trash.
On Wednesday (Oct. 23), a pair of deorbit burns with target Cygnus for a destructive reentry back into the Earth’s atmosphere at 2:18 p.m. EDT, to plummet harmlessly into the Pacific Ocean.
Cygnus was developed by Orbital Sciences Corp. with seed money from NASA in a public-private partnership between NASA and Orbital Sciences under NASA’s COTS commercial transportation initiative.
SpaceX Corp. was also awarded a COTS contract to develop the Dragon cargo carrier so that NASA would have a dual capability to stock up the station.
COTS was aimed at fostering the development of America’s commercial space industry to deliver critical and essential supplies to the ISS following the retirement of the Space Shuttle program.
“Congratulations to the teams at Orbital Sciences and NASA who worked hard to make this demonstration mission to the International Space Station an overwhelming success,” NASA Administrator Charles Bolden said in a statement.
“We are delighted to now have two American companies able to resupply the station. U.S. innovation and inspiration have once again shown their great strength in the design and operation of a new generation of vehicles to carry cargo to our laboratory in space. Orbital’s success today is helping make NASA’s future exploration to farther destinations possible.”
America completely lost its capability to send humans and cargo to the ISS when NASA’s space shuttles were forcibly retired in 2011. Orbital Sciences and SpaceX were awarded NASA contracts worth over $3 Billion to restore the unmanned cargo resupply capability over 20 flights totally.
“Antares next flight is scheduled for mid December,” according to Frank Culbertson, former astronaut and now Orbital’s executive Vice President responsible for the Antares and Cygnus programs.
Remains of a water-filled asteroid are circling a dying white dwarf star, right now, about 150 light-years from us. The new find is the first demonstration of water and a rocky surface in a spot beyond the solar system, researchers say.
The discovery is exciting to the astronomical team because, according to them, it’s likely that water on Earth came from asteroids, comets and other small bodies in the solar system. Finding a watery rocky body demonstrates that this theory has legs, they said. (There are, however, multiple explanations for water on Earth.)
“The finding of water in a large asteroid means the building blocks of habitable planets existed – and maybe still exist – in the GD 61 system, and likely also around substantial number of similar parent stars,” stated lead author Jay Farihi, from Cambridge’s Institute of Astronomy.
“These water-rich building blocks, and the terrestrial planets they build, may in fact be common – a system cannot create things as big as asteroids and avoid building planets, and GD 61 had the ingredients to deliver lots of water to their surfaces. Our results demonstrate that there was definitely potential for habitable planets in this exoplanetary system.”
More intriguing, however, is researchers found this evidence in a star system that is near the end of its life. So the team is framing this as a “look into our future”, when the Sun evolves into a white dwarf .
The water likely came from a “minor planet” that was at least 56 miles (90 kilometers) in diameter. Its debris was pulled into the atmosphere of the star, which was then examined by spectroscopy. This study revealed the ingredients of rocks inside the star, including magnesium, silicon and iron. Researchers then compared these elements to how abundant oxygen was, and found that there was in fact more oxygen than expected.
“This oxygen excess can be carried by either water or carbon, and in this star there is virtually no carbon – indicating there must have been substantial water,” stated co-author Boris Gänsicke, from the University of Warwick.
“This also rules out comets, which are rich in both water and carbon compounds, so we knew we were looking at a rocky asteroid with substantial water content – perhaps in the form of subsurface ice – like the asteroids we know in our solar system such as Ceres.”
The measurements were obtained in ultraviolet with the Hubble Space Telescope’s cosmic origins spectrograph. What’s more, the researchers suspect there are giant exoplanets in the area because it would take a huge push to move this object from the asteroid belt — a push that most likely came from big planet.
“This supports the idea that the star originally had a full complement of terrestrial planets, and probably gas giant planets, orbiting it – a complex system similar to our own,” Farihi added.
This is completely impossible, but fun just the same. How would the Moon look from Earth if it orbited at just 420 km above our planet, which is the same orbital distance as the International Space Station? Here, for the sake of fun, we’re disregarding the Roche Limit and how a body as large as the Moon being that close would completely disrupt so many things on our planet. Plus, as people discussing this on Google+ said, it would be horrible for astrophotography!
Some day, human explorers will land a spacecraft on the surface of Europa, Enceladus, Titan, or some other icy world and investigate first-hand the secrets hidden beneath its frozen surface. When that day comes — and it can’t come too soon for me! — it may look a lot like this.
One of a series of amazing photos by Stefan Hendricks taken during the Antarctic Winter Ecosystem & Climate Study (AWECS), a study of Antarctica’s sea ice conducted by the Alfred Wegener Institute in Germany, the image above shows researchers working on the Antarctic ice during a winter snowstorm. It’s easy to imagine them on the night-side surface of Europa, with the research vessel Polarstern standing in for a distant illuminated lander (albeit rather oversized).
Hey, one can dream!
One of the goals of the campaign, called CryoVex, was to look at how ESA’s CryoSat mission can be used to understand the thickness of sea ice in Antarctica. The extent of the Antarctic sea ice in winter is currently more than normal, which could be linked to changing atmospheric patterns.
Antarctica’s massive shelves of sea ice in winter are quite dramatic landscapes, and remind us that there are very alien places right here on our own planet.
See this and more photos from the mission on the ESA website (really, go check them out!)