Smoking Wildfires Seen From Space

Wildfires continue to rage across the western United States, burning forests and property alike, and even the most remote have sent up enormous plumes of smoke that are plainly visible to astronauts aboard the Space Station.

The photo above was taken by an Expedition 31 crew member on June 27, showing thick smoke drifting northeast from the Fontenelle fire currently burning in Wyoming. More plumes can be seen to the north.

Utah’s Great Salt Lake can be seen at the bottom right of the image. Its two-tone coloration is due to different species of algae that live in the lake, which is split by the physical barrier of a railroad causeway.

You can watch a video of the wildfires in the west taken from the ISS here, and see more “fire and smoke” news and images from space here.

Image: NASA

Pacific Glory

An optical phenomenon known as a “glory” is seen over a cloud-covered Pacific Ocean in this image from NASA’s Aqua satellite, acquired on June 20, 2012. Although the colors may make it look like a rainbow, the process behind its formation is somewhat different.

As vortices spiral off the leeward side of Guadalupe Island, off the western coast of Baja California, a shimmering spectrum of colors highlights a glory just west of the island. Glories are created when light from the Sun reflects back toward an observer off water droplets within clouds or fog. They are often seen from airplanes as a bright ring of light encircling a silhouetted shadow of the aircraft below, but are also visible from the ground and, sometimes, even from space.

From the NASA Earth Observatory website:

Although glories may look similar to rainbows, the way light is scattered to produce them is different. Rainbows are formed by refraction and reflection; glories are formed by backward diffraction. The most vivid glories form when an observer looks down on thin clouds with droplets that are between 10 and 30 microns in diameter. The brightest and most colorful glories also form when droplets are roughly the same size.

From the ground or an airplane, glories appear as circular rings of color. The space shuttle Columbia observed a circular glory from space in 2003. In the image above, however, the glory does not appear circular. That’s because MODIS scans the Earth’s surface in swaths perpendicular to the path followed by the satellite. And since the swaths show horizontal cross sections through the rings of the glory, the glory here appears as two elongated bands of color that run parallel to the path of the satellite, rather than a full circle.

Glories always appear around the spot directly opposite the Sun, from the perspective of the viewer. This spot is called the anti-solar point. To visualize this, imagine a line connecting the Sun, a viewer, and the spot where the glory appears. In this case, the anti-solar point falls about halfway between the two colored lines of the glory.

Click here to download the full-size image.

NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response. Read more here.

Tropical Storm Debby Douses the Gulf

Satellite image of tropical storm "Debby" over the Gulf

The eastern Gulf of Mexico is getting lashed by tropical storm Debby, which whipped up tornado-spawning winds and dumped inches of rain across much of Florida, Mississippi, Alabama and southern Georgia over the weekend. NASA’s Aqua satellite acquired this image on June 23, just after the depression strengthened to full tropical storm status.

Born over the warm, moist air of the Gulf off the coast of Mississippi on Saturday afternoon, Debby quickly strengthened to storm status with sustained winds currently reported at over 60 mph. Slow-moving at a 6 mph crawl to the northeast, Debby continues to drench the Gulf state coasts with inches of rain — up to 10 to 20 inches projected for some areas. Major flooding has already become a problem and reports of tornadoes have been coming in since Sunday afternoon.

Debby will likely become a hurricane at some point, although her future path is still not entirely known.

Launched on May 4, 2002, NASA’s Aqua satellite specializes in keeping track of the movement of water around the planet in all its various forms. Find out more about the Aqua mission here.

Image: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team

Blue Marble 2012: The Arctic Edition

This latest portrait of Earth from NASA’s Suomi NPP satellite puts the icy Arctic in the center, showing the ice and clouds that cover our planet’s northern pole. The image you see here was created from data acquired during fifteen orbits of Earth.

In January of this year Suomi NPP images of Earth were used to create an amazing “Blue Marble” image that spread like wildfire across the internet, becoming one of the latest “definitive” images of our planet. Subsequent images have been released by the team at Goddard Space Flight Center, each revealing a different perspective of Earth.

See a full-sized version of the image above here.

