A stunning view from orbit! Astronaut Chris Hadfield captured this shot of the volcanoes of Kamchatka in Russia. “Volcanoes look dramatic at dawn,” Hadfield said via Twitter. “They startled me when I spotted them through the lens.”
Note the huge shadows created by the Sun, which is low on the horizon at dawn.
These are just a few of the 160 volcanoes on the Kamchatka Peninsula in the far eastern part of Russia. 29 of the 160 are active. Thanks to Peter Caltner on Twitter who identified the volcanoes seen here: Tolbachik (at left, in clouds and smoke plume, active presently); Ushkovsky (in the back, right); Kliuchevskoi (right edge, the peak in front). Little ones in the foreground: Udina (left) and Zimina (right).
ESA’s Proba-1 satellite imaged the French-Italian Concordia base on November 21, 2012 (ESA)
Located in one of the loneliest locations on Earth, the French-Italian Concordia station was captured on high-resolution camera by ESA’s Proba-1 microsatellite last month, showing the snow-covered base and 25 square kilometers of the virtually featureless expanse of Antarctic ice surrounding it.
A cluster of scientific research buildings situated 3233 meters above sea level in the Antarctic interior, Concordia is one of the only permanently-crewed stations on the southern continent. Around 12–15 researchers and engineers spend months — sometimes over a year — in isolation at Concordia, where during the winter months there are no deliveries, no chance of evacuation, temperatures below -80 ºC (-112 ºF) and the next closest station is 600 km (370 miles) away. It’s like working on another planet.
And that’s precisely why they’re there.
The researchers who live and work at Concordia are there because of the station’s incredible remoteness and harsh conditions. This allows them to study not only the pristine Antarctic ice beneath their feet but also how humans behave in such an environment, where a small team must learn to work together and merely venturing outside can be a hazardous task.
It’s the next closest thing to an actual outpost on Mars, or the Moon. Even the astronauts on the ISS aren’t as far removed from the rest of the world.
(Although the night sky views from Concordia can be comparably stunning.)
Concordia Base boasts some of the clearest, darkest — and coldest — skies on Earth (ESA/IPEV/PNRA – A. Salam)
“Boredom and monotony are the enemy,” wrote ESA-sponsored medical researcher Dr. Alex Salam, regarding his 2009 13-month stay. “The darkness has a habit of sucking the motivation out of even the hardiest. But despite the effects the darkness can have on sleep, mood and cognitive performance, there is something inherently special about the Antarctic night. The heavens present a view that many stargazers can only ever dream of. You just have to try and catch a glimpse of the stars before your eyelashes freeze together!
“Seeing the station from a distance with the Milky Way towering far above it never failed to make me feel both awe inspired and simultaneously insignificant.”
And another recent long-term resident of Concordia, Dr. Alexander Kumar, who departed the base on November 15, shared this reflection as his year-long term was approaching its end:
“Concordia has, in removing me from civilisation where sometimes it is harder to step back, enabled me to see the bigger picture, provide a unique experience and reminded me of somethings, setting a course and direction for the future… I think once you come to Antarctica, drawn to it under a spell like a seaman to a mermaid, you never can break the link you form with this raw, rugged and ruthlessly beautiful and enticing continent.”
The Sun returns to the Antarctic plateau (ESA/IPEV/PNRA – A. Salam)
“It’s the closest thing I’ll ever have to living on another planet.”
– Dr. Alex Salam
Read more about Concordia on the newly-redesigned ESA site here.
In orbit for over 11 years, Proba-1’s unique images are used by hundreds of scientific teams worldwide. To date its main Compact High Resolution Imaging Spectrometer (CHRIS) has acquired over 20,000 environmental science images used by a total of 446 research groups in 60 countries.
Earth, as seen by the GOES15 satellite on December 12, 2012. Credit: NASA/NOAA GOES Project/Dennis Chesters
Although we don’t subscribe to hokum like numerology or think that dates on a man-made calendar could have any sort of cosmic significance, there is something about a little symmetry. The GOES-15 satellite captured this image of Earth today, which is 12/12/12 on the Gregorian calendar, and even added a bonus of taking the image at 1200 UTC.
Too bad the GOES-12 spacecraft had some thruster problems and is currently in a standby mode.
Dennis Chesters, project scientist of NASA’s GOES Project at the NASA Goddard Space Flight Center said this image does something significant, however: the fourth tropical cyclone in the southern Pacific Ocean. Newborn Tropical Storm Evan was born today, Dec. 12, 2012 at 1500 UTC (10 a.m. EST) and appears as a rounded area of clouds in the bottom left corner of the image. Tropical Storm Evan is about 145 nautical miles west of Pago Pago, American Samoa.
