Astronomers have found four nearby white dwarf stars surrounded by disks of material that could be the remains of rocky planets much like Earth — and one star in particular appears to be in the act of swallowing up what’s left of an Earthlike planet’s core.
The research, announced today by the Royal Astronomical Society, gives a chilling look at the eventual fate that may await our own planet.
Astronomers from the University of Warwick used Hubble to identify the composition of four white dwarfs’ atmospheres, found during a survey of over 80 such stars located within 100 light-years of the Sun. What they found was a majority of the material was composed of elements found in our own Solar System: oxygen, magnesium, silicon and iron. Together these elements make up 93% of our planet.
In addition, a curiously low ratio of carbon was identified, indicating that rocky planets were at one time in orbit around the stars.
Since white dwarfs are the leftover cores of stellar-mass stars that have burnt through all their fuel, the material in their atmosphere is likely the leftover bits of planets. Once held in safe, stable orbits, when their stars neared the ends of their lives they expanded, possibly engulfing the innermost planets and disrupting the orbits of others, triggering a runaway collision effect that eventually shattered them all, forming an orbiting cloud of debris.
This could very well be what happens to our Solar System in four or five billion years.
“What we are seeing today in these white dwarfs several hundred light years away could well be a snapshot of the very distant future of the Earth,” said Professor Boris Gänsicke of the Department of Physics at the University of Warwick, who led the study. “During the transformation of the Sun into a white dwarf, it will lose a large amount of mass, and all the planets will move further out. This may destabilise the orbits and lead to collisions between planetary bodies as happened in the unstable early days of our solar systems.”
One of the white dwarfs studied, labeled PG0843+516, may even be actively eating the remains of an once-Earthlike world’s core.
The researchers identified an abundance of heavier elements like iron, nickel and sulphur in the atmosphere surrounding PG0843+516. These elements are found in the cores of terrestrial planets, having sunk into their interiors during the early stages of planetary formation. Finding them out in the open attests to the destruction of a rocky world like ours.
Of course, being heavier elements, they will be the first to be accreted by their star.
“It is entirely feasible that in PG0843+516 we see the accretion of such fragments made from the core material of what was once a terrestrial exoplanet,” Prof. Gänsicke said.
It’s an eerie look into a distant future, when Earth and the inner planets could become just some elements in a cloud.
It’s clear from this image of why a region in New Mexico, USA is called ‘White Sands.’ The dust plumes in this photograph taken by an astronaut on board the International Space Station show a dust storm in the White Sands National Monument. But this is a huge dust storm. The white dust plumes stretch across more than 120 kilometers (74 miles).
Caused by winds that channel the dust through a low point in the mountains, the vigorous winds are lifting dust particles from the valley floor to more than 1200 meters over the mountains. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite also captured a wider, regional view of the same storm on the same day.
The sand dunes of this national monument are white because they are composed of gypsum, a relatively rare dune-forming mineral. The dunes’ brilliance, especially contrasted against the nearby dark mountain slopes, makes them easily identifiable to orbiting astronauts. The white speck of the dunes was even visible to the Apollo astronaut crews looking back at Earth on the way to the Moon.
Data collected from a NASA ice-watching satellite reveal that the vast ice shelves extending from the shores of western Antarctica are being eaten away from underneath by ocean currents, which have been growing warmer even faster than the air above.
The animation above shows the circulation of ocean currents around the western Antarctic ice shelves. The shelf thickness is indicated by the color; red is thicker (greater than 550 meters), while blue is thinner (less than 200 meters).
Launched in January 2003, NASA’s ICESat (Ice, Cloud and land Elevation Satellite) studied the changing mass and thickness of Antarctica’s ice from its location in polar orbit. An international research team used over 4.5 million surface height measurements collected by ICESat’s GLAS (Geoscience Laser Altimeter System) instrument from Oct. 2005 to 2008. They concluded that 20 of the 54 shelves studied — nearly half — were losing thickness from underneath.
[/caption]
Most of the melting ice shelves are located in west Antarctica, where the flow of inland glaciers to the sea has also been accelerating — an effect that can be compounded by thinning ice shelves which, when grounded to the offshore seabed, serve as dams to hold glaciers back.