NASA launched the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (or NPP) on October 28, 2011 from Vandenberg Air Force Base. On Jan. 24, NPP was renamed Suomi National Polar-orbiting Partnership, or Suomi NPP, in honor of the late Verner E. Suomi. It’s the first satellite designed to collect data to improve short-term weather forecasts and increase understanding of long-term climate change.

Suomi NPP orbits the Earth about 14 times each day and observes nearly the entire surface of the planet.

Image credit: NASA/GSFC/Suomi NPP

 

Lightning From Space!

Photo of Earthly lightning seen from orbit by ESA astronaut Andre Kuipers

[/caption]

Here’s an amazing shot of a flash of lightning within storm clouds over west Africa, captured from orbit by ESA astronaut André Kuipers aboard the ISS.

Lightning is a common sight from Space Station, creating a constant light show for the astronaut and cosmonaut crew members. On average, lightning strikes the ground somewhere on Earth 100 times each second, and there are 5 to 10 times as many cloud-to-cloud flashes as there are ground strikes. That adds up to about 40 to 80 million flashes of lightning every day around the world! Considering that the ISS orbits Earth 16 times a day — and from quite a high viewpoint — it stands to reason that lightning is spotted quite often.

So although it may not be rare, lightning still makes for dramatic photos — especially to those of us here on the ground!

For more information on André and his ongoing long-duration PromISSe mission, visit the ESA site here.

Image credit: ESA/NASA

There’s a Hole in the Sky!

A vast hole in the cloud cover seen over the southern Pacific

[/caption]

Well, not the sky exactly, but definitely in the clouds!

This image, acquired by NASA’s Aqua satellite on June 5, shows an enormous oval hole in the clouds above the southern Pacific Ocean, approximately 500 miles (800 km) off the southwestern coast of Tasmania. The hole itself is several hundred miles across, and is the result of high pressure air in the upper atmosphere.

According to Rob Gutro of NASA’s Goddard Space Flight Center, “This is a good visible example of how upper-level atmospheric features affect the lower atmosphere, because the cloud hole is right under the center of a strong area of high pressure. High pressure forces air down to the surface blocking cloud formation. In addition, the altocumulus clouds are rotating counter-clockwise around the hole, which in the southern hemisphere indicates high pressure.”

The northwestern tip of Tasmania and King Island can be seen in the upper right of the image.

The Aqua mission is a part of the NASA-centered international Earth Observing System (EOS). Launched on May 4, 2002, Aqua has six Earth-observing instruments on board, collecting a variety of global data sets about the Earth’s water cycle. Read more about Aqua here.

Unexpected Find: ‘Rainforest’ of Phytoplankton Growth in the Arctic Ocean

Don Perovich, part of the ICESCAPE mission used a spectroradiometer to measure the amount of sunlight reflected from the surface of ice and melt ponds in the Chukchi Sea. Credit: NASA/Kathryn Hansen

[/caption]

Imagine finding a rainforest in the middle of a desert. That is how NASA scientists are equating a new biological discovery in Arctic Ocean. Microscopic plants called phytoplankton are actively growing under the thinning Arctic ice. In fact, the scientists say the phytoplankton growth in the Arctic may now be richer than any other ocean region on Earth. The finding reveals a new consequence of the Arctic’s warming climate, and gives researchers an important clue to understanding the impacts of a changing climate and environment on the Arctic Ocean and its ecology.

“If someone had asked me before the expedition whether we would see under-ice blooms, I would have told them it was impossible,” said Kevin Arrigo of Stanford University, leader of the ICESCAPE mission and lead author of the new study. “This discovery was a complete surprise.”

ICESCAPE, stand for Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment and in 2010 and 2011, scientists explored Arctic waters in the Beaufort and Chukchi seas along Alaska’s western and northern coasts onboard a U.S. Coast Guard icebreaker. The researchers drilled down through three-foot thick sea ice to study impacts of environmental variability and change in the Arctic on the ocean biology, ecology and biogeochemistry.

The researchers found the phytoplankton were extremely active, doubling in number more than once a day. Conversely, blooms in open waters grow at a much slower rate, doubling in two to three days. These growth rates are among the highest ever measured for polar waters.

Phytoplankton were thought to grow in the Arctic Ocean only after sea ice had retreated for the summer.