For over 40 years, the ‘Blue Marble’ images of Earth taken from space have provided a new perspective of our planet, and the sometimes life-altering experience of such views was described in Frank White’s book “The Overview Effect,” published in 1987. When it came out, I gobbled it up, and have since read it several times.
Today, on the 40th anniversary of the final launch of the Apollo missions to the Moon, a new short film “Overview” has been released, which explores this phenomenon through interviews with five astronauts who have experienced first-hand seeing Earth from space.
“This view of the Earth from space – the whole Earth perspective – is, I think, the true symbol of this age,” says White in the film. “I believe … there’s going to be a greater and greater interest in communicating this idea because, after all, it’s key to our survival. We have to start acting as one species with one destiny. We are not going to survive if we don’t do that.”
The film is an inspiring look at how exploring space has given us look back at our own world and changed our perceptions. While some may say the Overview Effect is only a concept, an ideal outcome of space exploration that has yet to become a global phenomenon, I believe it is certainly something we should strive for.
The Blue Marble image from Apollo 17. Credit: Image courtesy NASA Johnson Space Center. See more info about it here.
The film includes:
Edgar Mitchell – Apollo 14 astronaut and founder of the Institute of Noetic Sciences
Ron Garan – ISS astronaut and founder of humanitarian organization Fragile Oasis
Nicole Stott – Shuttle and ISS astronaut and member of Fragile Oasis
Jeff Hoffman – Shuttle astronaut and senior lecturer at MIT
Shane Kimbrough – Shuttle/ISS astronaut and Lieutenant Colonel in the US Army
Frank White – space theorist and author of the book ‘The Overview Effect’
David Loy- philosopher and author
David Beaver – philosopher and co-founder of The Overview Institute
It was produced by a group called Planetary Collective, specifically Guy Reid, Steve Kennedy and Christopher Ferstad.
Every now and then, someone takes Carl Sagan’s wonderful reading of his iconic “Pale Blue Dot” narrative and turns it into an animated presentation, usually combining images and video footage of space exploration and Earthly vistas to create something undeniably spellbinding (Sagan’s narratives do have a tendency to have that effect!) Artist Adam Winnik went a slightly different route, however, creating an illustrated animation to go along with Sagan’s reading for his thesis project in 2011. The result is no less poignant… check it out above.
This image of Asia and Australia at night is a composite assembled from data acquired by the Suomi NPP satellite in April and October 2012. Credit: NASA, NOAA, and the Department of Defense.
Two months of night-time imagery gathered by the Suomi NPP satellite have resulted in a stunning new look at Earth at night, appropriately nicknamed the Black Marble.
The nighttime views were made possible by the new satellite’s “day-night band” of the Visible Infrared Imaging Radiometer Suite. VIIRS detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires, and reflected moonlight. In this case, auroras, fires, and other stray light have been removed to emphasize the city lights.
“This is not your father’s low light sensor!” said Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, speaking at the American Geophysical Union conference this week.
See more views and a video presentation of the VIIRS data below:
The new satellite is providing a much higher resolution across a greater band of light than previous night-light gathering satellites.
Originally developed for meteorologists to be able to look at nighttime clouds, the VIIRS data is providing a wide variety of information. “We are getting as much mileage from these data sets as we can,” said Chris Elvidge, who leads the Earth Observation Group at NOAA’s National Geophysical Data Center.
Elvidge and Miller said the data is being used to model population distribution, fossil fuel and CO2 emissions, and other information that can be gleaned from nighttime lights such finding power outages, determining astronomical viewing conditions, providing site selection for astronomical observatories, and looking at impacts of artificial lights on humans and animals.
The difference between electrical lights and fires, and night glow and auroras can even be determined by VIIRS.
North and South America at night is a composite assembled from data acquired by the Suomi NPP satellite in April and October 2012. Credit: NASA, NOAA, and the Department of Defense.
Europe, Africa, and the Middle East at night is a composite assembled from data acquired by the Suomi NPP satellite in April and October 2012. Credit: NASA, NOAA, and the Department of Defense.
Named for satellite meteorology pioneer Verner Suomi, NPP flies over any given point on Earth’s surface twice each day at roughly 1:30 a.m. and p.m. The polar-orbiting satellite flies 824 kilometers (512 miles) above the surface, sending its data once per orbit to a ground station in Svalbard, Norway, and continuously to local direct broadcast users distributed around the world,
.
Lake Vida lies within one of Antarctica’s cold, arid McMurdo Dry Valleys (Photo: Desert Research Institute)
Even inside an almost completely frozen lake within Antarctica’s inland dry valleys, in dark, salt-laden and sub-freezing water full of nitrous oxide, life thrives… offering a clue at what might one day be found in similar environments elsewhere in the Solar System.
