Space Station Gets a New Telescope

Canadian astronaut Chris Hadfield with the new ISERV (International Space Station SERVIR Environmental Research and Visualization System), a modified Celestron telescope for Earth observation. Credit: NASA/CSA

Astronauts on the International Space Station today are installing a new modified Celestron telescope. This won’t be used to observe the stars, but instead look back to Earth to acquire imagery of specific areas of the world for disaster analysis and environmental studies. Called ISERV (International Space Station SERVIR Environmental Research and Visualization System), it is a new remote-controlled imaging system.

“Essentially, it will be pointed out of one of the windows of the Space Station, and used for Earth imaging,” Andrea Tabor, social media coordinator for Celestron told Universe Today, “especially for natural disasters and to help countries that may not have their own Earth-observing satellites to help assess damage and assist with evacuations.”

ISERV will be installed in the Window Observational Research Facility (WORF) in the station’s Destiny laboratory.

The Celestron CPC 925, is a 9.25″ diffraction limited Schmidt-Cassegrain telescope and off-the-shelf sells for $2,500 including the mount, (just the 9.25 inch optical tube sells for $1,479). It was modified at the Marshall Space Flight Center.

“They used the fork mount that comes with it,” Tabor said, “but they just removed the tripod and replaced it with a specialized mount to anchor and stabilize it on the ISS.”

Because it is pointed out of a window and because the ISS is moving so fast, it would be difficult to align it with the sky and do any celestial imaging, Tabor said.

ISERV is the first of what is hoped to be a series of space station Earth-observing instruments, each to feature progressively more capable sensors to help scientists gain operational experience and expertise, as well as help design better systems in the future. Scientists envision that future sensors could be mounted on the exterior of the station for a clearer, wider view of Earth.

It arrived on the ISS in July of 2012 on board the Japanese HTV-3.

“It’s been up there sitting in a box, so today was unboxing and assembly day,” Tabor said. She added that they hope to post some of the first images from the telescope on their Twitter and Facebook pages.

The telescope will normally be operated by remote-controlled from Earth and so the astronauts won’t likely be working with it directly except for assessing its operation or troubleshooting any problems.

“Images captured from ISERV on the ISS could provide valuable information back here on Earth,” said Dan Irwin, SERVIR program director at Marshall. “We hope it will provide new data and information from space related to natural disasters, environmental crises and the increased effects of climate variability on human populations.”

Image via @Cmdr_Hadfield on Twitter

New South Pole Marker Honors Planets, Pluto, and Armstrong

The new geographic South Pole marker that stands at 90º S latitude. (Credit: Jeffrey Donenfeld)

Because the Amundsen-Scott South Pole Station sits atop a layer of moving ice almost 2 miles thick, the location of the marker for the Earth’s geographic South Pole needs to be relocated regularly. Tradition has this done on New Year’s Day, and so this past January 1 saw the unveiling of the newest South Pole marker: a beautiful brass-and-copper design created by Station machinist Derek Aboltins.

pole-marker-top-closeup-1The top of the marker has seven small discs that represent the planets in the positions they would be in on Jan. 1, 2013, as well as two larger discs representing the setting Sun and Moon. Next to the Moon disc are the engraved words “Accomplishment & Modesty,” a nod to the first man on the Moon.

“This was a reference to honor Neil Armstrong, as he passed away when I was making this section with the moon,” Aboltins said.

And for folks who might think the planet count on the new marker is one too few, a surprise has been tucked away on the reverse side.

“For those of you who still think Pluto should be a planet, you’ll find it included underneath, just to keep everyone happy,” Aboltins said. “Bring back Pluto, I say!”

And so, on the underside of the marker along with the signatures of South Pole Station researchers and workers, is one more disc — just for the distant “demoted” dwarf planet.

pole-marker-underside

Underside of the South Pole marker (Credit: Jeffrey Donenfeld)

“For those of you who still think Pluto should be a planet, you’ll find it included underneath, just to keep everyone happy!”

– Derek Aboltins, designer and machinist

(See high resolution versions of these images here.)