In July of 2011 the researchers observed blooms beneath the ice that extended from the sea-ice edge to 72 miles into the ice pack. Ocean current data revealed that these blooms developed under the ice and had not drifted there from open water, where phytoplankton concentrations can be high.

Previously, it was thought that sea ice blocked most sunlight needed for phytoplankton growth. Scientists now think that the thinning Arctic ice is allowing sunlight to reach the waters under the sea ice, spurring plant blooms where they had never been observed. The findings were published today in the journal Science.

Phytoplankton is the base of the marine food chain and they consume large amounts of carbon dioxide. Scientists will have to reassess the amount of carbon dioxide entering the Arctic Ocean through biological activity if the under-ice blooms turn out to be common.

“At this point we don’t know whether these rich phytoplankton blooms have been happening in the Arctic for a long time and we just haven’t observed them before,” Arrigo said. “These blooms could become more widespread in the future, however, if the Arctic sea ice cover continues to thin.”

The discovery of these previously unknown under-ice blooms also has implications for the broader Arctic ecosystem, including migratory species such as whales and birds. Phytoplankton are eaten by small ocean animals, which are eaten by larger fish and ocean animals. A change in the timeline of the blooms can cause disruptions for larger animals that feed either on phytoplankton or on the creatures that eat these microorganisms.

“It could make it harder and harder for migratory species to time their life cycles to be in the Arctic when the bloom is at its peak,” Arrigo said. “If their food supply is coming earlier, they might be missing the boat.”

The scientists said the discovery also may have major implications for the global carbon cycle and the ocean’s energy balance, and they may need to revise their understanding of the ecology of the Arctic and the region’s role in the Earth system.

You can see more images from the ICESCAPE expedition on NASA Goddard’s Flickr page.

The team’s paper: K.R. Arrigo et al. Massive phytoplankton blooms under Arctic sea ice. Science. doi:10.1126/science.1215065.

Source: NASA

Enter the Universe Today “Wonders of the Universe” Contest!

The iPad app features seven apps in one, all of which are linked 3D environments to explore: Subatomic, Atomic, Local Stars, Solar System, Milky Way, Galaxy and the Universe.

If you’ve seen the excellent BBC/Science Channel series “Wonders of the Universe,” you know that host Brian Cox’s natural enthusiasm for astronomy is nothing short of infectious. His explanations of far-out concepts bring the mysteries of our Universe down to Earth for everyone to understand… and now he and HarperCollins UK have brought them even closer — right to your iPad.

Now, here on Universe Today you can win a free copy of the app as well as a signed copy of his Wonders of the Universe or Wonders of the Solar System hardcover book!

[/caption]

Brian Cox’s Wonders of the Universe is designed for people with any level of understanding of astronomy, from casual explorers interested in the aesthetics to those looking for a deeper educational experience. Users can travel with Professor Brian Cox on his personal tours through the Universe, or jet off on a solo voyage of discovery through the planets of the Solar System to local stars and onwards through the galaxy.

Additionally, the app takes full advantage of the extensive capabilities of the new iPad, using a powerful 3D engine capable of handling high-resolution textures and complex animations created exclusively for iOS5.

Watch a personal tour of the app given by Prof. Brian Cox above.

Brian Cox’s Wonders of the Universe is available on the iTunes store now for an introductory price of $6.99 USD… or you can enter for a chance to win a free download along with a signed copy of a Wonders of the Universe or Wonders of the Solar System hardcover book (four of each are available!) by emailing [email protected] with subject line “Wonders App”.

Be sure to put your mailing address in the body of the email, and we will randomly select 8 winners to receive a signed book (our discretion) and a download code for the app.

The contest is open to all U.S. residents. One winner per mailing address. Please allow 2-3 weeks for delivery of the books. Winners will be chosen by June 10, 2012.

These are beautiful books that are chock full of information about our Universe as well as signed by Brian Cox himself… don’t miss out on a chance to get one!

Wonders of the Universe and Wonders of the Solar System books (HarperCollins UK)

Also, be sure to check out the latest app from HarperCollins UK, Fragile Earth. It uses amazing satellite imagery from all across the planet to put a century of climate change at your fingertips. It’s currently available from the iTunes store for $2.99 USD.

