Say cheese! The MESSENGER spacecraft has captured the first portrait of our Solar System from the inside looking out. The images, captured Nov. 3 and 16, 2010, were snapped with the Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) of MESSENGER’s Mercury Dual Imaging System (MDIS).
All of the planets are visible except for Uranus and Neptune, which at distances of 3.0 and 4.4 billion kilometers were too faint to detect with even the longest camera exposure time of 10 seconds. Their positions are indicated. The dwarf-planet Pluto, smaller and farther away, would have been even more difficult to observe.
Earth’s Moon and Jupiter’s Galilean satellites (Callisto, Ganymede, Europa, and Io) can be seen in the NAC image insets. Our Solar System’s perch on a spiral arm provided a beautiful view of part of the Milky Way galaxy, bottom center.
The following is a graphic showing the positions of the planets when the graphic was acquired:
The new mosaic provides a complement to the Solar System portrait – that one from the outside looking in – taken by Voyager 1 in 1990.
“Obtaining this portrait was a terrific feat by the MESSENGER team,” says Sean Solomon, MESSENGER principal investigator and a researcher at the Carnegie Institution. “This snapshot of our neighborhood also reminds us that Earth is a member of a planetary family that was formed by common processes four and a half billion years ago. Our spacecraft is soon to orbit the innermost member of the family, one that holds many new answers to how Earth-like planets are assembled and evolve.”
Just in time for Valentine’s Day, [and the Stardust flyby of Comet Tempel 1] the Sun erupted with a massive X-Class flare, the most powerful of all solar events on February 14 at 8:56 p.m. EST . This was the first X-Class flare in Solar Cycle 24 and the most powerful X-ray flare in more than four years.
The video above shows the flare as imaged by the AIA instrument at 304 Angstroms on NASA’sSolar Dynamics Observatory. More graphic videos below show the flare in the extreme ultraviolet wavelength of 193 Angstroms and as a composite with SOHO’s coronagraph.
Spaceweather Update: A CME hit Earth’s magnetic field at approximately 0100 UT on Feb. 18th (8:00 pm EST on Feb. 17th). Send me or comment your aurora photos
The eruption registered X2 on the Richter scale of solar flares and originated from Active Region 1138 in the sun’s southern hemisphere. The flare directly follows several M-class and C-class flares over the past few days which were less powerful. The explosion also let loose a coronal mass ejection (CME) headed for Earth’s orbit. It was speeding at about 900 Km/second.
CME’s can disrupt communications systems and the electrical power grid and cause long lasting radiation storms.
According to a new SDO update, the particle cloud from this solar storm is weaker than first expected and may produce some beautiful aurora in the high northern and southern latitudes on Feb. 17 (tonight).
According to spaceweather.com, skywatchers in the high latitudes should be alert for auroras after nightfall Feb. 17 from this moderately strong geomagnetic storm.
Send me your aurora reports and photos to post here
Sources: SDO website, spaceweather.com
NASA SDO – Big, Bright Flare February 15, 2011
Video Caption: Active region 1158 let loose with an X2.2 flare at 0153 UT or 8:50 pm ET on February 15, 2011, the largest flare since Dec. 2006 and the biggest flare so far in Solar Cycle 24. Active Region 1158 is in the southern hemisphere, which has been lagging the north in activity but now leads in big flares! The movie shows a close-up of the flaring region taken by the Solar Dynamics Observatory in the extreme ultraviolet wavelength of 193 Angstroms. Much of the vertical line in the image and the staggered lines making an “X” are caused by the bright flash overwhelming our imager. A coronal mass ejection was also associated with the flare. The movie shows activity over about two days (Feb. 13-15, 2011). Since the active region was facing Earth, there is a good chance that Earth will receive some effects from these events, with some possibility of mid-latitude aurora Feb. 16 – 18. Credit: NASA SDO
X2 flare Video combo from SDO and SOHO
Video caption: The X2 flare of Feb. 15, 2011 seen by SDO (in extreme ultraviolet light) enlarged and superimposed on SOHO’s coronagraph that shows the faint edge of a “halo” coronal mass ejection as it races away from the Sun. The video covers about 11 hours
Up to two-thirds of Earth’s permafrost likely will disappear by 2200 as a result of warming temperatures, unleashing vast quantities of carbon into the atmosphere, says a new study by the University of Colorado Boulder’s Cooperative Institute for Research in Environmental Sciences (CIRES).