Melting of ice by ocean currents can occur even when air temperature remains cold, maintaining a steady process of ice loss — and eventually increased sea level rise.
“We can lose an awful lot of ice to the sea without ever having summers warm enough to make the snow on top of the glaciers melt,” said Hamish Pritchard of the British Antarctic Survey in Cambridge and the study’s lead author . “The oceans can do all the work from below.”
The study also found that Antarctica’s winds are shifting in response to climate change.
“This has affected the strength and direction of ocean currents,” Pritchard said. “As a result warm water is funnelled beneath the floating ice. These studies and our new results suggest Antarctica’s glaciers are responding rapidly to a changing climate.”
ICESat completed operations in 2010 and was decommissioned in August of that year. Its successor ICESat-2 is anticipated to launch in 2016.
Even though the Late Heavy Bombardment is somewhat of a controversial idea, new research has revealed this period of impacts to the Earth-Moon system may have lasted much longer than originally estimated and well into the time when early life was forming on Earth. Additionally, this “late-late” period of impacts — 3.8 billion to 2.5 billion years ago — was not for the faint of heart. Various blasts may have rivaled those that produced some of the largest craters on the Moon, and could have been larger than the dinosaur-killing impact that created the Chicxulub crater 65 million years ago.
“Our work provides a rationale that the last big impacts hit over an extended time,” said William Bottke principal investigator of the impact study team at the NASA Lunar Science Institute’s Center of Lunar Origin and Evolution (CLOE), based at the Southwest Research Institute (SwRI) in Boulder, Colorado.
The evidence for these prodigious impacts comes from bead-like impact ‘spherules’ found in millimeter- to centimeter-thick rock layers on Earth and date from the Archean period of Earth’s history, more recent than the estimated LHB period of 4.1 to 3.8 billion years ago.
“The beds speak to an intense period of bombardment of Earth,” Bottke said. “Their source long has been a mystery.”
The circles seen in the image above are all formerly molten droplets ejected into space when an asteroid struck the Earth about 2.56 billion years ago. The droplets returned to Earth and were concentrated at the base of the Reivilo layer in South Africa.
The spherules still contain substantial extraterrestrial material, such as iridium (176 parts per million), which rules out alternative sources for the spherules, such as volcanoes, according to Bruce Simonson, a geologist from the Oberlin College and Conservatory who has studied these ancient layers for decades.
The timing of these impacts also coincides with a record of large lunar craters being created more recently than 3.8-billion years ago.
At least 12 spherule beds deposited between 3.47 and 1.7 billion years ago have been found in protected areas on Earth, such as in shales deposited on the seafloor below the reach of waves.
From these beds, the team found evidence of approximately 70 impacts on Earth during this time period that were likely larger than the Chicxulub impact.
In their paper, which was published in Nature, the team created a computer model of the ancient main asteroid belt and tracked what would have happened when the orbits of the giant planets changed. They extended the work of the Nice Model, which supports the theory that Jupiter, Saturn, Uranus and Neptune formed in different orbits nearly 4.5 billion years ago and migrated to their current orbits about 4 billion years ago, triggering a solar system-wide bombardment of comets and asteroids called known as the LHB.
The new computer model shows that the innermost portion of the asteroid belt could have become destabilized, delivering numerous big impacts to Earth and Moon over longer time periods.
Have there been any previous indications about this period of impacts?
“The problem is that we have almost no Archean rocks,” Bottke told Universe Today. “The oldest terrestrial craters, Sudbury and Vredefort, are 1.85 and 2.02 billion years old. The spherule beds are our only window into impacts prior to this time.”
Also, Bottke said, the number of people who look for impact spherules is almost equally scarce. “People such as Bruce Simonson, Don Lowe, Gary Byerly, and Frank Kyte, have been carrying on a long, lonely quest to try to get people to consider the implications of their work, which are deeply profound, in my opinion,” Bottke said.
As for finding evidence of this later period of impacts on the Moon, Bottke said the problem there is the lack of solid ages for most impact events.