The marker was placed during a ceremony on the ice on Jan. 1, during which time the previous flag marker was removed and put into its new position.

8375171352_5f2b446640_b

(Photo credit: Jeffrey Donenfeld)

According to The Antarctic Sun:

“Almost all hands were present for the ceremony, including station manager Bill Coughran, winter site manager Weeks Heist, and National Science Foundation representative Vladimir Papitashvili. The weather was sunny and a warm at just below minus 14 degrees Fahrenheit.”

(Even though it’s mid-summer in Antarctica, “warm” is clearly a relative term!)

Read more about this and other Antarctic news on The Antarctic Sun site, and see more photos from Antarctica by Jeffrey Donenfeld here.

_____________________

Named for explorers Roald Amundsen and Robert F. Scott, who attained the South Pole in 1911 and 1912, the Amundsen-Scott South Pole Station stands at an elevation of 2,835 meters (9,306 feet) on Antarctica’s ice sheet, which is about 2,700 meters (9,000 feet) thick at that location. The station drifts with the ice sheet at about 10 meters (33 feet) each year. Research is conducted at the station in the fields of astronomy, astrophysics, glaciology, geophysics and seismology, ocean and climate systems, biology, and medicine.

AR1654 is a Monster Sunspot. (And It’s Aiming Our Way.)

Active Region 1654 on the Sun’s western limb, seen by SDO on Jan. 11 (NASA/SDO/HMI team. Diagram by J. Major.)

Like an enormous cannon that is slowly turning its barrel toward us, the latest giant sunspot region AR1654 is steadily moving into position to face Earth, loaded with plenty of magnetic energy to create M-class flares — moderate-sized outbursts of solar energy that have the potential to cause brief radio blackouts on Earth and, at the very least, spark bright aurorae around the upper latitudes.

According to SpaceWeather.com, AR1654 “could be the sunspot that breaks the recent lengthy spell of calm space weather around our planet.”

The image above, captured by NASA’s Solar Dynamics Observatory earlier today, shows the structure of AR1654 upon the Sun’s photosphere — its light-emitting “surface” layer. Stretching many tens of thousands of miles, this magnetic solar blemish easily dwarfs our entire planet. And it’s not just a prediction that this sunspot will unleash a flare — it already has.

AR1654 came around the limb of the sun crackling with activity. Shortly after the probability of AR1654 releasing a flare was raised to 50% it did just that, letting loose with a burst of magnetic energy that was observed by SDO’s multi-channel cameras. Watch the video below:

Peaking at 9:11 UTC, this M1-class flare won’t have much more effect on Earth than perhaps some radio and GPS interference and maybe increased auroral activity. But AR1654 is still evolving and growing… and moving to face us.

In the meantime, solar astronomers and observatories like SDO are keeping an ever-watchful eye on this magnetic monster.

Keep up with the latest news here on Universe Today, on the SDO mission site and on spaceweather.com.

UPDATE 1/12: According to the NOAA, AR1654 has a 5% chance of producing an X-class flare, based on its current magnetic activity and alignment.

A sunspot is a magnetically active region on the sun that appears dark because it’s relatively cooler than the surrounding area—6,000ºF (3,300ºC) versus 10,000ºF (5,500º C). Sunspots are where solar flares are most likely to occur since the magnetic fields in these active regions can build up enough energy to break, releasing bursts of intense radiation into the solar system.

What Craters on the Moon Teach Us About Earth

When the Moon was receiving its highest number of impacts, so was Earth. Credit: Dan Durda

Some questions about our own planet are best answered by looking someplace else entirely… in the case of impact craters and when, how and how often they were formed, that someplace can be found shining down on us nearly every night: our own companion in space, the Moon.

By studying lunar impact craters both young and old scientists can piece together the physical processes that took place during the violent moments of their creation, as well as determine how often Earth — a considerably bigger target — was experiencing similar events (and likely in much larger numbers as well.)