The carbon resides in permanently frozen ground that is beginning to thaw in high latitudes from warming temperatures, which will impact not only the climate but also international strategies to reduce fossil fuel emissions, said CU-Boulder’s Kevin Schaefer, lead study author. “If we want to hit a target carbon dioxide concentration, then we have to reduce fossil fuel emissions that much lower than previously thought to account for this additional carbon from the permafrost,” he said. “Otherwise we will end up with a warmer Earth than we want.” Continue reading “Study: Thawing Permafrost Could Accelerate Global Warming”
NASA’s Stardust-NExT comet chaser successfully zoomed by Comet Temple 1 exactly as planned a short while ago at 11:37 p.m. EST on Feb. 14.
The cosmic Valentine’s Day encounter between the icy comet and the aging probe went off without a hitch. Stardust snapped 72 science images as it raced by at over 10 km/sec or 24,000 MPH and they are all centered in the cameras field of view. The probe came within 181 km (112 miles) of the nucleus of the volatile comet.
The images are being transmitted back now and it will take a several hours until the highest resolution images are available for the science team and the public to see. The first few images from a distance of over a thousand miles can be seen here
Tempel 1 is the first comet to be visited twice by spaceships from Earth. The primary goal was to find out how much the comet has changed in the five years since she was last visited by NASA’s Deep Impact mission in 2005, says Joe Ververka of Cornell University, who is the principal investigator of the Stardust-NExT mission. Deep Impact delivered a 375 kg projectile which blasted the comet and created an impact crater and an enormous cloud of dust so that scientists could study the composition and interior of the comet.
“We are going to be seeing the comet just after its closest passage to the sun. We know the comet is changing because the ice melts. We hope to see old and new territory and the crater and complete the Deep Impact experiment.”
Stardust-NExT is a repurposed spacecraft. Initially christened as Stardust, the spaceships original task was to fly by Comet Wild 2 in 2004. It also collected priceless cometary dust particles from the coma which were safely parachuted back to Earth inside a return canister in 2006. High powered science analysis of the precious comet dust will help researchers discern the origin and evolution of our solar system.
Stardust was hurriedly snapping high resolution pictures every 6 seconds and collecting data on the dust environment during the period of closest approach which lasted just about 8 minutes. The anticipation was building after 12 years of hard work and a journey of some 6 Billion kilometers (3.5 Billion miles)
“The Stardust spacecraft did a fantastic job,” says Tim Larson, the Stardust-NExT mission project manager from the Jet Propulsion Laboratory (JPL), Pasadena, Calif. “Stardust has already flown past a asteroid and a comet and returned comet particles to Earth”
“Because of the flyby geometry the antenna was pointed away from earth during the encounter. Therefore all the science images and data was stored in computer memory on board until the spacecraft was rotated to point towards Earth about an hour after the flyby.”
Each image takes about 15 minutes to be transmitted back to Earth by the High Gain Antenna at a data rate of 15,800 bits per second and across about 300 million miles of space.
NASA had bracketed five special images from the closest range as the first ones to be sent back. Instead, the more distant images were sent first. It will take about 10 hours to receive all the images.
So everyone had to wait a few hours longer to see the fruit of their long labor. Most of the team from NASA, JPL and Lockheed Martin has been working on the mission for a dozen years since its inception.
“We had a great spacecraft and a great team,” says Ververka. “Apparently, everything worked perfectly. The hardest thing now is we have to wait a couple of hours before we see all the goodies stored on board.”
The entire flyby was carried out autonomously using a preprogrammed sequence of commands. Due to the vast distance from Earth there was no possibility for mission controllers to intervene in real time.
Confirmation of a successful fly by and science imaging was not received until about 20 minutes after the actual event at about 11:58 p.m. EST. The dust flux monitor also registered increased activity just as occurred during the earlier Stardust flyby of Comet Wild 2 in 2004.