“This means it is difficult say anything definitive about the timing of major impacts,” Bottke said. “We are working this problem now with Michelle Kirchoff, who is counting craters on top of large lunar craters. This can be done now that we have LRO data.” (Listen to a podcast interview of Kirchoff on the 365 Days of Astronomy.)
Still, Bottke said, without using “fancy dynamics,” they can address some issues.
“Studies in the post-Apollo era suggested that the Moon has four 160-300 km craters that formed after Orientale, whose age is 3.7-3.8 billion years ago and (i.e., K/T-sized events or larger),” he said. “Crater counts from the Galileo mission and Apollo-era geologic analyses suggest at least one of these events took place near 3.2-3.5 billion years ago. If we account for the gravitational cross section of the planets, we know that for every lunar event, we should get about 20 on the Earth. So, from this argument alone, one should get a lot of big impacts on the Earth after the formation of Orientale.”
The new study fits with the available constraints about impacts on the Moon as well as finding the right distribution of spherule beds on Earth.
The best way to confirm everything, however, Bottke said, would be if more lunar rocks from various locations were available for study.
On December 24, 1968, Apollo 8 astronauts Frank Borman, William Anders and Jim Lovell were the first humans to witness an Earthrise as our home planet came up over the lunar horizon. The photos they captured were the first of their kind, instantly inspiring the imaginations of millions and highlighting the beauty and fragility of our world.
Now, NASA has used modern satellite data to recreate the scenes that the Apollo 8 astronauts saw 44 years ago and combined them with their historic photographs to present a new “Earthrise”… version 2.0.
Created in recognition of Earth Day 2012, the Earthrise animation was made from data acquired by NASA’s Lunar Reconnaissance Orbiter’s laser altimeter, as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra Earth-observing satellite.
“This visualization recreates for everyone the wondrous experience of seeing Earth from that privileged viewpoint,” says LRO Project Scientist Rich Vondrak of NASA’s Goddard Space Flight Center.
Animator Ernie Wright recreated the scene using Apollo mission reports and photos taken by the crew. The audio is a recording of original communication from the astronauts.
[/caption]
“I think the one overwhelming emotion that we had was when we saw the earth rising in the distance over the lunar landscape… it makes us realize that we all do exist on one small globe. For from 230,000 miles away it really is a small planet.”
In honor of Earth Day, enjoy this beautiful timelapse compiled by science educator James Drake, who put together one of the first ISS flyover videos. This video was created from images produced by the Russian geostationary Electro-L Weather Satellite, and the images are some of the largest whole disk images of our planet, as the satellite is orbiting at about 40,000 km. Each image is 121 megapixels, and the resolution is 1 kilometer per pixel. They are taken every half hour in four different wavelengths of light — three visible, and one infrared. The infrared light is reflected by forests and vegetation, which appear orange in these images. Enjoy!
See more at Drake’s Planet Earth web page, including a zoomable, full resolution image of Earth, as well as other image downloads.
This big! The M1.7-class flare that erupted from active region 1461 on Monday, April 16 let loose an enormous coronal mass ejection many, many times the size of Earth, making this particular writer very happy that our planet was safely tucked out of aim at the time… and 93 million miles away.
The image above was obtained by NASA’s Solar Dynamics Observatory’s AIA 304 imaging instrument on Monday during the height of the event. I rotated the disk of the Sun 90 degrees to get a landscape look over the eastern limb, cropped it down and then added an Earth image to scale — just to show how fantastically huge our home star really is.
The European Space Agency’s venerable Envisat satellite may have sent back its final image, according to recent news from the Agency.
On April 8, ESA lost communication with the Earth-observation satellite, preventing reception of data as it passed over the Kiruna station in Sweden. Although it’s been confirmed that the satellite is still in orbit, the recovery team has not been able to re-establish contact.
The image above, showing part of the Iberian peninsula, was from the last data to be received from Envisat before it fell silent.
Launched in March 2002, Envisat has been helping researchers examine our planet for over ten years — five years longer than its original mission duration. It has completed more than 50,000 orbits and returned thousands of images, as well as a wealth of data about the land, oceans and atmosphere.