With no substantial atmosphere, no weather and no tectonic activity, the surface of the Moon is a veritable time capsule for events taking place in our region of the Solar System. While our constantly-evolving Earth tends to hide its past, the Moon gives up its secrets much more readily… which is why present and future lunar missions are so important to science.

linne_shade_scalebTake the crater Linné, for example. A young, pristine lunar crater, the 2.2-km-wide Linné was formed less than 10 million years ago… much longer than humans have walked the Earth, yes, but very recently on lunar geologic terms.

It was once thought that the circular Linné (as well as other craters) is bowl-shaped, thus setting a precedent for the morphology of craters on the Moon and on Earth. But laser-mapping observations by NASA’s Lunar Reconnaissance Orbiter (at right) determined in early 2012 that that’s not the case; Linné is actually more of a truncated inverted cone, with a flattened interior floor surrounded by sloping walls that rise up over half a kilometer to its rim.

On our planet the erosive processes of wind, water, and earth soon distort the shapes of craters like Linné, wearing them down, filling them in and eventually hiding them from plain sight completely. But in the Moon’s airless environment where the only weathering comes from more impacts they retain their shape for much longer lengths of time, looking brand-new for many millions of years. By studying young craters in greater detail scientists are now able to better figure out just what happens when large objects strike the surface of worlds — events that can and do occur quite regularly in the Solar System, and which may have even allowed life to gain a foothold on Earth.

Most of the craters visible on the Moon today — Linné excluded, of course — are thought to have formed within a narrow period of time between 3.8 and 3.9 billion years ago. This period, called the Late Heavy Bombardment, saw a high rate of impact events throughout the inner Solar System, not only on the Moon but also on Mars, Mercury, presumably Venus and Earth as well. In fact, since at 4 times its diameter the Earth is a much larger target than the Moon, it stands to reason that Earth was impacted many more times than the Moon as well. Such large amounts of impacts introduced material from the outer Solar System to the early Earth as well as melted areas of the surface, releasing compounds like water that had been locked up in the crust… and even creating the sorts of environments where life could have begun to develop and thrive.

(It’s been suggested that there was even a longer period of heavy impact rates nicknamed the “late late heavy bombardment” that lingered up until about 2.5 billion years ago. Read more here.)

In the video below lunar geologist David Kring discusses the importance of impacts on the evolution of the Moon, Earth and eventually life as we know it today:

“Impact cratering in Earth’s past has affected not only the geologic but the biologic evolution of our planet, and we were able to deduce that in part by the lessons we learned by studying the Moon… and you just have to wonder what other things we can learn by going back to the Moon and studying that planetary body further.”

– David Kring

David is a senior staff scientist at the Lunar and Planetary Institute in Houston, TX.

It’s these sorts of connections that make lunar exploration so valuable. Keys to our planet’s past are literally sitting on the surface of the Moon, a mere 385,000 km away, waiting for us to just scoop them up and bring them back. While the hunt for a biological history on Mars or resource-mining an asteroid are definitely important goals in their own right, only the Moon holds such direct references to Earth. It’s like an orbiting index to the ongoing story of our planet — all we have to do is make the connections.

 

Learn more about lunar research at the LPI site here, and see the latest news and images from LRO here.

Astronaut Captures Incredible Images of Australian Bush Fires

Lines of scorched earth and huge smoke plumes from wild fires in Australia were visible from the International Space Station on January 8, 2013. Credit: NASA/Chris Hadfield

Intense wild fires, or bush fires as they are called in Australia, are burning out of control across southeast Australia with authorities describing the condition as “catastrophic.” The huge fires were easily visible from the International Space Station on Tuesday and onboard, Canadian astronaut Chris Hadfield has been watching from above.

See more of his images below:

A long line of bush fires range in Australia, and are visible from space. Credit: NASA/Chris Hadfield

Officials say more than 130 fires, many uncontained, are burning in the heavily populated New South Wales state, where dry conditions are fueling the fires as temperatures reached 45 degrees and wind gusts reached more than 100 kilometers per hour.

Huge plumes of smoke from bush fires in Australia were visible from the International Space Station. Credit: NASA/Chris Hadfield.
Huge plumes of smoke from bush fires in Australia were visible from the International Space Station. Credit: NASA/Chris Hadfield.