The Stardust-NExT science briefing on NASA TV will be delayed a few hours, until perhaps about 4 p.m. EST
Check back here later at Universe Today, on Tuesday, Feb. 15 for continuing coverage of the Valentine’s Day encounter of Stardust-NExT with the icy, unpredictable and fascinating Comet Tempel 1
Mysterious “night shining” or noctilucent clouds are beautiful to behold, and are usually seen during the summertime, appearing at sunset. They are thin, wavy ice clouds that form at very high altitudes and reflect sunlight long after the Sun has dropped below the horizon. Scientists don’t know exactly why they form, but continue to observe them – both from Earth and from space. These images were taken by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite.
Also called polar mesospheric clouds, they are puzzling scientists with their recent dramatic changes. They used to be considered rare, but now the clouds are growing brighter, are seen more frequently, are visible at lower and lower latitudes than ever before, and — as these satellite image reveal — they are now even appearing during the day.
Noctilucent clouds form in an upper layer of the Earth‘s atmosphere called the mesosphere during the Northern Hemisphere’s summer – at an altitude of 80 km (50 miles). They can start forming as early as May, and extend through August. They can also be seen in high latitudes during the summer months in the Southern Hemisphere.
What could the observed changes mean? Some scientists believe they are a good gauge of even the tiniest changes in the atmosphere, as they are extremely sensitive to changes in atmospheric water vapor and temperature. The clouds form only when temperatures drop below -130 degrees Celsius (-200 Fahrenheit), when the scant amount of water high in the atmosphere freezes into ice clouds.
Scientist Matthew DeLand of Science Systems and Applications Inc. and NASA’s Goddard Space Flight Center has been monitoring polar mesospheric clouds with instruments that were actually designed to study ozone, including the OMI, which provides more detailed and frequent observations than previous instruments. This gives DeLand a way to refine his previous measurements of a long-term trend towards more and brighter noctilucent clouds linked to rising greenhouse gases.
These images at the top of this article show OMI measurements of polar mesospheric clouds on July 10, 2007. The clouds, detectable because they are the only things that reflect light in this part of the atmosphere, are shown in white and pink. The Aura satellite travels in a polar orbit, circling from south to north as the Earth turns beneath it. As a result, the satellite gets several opportunities to image the poles every day. This series of images shows the clouds over six consecutive orbits between 7:16 and 15:52 Universal Time. Throughout the day, a wide area of polar mesospheric clouds developed over northern Greenland and Canada, peaking around 10:30 UTC (the third orbit).
Another instrument observing these clouds is the Solar Backscatter Ultraviolet (SBUV) instruments, which have flown on seven different satellites over the past 32 years, and that wealth of data is showing how the clouds change throughout the day.
DeLand now has an index to help correct the SBUV measurement trends to account for the time of day. The correction allows him to develop a more accurate view of the long-term trend. Even with the corrections, the trend indicates that the atmosphere has been responding to increased greenhouse gases over the past 30 years.
The fact that polar mesospheric clouds are getting brighter suggests that the mesosphere is getting colder and more humid, says DeLand. Increasing greenhouse gases in the atmosphere could account for both phenomena.
Super Bowl SUNday XLV marks a watershed moment in observing our Sun. Today, February 6, 2011, NASA’s twin STEREO solar observatories will reach locations on exact opposite sides of the Sun, called opposition, and they are beaming back uninterrupted images from both the entire front and rear side hemispheres of Earths star in three dimensions and 360 degrees for the first time.
“For the first time in history we can see the entire Sun at one time – both the far side and the near side,” said Joe Gurman, in an interview for Universe Today. Gurman is the Project Scientist for NASA’s STEREO mission at the NASA Goddard Spaceflight Center in Greenbelt, MD. This will significant aid space weather forecasting.
To mark this historic milestone, NASA today released images captured by STEREO on Feb. 2 – slightly prior to opposition – which gives humankind our first ever global look at the whole sphere of our Suns surface and atmosphere in extreme ultraviolet light (EUV). The probes were over 179 degrees apart. See location maps and images below
This article features even newer EUV images – compared to NASA’s press release – that were taken even closer to opposition by STEREO on Feb. 3 and today on Feb. 6 and which I downloaded from the STEREO website. The newer EUV images show an ever so slightly more complete solar view as the probes orbit reaches further to the suns far side.