Researchers from NASA, the Desert Research Institute in Nevada, the University of Illinois at Chicago and nine other institutions have discovered colonies of bacteria living in one of the most isolated places on Earth: Antarctica’s Lake Vida, located in Victoria Valley — one of the southern continent’s incredibly arid McMurdo Dry Valleys.
These organisms seem to be thriving despite the harsh conditions. Covered by 20 meters (65 feet) of ice, the water in Lake Vida is six times saltier than seawater and contains the highest levels of nitrous oxide ever found in a natural body of water. Sunlight doesn’t penetrate very far below the frozen surface, and due to the hypersaline conditions and pressure of the ice water temperatures can plunge to a frigid -13.5 ºC (8 ºF).
Yet even within such a seemingly inhospitable environment Lake Vida is host to a “surprisingly diverse and abundant assemblage of bacteria” existing within water channels branching through the ice, separated from the sun’s energy and isolated from exterior influences for an estimated 3,000 years.
Originally thought to be frozen solid, ground penetrating radar surveys in 1995 revealed a very salty liquid layer (a brine) underlying the lake’s year-round 20-meter-thick ice cover.
“This study provides a window into one of the most unique ecosystems on Earth,” said Dr. Alison Murray, one of the lead authors of the team’s paper, a molecular microbial ecologist and polar researcher and a member of 14 expeditions to the Southern Ocean and Antarctic continent. “Our knowledge of geochemical and microbial processes in lightless icy environments, especially at subzero temperatures, has been mostly unknown up until now. This work expands our understanding of the types of life that can survive in these isolated, cryoecosystems and how different strategies may be used to exist in such challenging environments.”
Sterile environments had to be set up within tents on Lake Vida’s surface so the researchers could be sure that the core samples they were drilling were pristine, and weren’t being contaminated with any introduced organisms.
According to a NASA press release, “geochemical analyses suggest chemical reactions between the brine and the underlying iron-rich sediments generate nitrous oxide and molecular hydrogen. The latter, in part, may provide the energy needed to support the brine’s diverse microbial life.”
“This system is probably the best analog we have for possible ecosystems in the subsurface waters of Saturn’s moon Enceladus and Jupiter’s moon Europa.”
– Chris McKay, co-author, NASA’s Ames Research Center
What’s particularly exciting is the similarity between conditions found in ice-covered Antarctic lakes and those that could be found on other worlds in our Solar System. If life could survive in Lake Vida, as harsh and isolated as it is, could it also be found beneath the icy surface of Europa, or within the (hypothesized) subsurface oceans of Enceladus? And what about the ice caps of Mars? Might there be similar channels of super-salty liquid water running through Mars’ ice, with microbes eking out an existence on iron sediments?
“It’s plausible that a life-supporting energy source exists solely from the chemical reaction between anoxic salt water and the rock,” explained Dr. Christian Fritsen, a systems microbial ecologist and Research Professor in DRI’s Division of Earth and Ecosystem Sciences and co-author of the study.
“If that’s the case,” Murray added, “this gives us an entirely new framework for thinking of how life can be supported in cryoecosystems on earth and in other icy worlds of the universe.”
More research is planned to study the chemical interactions between the sediment and the brine as well as the genetic makeup of the microbial communities themselves.
The research was published this week in the Proceedings of the National Academy of Science (PNAS). Read more on the DRI press release here, and watch a video below showing highlights from the field research.
Funding for the research was supported jointly by NSF and NASA. Images courtesy the Desert Research Institute. Dry valley image credit: NASA/Landsat. Europa image: NASA/Ted Stryk.)
The Moon photographed through the layers of the atmosphere from the ISS in December 2003 (NASA/JSC)
What lives at the edge of space? Other than high-flying jet aircraft pilots (and the occasional daredevil skydiver) you wouldn’t expect to find many living things over 10 kilometers up — yet this is exactly where one NASA researcher is hunting for evidence of life.
Earth’s stratosphere is not a place you’d typically think of when considering hospitable environments. High, dry, and cold, the stratosphere is the layer just above where most weather occurs, extending from about 10 km to 50 km (6 to 31 miles) above Earth’s surface. Temperatures in the lowest layers average -56 C (-68 F) with jet stream winds blowing at a steady 100 mph. Atmospheric density is less than 10% that found at sea level and oxygen is found in the form of ozone, which shields life on the surface from harmful UV radiation but leaves anything above 32 km openly exposed.
Sounds like a great place to look for life, right? Biologist David Smith of the University of Washington thinks so… he and his team have found “microbes from every major domain” traveling within upper-atmospheric winds.