Envisat data was instrumental in over 4,000 projects from 70 countries.
Germany’s Tracking and Imaging Radar captured an image of the satellite, revealing that it is still intact and in a stable orbit. Still, all attempts at recovery have so far been unsuccessful.
A contingency agreement with the Canadian Space Agency on Radarsat will be activated to fulfill user requirements if Envisat cannot be brought back online.
I for one welcome our alien dinosaur overlords…maybe.
Dinosaurs once roamed and ruled the Earth. Is it possible that similar humongous creatures may have evolved on another planet – a world that DIDN’T get smacked by an asteroid – and later they developed to have human-like, intelligent brains? A recent paper discussing why the biochemical signature of life on Earth is so consistent in orientation somehow segued into the possibility that advanced versions of T. Rex and other dinosaurs may be the life forms that live on other worlds. The conclusion? “We would be better off not meeting them,” said scientist Ronald Breslow, author of the paper.
The building blocks of terrestrial amino acids, sugars, and the genetic materials DNA and RNA have two possible orientations, left or right, which mirror each other in what is called chirality. On Earth, with the exception of a few bacteria, amino acids have the left-handed orientation. Most sugars have a right-handed orientation. How did that homochirality happen?
If meteorites carried specific types of amino acids to Earth about 4 billion years, that could have set the pattern the left-handed chirality in terrestial proteins.
“Of course,” Breslow said in a press release, “showing that it could have happened this way is not the same as showing that it did. An implication from this work is that elsewhere in the universe there could be life forms based on D-amino acids and L-sugars. Such life forms could well be advanced versions of dinosaurs, if mammals did not have the good fortune to have the dinosaurs wiped out by an asteroidal collision, as on Earth.”
But not everyone was impressed with the notion of dinosaurs from space. “None of this has anything to do with dinosaurs,” wrote science author Brian Switek in the Smithsonian blog Dinosaur Tracking. “As much as I’m charmed by the idea of alien dinosaurs, Breslow’s conjecture makes my brain ache. Our planet’s fossil record has intricately detailed the fact that evolution is not a linear march of progress from one predestined waypoint to another. Dinosaurs were never destined to be. The history of life on earth has been greatly influenced by chance and contingency, and dinosaurs are a perfect example of this fact.”
Recent research on lunar samples has shown that the Moon may be made of more Earth than green cheese — if by “green cheese” you mean the protoplanet impactor that was instrumental in its creation.
It’s an accepted hypothesis that Earth’s moon was created during an ancient, violet collision between our infant planet and a Mars-sized world called Theia, an event that destroyed Theia and sent part of Earth’s crust and upper mantle into orbit as a brief-lived ring of molten material. This material eventually coalesced to form the Moon, and over the next 4.5 billion years it cooled, became tidally locked with Earth, accumulated countless craters and gradually drifted out to the respectable distance at which we see it today.
Theia’s remains were once assumed to have been a major contributor to the material that eventually formed the Moon. Lunar samples, however, showed that the ratio of oxygen isotopes on the Moon compared to Earth were too similar to account for such a formation. Now, further research by a team led by scientists from The University of Chicago shows that titanium isotopes — an element much more refractive than oxygen — are surprisingly similar between the Moon and Earth, further indicating a common origin.
“After correcting for secondary effects associated with cosmic-ray exposure at the lunar surface using samarium and gadolinium isotope systematics, we find that the 50Ti/47Ti ratio of the Moon is identical to that of the Earth within about four parts per million, which is only 1/150 of the isotopic range documented in meteorites,” wrote University of Chicago geophysicist Junjun Zhang, lead author of the paper published in the journal Nature Geoscience on March 25.
If the Moon is more Earth than Theia, then what happened to the original impacting body? Perhaps it was made of heavier stuff that sunk deeper into the Moon, or was assimilated into Earth’s mantle, or got lost to space… only more research will tell.
But for now, you can be fairly sure that when you’re looking up at the Moon you’re seeing a piece of Earth, the cratered remnants of a collision that took place billions of years ago.