Coincidentally, the STEREO duo may reach opposition – exactly 180 degrees apart – while the Super Bowl XLV half time show is ongoing, at roughly 7:30 p.m. EST in the evening of Sunday, Feb. 6.
There is a tiny sliver of unseen solar surface on the far side of the sun at the extreme fringes of the far side EUV images that will fill in over the new few days to give an even better view. As of today that wedge is less than 1 degree. See the solar image collections above and below.
“The currently unseen far side wedge will disappear around February 12,” Gurman told me. “There might still be some small areas at high latitudes we won’t be able to see, but the view from the ecliptic is always limited. It takes about 3 days to get back the high resolution data.”
“On either side of the wedge, the features are smeared out because they’re from the “limbs” (edges) of the Sun as seen from each STEREO spacecraft.”
“The far side resolution will increase as the STEREO twins proceed around the sun.”
“On the near side, we can substitute the much higher resolution SDO AIA image data along the nearside “seam”, said Gurman.
SDO is in Earth orbit on the earth-facing side of the sun and will fill in the gap.
“For the next 8 years we will have a 360 degree view of the Sun by combining STEREO and SDO data,” said Gurman. “We will have that whole sun view until the STEREO spacecraft swing back to the earth side of the Sun.”
Why is it important to image the far side of the sun?
Because scientists can now immediately detect active regions on the far side of the sun which were hidden from our view up until now.
“No active region can hide from us anymore because we will now have this 360 degree view.”
The new far side data will allow much faster detection of solar storms which in turn will enable faster predictions of space weather which potentially can severely impact sensitive technological infrastructure on Earth and throughout the solar system.
Until now, we had to wait about two weeks until the rear side active regions of the sun rotated into our view on the front side. But no longer. On average the sun rotates in about 27 days – faster at the equator and slower at the poles.
“We will now be able to detect the coronal mass ejections, or CMEs as they happen on the far side instead of waiting until they rotate around with no forewarning. The magnetic storms with energetic particles blast out at varying speeds of about 700 to 1000 km/sec and can reach Earth in one to three days,” said Gurman.
These magnetic storms are a threat to air traffic control of airliners, can disrupt the power grip, damage communications systems, space satellites in Earth orbit and around the solar system, effect other sensitive electronics systems and also harm astronauts working aboard the International Space Station.
STEREO is comprised of two nearly identical STEREO spacecraft – dubbed STEREO Ahead and STEREO Behind –orbiting around our Sun. One probe – B – trails Earth around the sun and moves a bit slower; the other one – A – leads the Earth traveling slightly faster.
Each probe images half of the suns sphere and broadcasts the data back to Earth continuously, 24 hours each day. STEREO’s solar telescopes are tuned to four different wavelengths of extreme ultraviolet radiation (171, 195, 284, 304 Å) selected to trace key aspects of solar activity such as flares, tsunamis and magnetic filaments.
“The images are converted into a spherical projection by researchers on the science teams,” said Gurman. An international group of scientific institutions and governments from the U.S., UK, France, Germany, Belgium, Netherlands and Switzerland designed and built STEREO’s science imaging and particle detecting instruments.
The two probes have been slowly separating in opposite directions at about 45 degrees per year ever since they were launched together aboard a Delta II rocket on October 25, 2006 from Cape Canaveral Air Force Station (CCAFS) in Florida.
After hurtling past the moon, the solar powered spacecraft – weighing some 600 kg – were flung into solar orbit on opposite sides of the Earth and have been moving away from Earth and apart from each other. In this way the wedge of unseen solar territory has been diminishing as the probes gain more complete coverage of the sun, thus enabling us to formulate a more complete understanding of the solar environment.
STEREO stands for Solar TErrestrial RElations Observatory. Their mission is to provide the very first, 3-D “stereo” images of the sun to study the nature of coronal mass ejections.
The STEREO mission is currently funded until 2013.
“The probes have enough fuel to last 100 years,” said Gurman. “The lifetime limiting factor is the spacecraft electronics and funding. The solar arrays will only gradually degrade over decades.”
NASA/STEREO Reveals the Entire Sun
Launched in October 2006, STEREO traces the flow of energy and matter from the sun to Earth. It also provides unique and revolutionary views of the sun-Earth system. STEREO, when paired with SDO, can now give us the first complete view of the sun’s entire surface and atmosphere
What do NASA, Robots, the Sun and the NFL have in common ?