Smith, principal investigator with Kennedy Space Center’s Microorganisms in the Stratosphere (MIST) project, is working to take a census of life tens of thousands of feet above the ground. Using high-altitude weather balloons and samples gathered from Mt. Bachelor Observatory in central Oregon, Smith aims to find out what kinds of microbes are found high in the atmosphere, how many there are and where they may have come from.
“Life surviving at high altitudes challenges our notion of the biosphere boundary.”
– David Smith, Biologist, University of Washington in Seattle
Although reports of microorganisms existing as high as 77 km have been around since the 1930s, Smith doubts the validity of some of the old data… the microbes could have been brought up by the research vehicles themselves.
“Almost no controls for sterilization are reported in the papers,” he said.
But while some researchers have suggested that the microbes could have come from outer space, Smith thinks they are terrestrial in origin. Most of the microbes discovered so far are bacterial spores — extremely hardy organisms that can form a protective shell around themselves and thus survive the low temperatures, dry conditions and high levels of radiation found in the stratosphere. Dust storms or hurricanes could presumably deliver the bacteria into the atmosphere where they form spores and are transported across the globe.
If they land in a suitable environment they have the ability to reanimate themselves, continuing to survive and multiply.
Although collecting these high-flying organisms is difficult, Smith is confident that this research will show how such basic life can travel long distances and survive even the harshest environments — not only on Earth but possibly on other worlds as well, such as the dessicated soil of Mars.
“We still have no idea where to draw the altitude boundary of the biosphere,” said Smith. This research will “address how long life can potentially remain in the stratosphere and what sorts of mutations it may inherit while aloft.”
Read more on Michael Schirber’s article for Astrobiology Magazine here, and watch David Smith’s seminar “The High Life: Airborne Microbes on the Edge of Space” held May 2012 at the University of Washington below:
Inset images – Top: layers of the atmosphere, via the Smithsonian/NMNH. Bottom: Scanning electron microscope image of atmospheric bacterial spores collected from Mt. Bachelor Observatory (NASA/KSC)
From the initial expansion of the Big Bang to the birth of the Moon, from the timid scampering of the first mammals to the rise — and fall — of countless civilizations, this fascinating new video by melodysheep (aka John D. Boswell) takes us on a breathless 90-second tour through human history — starting from the literal beginnings of space and time itself. It’s as imaginative and powerful as the most gripping Hollywood trailer… and it’s even inspired by a true story: ours.
Just released, this mesmerizing animation was created by Kevin Ward from images acquired by NOAA’s GOES-O/14 satellite. It shows the progression of Hurricane Sandy, currently a Category 1 hurricane off the coast of the eastern U.S. that’s poised to make a devastating impact when its heavy rains, winds and storm surges strike the shores of many major metropolitan coastal areas — including New York City and Washington, D.C.
Nearly 12 hours of time are compressed into 30 seconds, revealing the evolution of Sandy as it churned over the Atlantic on Sunday, October 28.
From NASA’s Earth Observatory’s YouTube page: This time-lapse animation shows Hurricane Sandy from the vantage point of geostationary orbit—35,800 km (22,300 miles) above the Earth. The animation shows Sandy on October 28, 2012, from 7:15 to 6:26 EDT. Light from the changing angles of the sun highlight the structure of the clouds. The images were collected by NOAA’s GOES-14 satellite. The “super rapid scan” images — one every minute from 7:15 a.m. until 6:30 p.m. EDT — reveal details of the storm’s motion.
Launched by NASA as GOES-O on June 27, 2009, GOES-14 is now under control by the NOAA, keeping an eye on the mid-Atlantic region from a geostationary position approximately 22,300 miles (35,800 km) above the Earth.
Sandy is expected to bring up to 10 inches of rain into New York, with a surge possible over 6 feet above high tide and wind gusts in excess of 75 mph. Once the hurricane moves inland there could be millions left without electricity. States of emergency have already been declared in many areas within Sandy’s projected path.
Currently Sandy is off the coast of North Carolina (at the time of this writing, 34.5 N / 70.5 W) moving northeast at 14 mph (22 km/h) with a low pressure of 950 mb… that’s as low or lower than some of the most powerful storms to hit the eastern U.S. over the past century, including the “perfect storm” of 1991 (a low system which also struck at Halloween) and the deadly 1938 “Great Hurricane”, which devastated coastal regions all across southern New England.
Stay up to date on Hurricane Sandy’s progress on the NOAA page here, with the latest public advisories being posted here.
NASA animation by Kevin Ward, using images from NOAA and the University of Wisconsin-Madison Cooperative Institute for Meteorological Satellite Studies.