(App downloads and books provided courtesy of HarperCollins UK and Walker Sands Communications.)

When Everything On Earth Died

Based on fossil records, 250 million years ago over 90% of all species on Earth died out, effectively resetting evolution. (Image: Lunar and Planetary Institute)

[/caption]

Hey, remember that one time when 90% of all life on Earth got wiped out?

I don’t either. But it’s a good thing it happened because otherwise none of us would be here to… not remember it. Still, the end-Permian Extinction — a.k.a. the Great Dying — was very much a real crisis for life on Earth 252 million years ago. It makes the K-T extinction event of the dinosaurs look like a rather nice day by comparison, and is literally the most catastrophic event known to have ever befallen Earthly life. Luckily for us (and pretty much all of the species that have arisen since) the situation eventually sorted itself out. But how long did that take?

An alien Earth: what our planet looked like during the time of the Permian Extinction. (Via The Planetary Habitability Laboratory @ UPR Arecibo, NASA, Ron Blakey and Colorado Plateau Geosystems, Inc., and The PaleoMap Project)

The Permian Extinction was a perfect storm of geological events that resulted in the disappearance of over 90% of life on Earth — both on land and in the oceans. (Or ocean, as I should say, since at that time the land mass of Earth had gathered into one enormous continent — called Pangaea — and thus there was one ocean, referred to as Panthalassa.) A combination of increased volcanism, global warming, acid rain, ocean acidification and anoxia, and the loss of shallow sea habitats (due to the single large continent) set up a series of extinctions that nearly wiped our planet’s biological slate clean.

Exactly why the event occurred and how Earth returned to a state in which live could once again thrive is still debated by scientists, but it’s now been estimated that the recovery process took about 10 million years.

(Read: Recovering From a Mass Extinction is Slow Going)

Research by Dr. Zhong-Qiang Chen from the China University of Geosciences in Wuhan, and Professor Michael Benton from the University of Bristol, UK, show that repeated setbacks in conditions on Earth continued for 5 to 6 million years after the initial wave of extinctions. It appears that every time life would begin to recover within an ecological niche, another wave of environmental calamities would break.

“Life seemed to be getting back to normal when another crisis hit and set it back again,” said Prof. Benton. “The carbon crises were repeated many times, and then finally conditions became normal again after five million years or so.”

“The causes of the killing – global warming, acid rain, ocean acidification – sound eerily familiar to us today. Perhaps we can learn something from these ancient events.”

– Michael Benton, Professor of Vertebrate Palaeontology at the University of Bristol

It wasn’t until the severity of the crises abated that life could gradually begin reclaiming and rebuilding Earth’s ecosystems. New forms of life appeared, taking advantage of open niches to grab a foothold in a new world. It was then that many of the ecosystems we see today made their start, and opened the door for the rise of Earth’s most famous prehistoric critters: the dinosaurs.

“The event had re-set evolution,” said Benton. “However, the causes of the killing – global warming, acid rain, ocean acidification – sound eerily familiar to us today. Perhaps we can learn something from these ancient events.”

The team’s research was published in the May 27 issue of Nature Geoscience. Read more on the University of Bristol’s website here.

Stunning Visualization of 56 Years of Tornadoes in the US

The tracks of tornadoes in the US during the past 56 years, categorized by F-Scale. Credit: John Nelson

[/caption]

It’s a wonder of nature, baby. Using information from data.gov, tech blogger John Nelson has created this spectacular image of tornado paths in the US over a 56 year period. The graphic categorizes the storms by F-scale with the brighter neon lines representing more violent storms.

Makes you want to hang on to something solid.

Nelson also provided some stats on all the storms in the different categories:

The numbers represent total deaths, total injuries, average miles the storms traveled
F0: 7, 267, 2
F1: 111, 3270, 6.58
F2: 363, 10373, 11.4
F3: 958, 18160, 17.80
F4: 1912, 28427, 28.62
F5: 1013, 11038, 38.87

This provides a new appreciation for the term “suck zone” used in the movie “Twister.

While tornadoes don’t travel in straight lines, Nelson explains that based on the data, the vectors were created using touchdown points and liftoff points.

Nelson said he got the data from this Data.gov page doing a “tornado tracks” search.

See Nelson’s original post.