In Tasmania, an island south of Australia, rescue officials are still trying to locate around 100 residents who have been missing after a fire tore through a village, destroying dozens of homes. You can see images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite that were taken on January 7, 2013 at the Earth Observatory website.

Follow Chris Hadfield on Twitter to see more images.

Additional information on the bush fires from Voice of America

Stunning View from Orbit: Dramatic Volcanoes at Dawn

Volcanoes of Kamchatka, Russia at dawn, as seen from the International Space Station. Credit: NASA/CSA/Chris Hadfield

A stunning view from orbit! Astronaut Chris Hadfield captured this shot of the volcanoes of Kamchatka in Russia. “Volcanoes look dramatic at dawn,” Hadfield said via Twitter. “They startled me when I spotted them through the lens.”

Note the huge shadows created by the Sun, which is low on the horizon at dawn.

These are just a few of the 160 volcanoes on the Kamchatka Peninsula in the far eastern part of Russia. 29 of the 160 are active. Thanks to Peter Caltner on Twitter who identified the volcanoes seen here: Tolbachik (at left, in clouds and smoke plume, active presently); Ushkovsky (in the back, right); Kliuchevskoi (right edge, the peak in front). Little ones in the foreground: Udina (left) and Zimina (right).

These jagged peaks are obviously an eye-catching landmark from orbit, as they have been a target of observations before — by Yuri Malenchenko in November of 2012 and by Clay Anderson in December of 2011.

The Most Remote Workplace on Earth

ESA’s Proba-1 satellite imaged the French-Italian Concordia base on November 21, 2012 (ESA)

Located in one of the loneliest locations on Earth, the French-Italian Concordia station was captured on high-resolution camera by ESA’s Proba-1 microsatellite last month, showing the snow-covered base and 25 square kilometers of the virtually featureless expanse of Antarctic ice surrounding it.

A cluster of scientific research buildings situated 3233 meters above sea level in the Antarctic interior, Concordia is one of the only permanently-crewed stations on the southern continent. Around 12–15 researchers and engineers spend months — sometimes over a year —  in isolation at Concordia, where during the winter months there are no deliveries, no chance of evacuation, temperatures below -80 ºC (-112 ºF) and the next closest station is 600 km (370 miles) away. It’s like working on another planet.

And that’s precisely why they’re there.

The researchers who live and work at Concordia are there because of the station’s incredible remoteness and harsh conditions. This allows them to study not only the pristine Antarctic ice beneath their feet but also how humans behave in such an environment, where a small team must learn to work together and merely venturing outside can be a hazardous task.

It’s the next closest thing to an actual outpost on Mars, or the Moon. Even the astronauts on the ISS aren’t as far removed from the rest of the world.

(Although the night sky views from Concordia can be comparably stunning.)

Concordia Base boasts some of the clearest, darkest — and coldest — skies on Earth (ESA/IPEV/PNRA – A. Salam)

Read more: Milky Way to Concordia Base… Come In, Concordia Base…

“Boredom and monotony are the enemy,” wrote ESA-sponsored medical researcher Dr. Alex Salam, regarding his 2009 13-month stay. “The darkness has a habit of sucking the motivation out of even the hardiest. But despite the effects the darkness can have on sleep, mood and cognitive performance, there is something inherently special about the Antarctic night. The heavens present a view that many stargazers can only ever dream of. You just have to try and catch a glimpse of the stars before your eyelashes freeze together!

“Seeing the station from a distance with the Milky Way towering far above it never failed to make me feel both awe inspired and simultaneously insignificant.”

And another recent long-term resident of Concordia, Dr. Alexander Kumar, who departed the base on November 15, shared this reflection as his year-long term was approaching its end:

“Concordia has, in removing me from civilisation where sometimes it is harder to step back, enabled me to see the bigger picture, provide a unique experience and reminded me of somethings, setting a course and direction for the future… I think once you come to Antarctica, drawn to it under a spell like a seaman to a mermaid, you never can break the link you form with this raw, rugged and ruthlessly beautiful and enticing continent.”