Well … its Super SUNday … for Super Bowl XLV on Feb. 6, 2011
The unlikely pairing of Football and Science face off head to head on Super Bowl SUNday. Millions of television viewers will see NASA’s Robonaut 2, or R2, share the the limelight with the Steelers and the Packers of the NFL. The twin brother of R2 is destined for the International Space Station (ISS) and will become the first humanoid robot in space. It will work side by side as an astronaut’s assistant aboard the space station.
The fearsome looking R2 is set to make a first ever special guest appearance during the FOX Networks Super Bowl pre-game show with FOX sports analyst Howie Long. The pre-game show will air starting at 2 p.m. EST on Feb. 6.
And there’s more.
On Super SUNday Feb. 6, NASA will publish Humankinds first ever image of the ‘Entire Sun’ courtesy of NASA’s twin STEREO spacecraft. And given the stunningly cold and snowy weather in Dallas, the arrival of our Sun can’t come soon enough for the ice covered stadium and football fans. See photos above and below.
The two STEREO spacecraft will reach positions on opposite sides of the Sun on Sunday, Feb. 6 at about 7:30 p.m. in the evening, possibly coinciding with the Super Bowl half time show.
At opposition, the STEREO duo will observe the entire 360 degrees sphere of the Sun’s surface and atmosphere for the first time in the history of humankind.
The nearly identical twin brother of R2 is packed aboard Space Shuttle Discovery and awaiting an out of this world adventure from Launch Pad 39 A at NASA’s Kennedy Space Center (KSC) in Florida. Blast off of the first humanoid robot is currently slated for Feb. 24.
R2 is the most dextrously advanced humanoid robot in the world and the culmination of five decades of wide-ranging robotics research at NASA and General Motors (GM).
This newest generation of Robonauts are an engineering marvel and can accomplish real work with exceptionally dexterous hands and an opposable thumb. R2 will contribute to the assembly, maintenance and scientific output of the ISS
“R2 is the most sophisticated robot in the world,” says Rob Ambrose, Chief of NASA’s Johnson Space Center’s (JSC) Robotics Division.
“We hope R2 should help to motivate kids to study science and space,” Ron Diftler told me in an interview at KSC. Diftler is NASA’s R2 project manager at JSC.
The amazingly dexterity of the jointed arms and hands enables R2 to use exactly the same tools as the astronauts and thereby eliminates the need for constructing specialized tools for the robots –saving valuable time, money and weight.
The robot is loaded with advanced technology including an optimized overlapping dual arm dexterous workspace, series elastic joint technology, extended finger and thumb travel, miniaturized 6-axis load cells, redundant force sensing, ultra-high speed joint controllers, extreme neck travel, and high resolution camera and IR systems.
R2 weighs some 300 pounds and was manufactured from nickel-plated carbon fiber and aluminum. It is equipped with two human like arms and two hands as well as four visible light cameras that provide stereo vision with twice the resolution of high definition TV.
“With R2 we will demonstrate ground breaking and innovative robotics technology which is beyond anything else out there and that will also have real world applications as GM works to build better, smarter and safer cars,” according to Susan Smyth, GM Director of Research and Development.
“Crash avoidance technology with advanced sensors is a prime example of robonaut technology that will be integrated into GM vehicles and manufacturing processes.”
Robonaut 2 flight unit poses with the NASA/GM development team inside the Space Station Processing Facility at KSC in this 360 degree panorama from nasatech.net
I was fortunate to meet R2 and the Robonaut team at KSC. R2 is incredibly life like and imposing and I’ll never forget the chance to shake hands. Although its motions, sounds, illuminated hands and muscular chest gives the unmistakable impression of standing next to a lively and powerful 300 pound gorilla, it firmly but gently grasped my hand in friendship – unlike a Terminator.
So its going to make for a mighty match up some day between the fearsome looking R2 and the NFL players.
Well apparently, R2 and Howie will be making some predictions on which player will win the MVP award and a GM Chevrolet. Stay tuned.
So come back on SUNday Feb. 6 for NASA’s release of the first ever images of our entire Sun from the STEREO twins.
To speak in the vernacular of the peasantry, this storm was a whopper. Heavy snow, ice, freezing rain, and frigid wind battered about two thirds of the United States, making it “a winter storm of historic proportions,” said the National Weather Service. This animation—made with images from the NOAA-NASA GOES 13 satellite—shows the giant storm developing and moving across the country between January 31 and February 2. Below is another video view from GOES-East satellite, which includes infrared water vapor imagery from January 29 -February 1, 2011.
And there’s also an update on Cyclone Yasi.
[/caption]
Yasi weakened after coming ashore early on Thursday morning but was still strong enough to produce high winds and tidal surges that sent waves crashing deep into seaside communities. Thankfully, so far no lives have been lost because of this storm. Officials said lives were saved because after days of dire warnings people heeded directions to flee to evacuation centers or bunker themselves at home. Track the storm on WeatherUnderground, and read more on the latest news from Yasi on The Guardian.
A college-age team of space and photography enthusiasts have created a fully reusable capsule that can travel autonomously to the edge of space using high altitude balloons. To date, their capsule, named PURSUIT has had four flights, reaching altitudes ranging from 24,000 to 36,500 meters (80,000 to 120,000 feet.) “We wanted to fly capsules to the edge of space and capture the most difficult imagery that other teams didn’t even bother trying,” said Project Soar team leader David Gonzales II. “Our capsules shoot high resolution stills and shoot HD video of their incredible journeys.”
Last fall, the team captured the stunning image above of a sunrise from space from about 25,000 meters above the Earth. “To our knowledge, Sunrise Soar II captured the highest resolution images of sunrise ever taken from the edge of space by a high altitude balloon flight,” Gonzales told Universe Today.
In images taken from over 36,000 meters, absent are the reddish sunrise colors that we see on Earth because of the atmosphere.
Their PURSUIT capsule cost about $500 to put together initially, but their total cost per flight is only $40.
The crew consists of twelve different students and recent graduates from various colleges. Gonzales said he formed Project Soar and put together the team as a hobby. The team hopes to do several more flights soon.
See more images and videos, and read detailed reports about the team’s adventures at their Project Soar website.
Today, NASA’s Earth Observatory website featured an image of activity on the Kilauea Volcano in Hawaii. The image was personally exciting for me to see — not only because I find volcanoes fascinating — but because the day before the satellite image was taken (below) I was flying directly over Kilauea in a helicopter, searching for active lava flows.
Above is an image I took of Halema’uma’u Crater on the summit of Kilauea Volcano, which has been steadily emitting a plume of sulfur dioxide and other volcanic gases for several years. We did not see active flows here, but about 120 meters (390 feet) below the pit’s opening there is a lava pond that rises and falls as magma moves underneath Kilauea. See more of my images below, where we did find some active lava flows and lots of gas emitting from the surrounding region.
Kilauea is the youngest and southeastern most volcano on the Big Island of Hawaii. It started erupting in 1983 and has been active ever since.
East of the summit of Kilauea is another active area, the Pu`u `O`o Crater. On January 14, we saw gas fuming throughout the crater.
We did find one crater with active orange magma bubbling underneath the grey, hardened lava. It is a little hard to make out in the image above, as there is some glare from the helicopter window, but there are a couple of small areas of orange tint, and that is the active lava. It wasn’t much, but it was exciting to see.
We did see lots of areas of sulfur dioxide gas venting from the Kilauea region, as in the two images below. According to the USGS Hawaiian Volcano Observatory, sulfur dioxide emission rates from the summit and east rift zone vents have elevated the past few month.
We did see a small lava flow going into the ocean. Mostly, we just saw the steam rising as the lava made contact with the cold ocean water, but every once in a while we could see an orange glow on the shore, and as fast as I clicked my camera, unfortunately I never caught the orange glow, just the steam.
I can highly recommend the Big Island of Hawaii as a travel destination, as within its 10,432 square km (4,028 square miles) you can find all but two of the world’s climate zones and see everything from lush rain forests to volcanic deserts, to snow-capped mountains to black and white sandy beaches. You can drive around the entire island in 6 and a half hours, or in 2 hours in a helicopter see the entire island by air.