 The Sun returns to the Antarctic plateau (ESA/IPEV/PNRA – A. Salam)

“It’s the closest thing I’ll ever have to living on another planet.”

– Dr. Alex Salam

Read more about Concordia on the newly-redesigned ESA site here.

In orbit for over 11 years, Proba-1’s unique images are used by hundreds of scientific teams worldwide. To date its main Compact High Resolution Imaging Spectrometer (CHRIS) has acquired over 20,000 environmental science images used by a total of 446 research groups in 60 countries.

What Earth Looked like on 12/12/12

Earth, as seen by the GOES15 satellite on December 12, 2012. Credit: NASA/NOAA GOES Project/Dennis Chesters

Although we don’t subscribe to hokum like numerology or think that dates on a man-made calendar could have any sort of cosmic significance, there is something about a little symmetry. The GOES-15 satellite captured this image of Earth today, which is 12/12/12 on the Gregorian calendar, and even added a bonus of taking the image at 1200 UTC.

Too bad the GOES-12 spacecraft had some thruster problems and is currently in a standby mode.

Dennis Chesters, project scientist of NASA’s GOES Project at the NASA Goddard Space Flight Center said this image does something significant, however: the fourth tropical cyclone in the southern Pacific Ocean. Newborn Tropical Storm Evan was born today, Dec. 12, 2012 at 1500 UTC (10 a.m. EST) and appears as a rounded area of clouds in the bottom left corner of the image. Tropical Storm Evan is about 145 nautical miles west of Pago Pago, American Samoa.

See a larger version of this image here.

“Overview:” The Perspective-Altering Effect of Seeing Earth from Space

For over 40 years, the ‘Blue Marble’ images of Earth taken from space have provided a new perspective of our planet, and the sometimes life-altering experience of such views was described in Frank White’s book “The Overview Effect,” published in 1987. When it came out, I gobbled it up, and have since read it several times.

Today, on the 40th anniversary of the final launch of the Apollo missions to the Moon, a new short film “Overview” has been released, which explores this phenomenon through interviews with five astronauts who have experienced first-hand seeing Earth from space.

“This view of the Earth from space – the whole Earth perspective – is, I think, the true symbol of this age,” says White in the film. “I believe … there’s going to be a greater and greater interest in communicating this idea because, after all, it’s key to our survival. We have to start acting as one species with one destiny. We are not going to survive if we don’t do that.”

The film is an inspiring look at how exploring space has given us look back at our own world and changed our perceptions. While some may say the Overview Effect is only a concept, an ideal outcome of space exploration that has yet to become a global phenomenon, I believe it is certainly something we should strive for.

The Blue Marble image from Apollo 17. Credit: Image courtesy NASA Johnson Space Center. See more info about it here.

The film includes:
Edgar Mitchell – Apollo 14 astronaut and founder of the Institute of Noetic Sciences
Ron Garan – ISS astronaut and founder of humanitarian organization Fragile Oasis
Nicole Stott – Shuttle and ISS astronaut and member of Fragile Oasis
Jeff Hoffman – Shuttle astronaut and senior lecturer at MIT
Shane Kimbrough – Shuttle/ISS astronaut and Lieutenant Colonel in the US Army
Frank White – space theorist and author of the book ‘The Overview Effect’
David Loy- philosopher and author
David Beaver – philosopher and co-founder of The Overview Institute

It was produced by a group called Planetary Collective, specifically Guy Reid, Steve Kennedy and Christopher Ferstad.

OVERVIEW from Planetary Collective on Vimeo.

Pale Blue Dot: an Animated Contemplation

Every now and then, someone takes Carl Sagan’s wonderful reading of his iconic “Pale Blue Dot” narrative and turns it into an animated presentation, usually combining images and video footage of space exploration and Earthly vistas to create something undeniably spellbinding (Sagan’s narratives do have a tendency to have that effect!) Artist Adam Winnik went a slightly different route, however, creating an illustrated animation to go along with Sagan’s reading for his thesis project in 2011. The result is no less poignant… check it out above.

See more of Adam’s work on his website here.

Video: Adam Winnik. Music: Hans Zimmer “You’re So Cool”