Weekly SkyWatcher’s Forecast: May 14-20, 2012

NGC 4565 - Credit: Palomar Observatory, courtesy of Caltech

[/caption]

Greetings, fellow SkyWatchers! Dark skies mean galactic studies and this is going to be a terrific week for sacrificing Viginis. But, hang on to your socks… Because it’s solar eclipse time! We’re talking about an annular event that occurs over a 240 to 300 kilometre-wide track which crosses eastern Asia, the northern Pacific Ocean and the western United States. It’s a generous event where a partial eclipse also occurs that includes much of Asia, the Pacific and the western 2/3 of North America. Whenever you’re ready, just meet me outside…

Monday, May 14 – No galactic tour through Coma Berenices would be complete without visiting one of the most incredible “things that Messier missed.” You’ll find NGC 4565 (Right Ascension: 12 : 36.3 – Declination: +25 : 59) located less than two degrees east of 17 Comae…

Residing at a distance of around 30 million light-years, this large 10th magnitude galaxy is probably one of the finest edge-on structures you will ever see. Perfectly suited for smaller scopes, this ultra-slender galaxy with the bright core has earned its nickname of “The Needle.” Although photographs sometimes show more than what can be observed visually, mid-to-large aperture can easily trace out NGC 4565’s full photographic diameter.

Although Lord Rosse in 1855 saw the nucleus of the “Needle” as stellar, most telescopes will resolve a bulging core region with a much sharper point in the center and a dark dust lane upon aversion. The core itself has been extensively studied for its cold gas and emission lines, pointing to the fact that it has a barred structure. This is much how the Milky Way would look if viewed from the same angle! It, too, shines with the light of 30 billion stars…

Chances are NGC 4565 is an outlying member of the Virgo Cluster, but its sheer size points to the fact that it is probably closer than any of the others. If we were to gauge it at a distance of 30 million years as is accepted, its diameter would be larger than any galaxy yet known! Get acquainted with it tonight…

Tuesday, May 15 – Tonight we’ll take a closer look at the work of Abbe Nicholas Louis de la Caille (or de Lacaille). Born in 1731, the French astronomer and mapmaker was the first to demonstrate Earth’s bulge at its equator. From 1751 to 1753, he had the great fortune to observe southern skies and, putting his cartography skills to use, he mapped the southern skies and established the 14 constellations that remain in use to this day – including Musca. Even though Lacaille was best known for the constellation names, he and his productive half-inch telescope (that’s no type!) also cataloged 9766 stars in his two year observing period. Of these, one stands out for good reason – Lacaille 8760.

Its designation is also AX Microscopii, and it is a dwarf red flare star which resides only 12.9 light-years from us. While it might not seem that important, it is the target of interferometer studies in search of planets that may have formed in a “habitable zone” around life-giving stars similar to our own. Even though AX is slightly smaller than Sol, this cool main sequence star might be inhospitable due to its daily flare activity.

Since it will be awhile before the constellation of Microscopium rises high enough for southern observers to capture this star, let’s have a look at an object from Lacaille’s catalog known as I.5.

Located less than two handspans south of Spica, most of us know this globular cluster best as NGC 5139 (Right Ascension: 13 : 26.8 – Declination: -47 : 29) – or Omega Centauri. As the most luminous of all globular clusters, Lacaille reported it as a “nebula in Centaurus; with simple view, it looks like a star of 3rd magnitude viewed through light mist, and through the telescope like a big comet badly bounded.” Yet, through even the most modest of today’s telescopes, Omega Centauri will explode into a fury of stars. Located about 17,000 light-years away, it took around 2 million years to form and it is believed that it may be the remnant of another galaxy’s core captured by our own. With more than one million members, it’s the size of a small galaxy in itself!

While this object is very low to northern observers, it is not impossible for those who live lower than 40 degrees north. Our atmosphere will rob this giant of a galaxy of some of its beauty, but I encourage you to try! It’s a sight you’ll never forget…

Wednesday, May 16 – Tonight let’s take a look about five degrees north of Eta Virginis for M61 (Right Ascension: 12 : 21.9 – Declination: +04 : 28).

This 9.7 magnitude galaxy was discovered on May 5, 1779 by man named Barnabus Oriani while following the same comet as Charles Messier, who also observed it on the same night and mistook it for the comet itself for two additional nights. (Nice shootin’, Chuck!) Happily enough, Mr. Herschel also assigned it his own designation of H I.139 seven years later.

It is one of the largest galaxies of the Virgo Cluster and small telescopes will make out a faint, round glow with a brighter nucleus, while larger aperture will see the core as more stellar with notable spiral structure. Four supernova events have been observed in M61, as recently as 1999, and surprisingly two of them were exactly 35 years apart… But don’t confuse an event with foreground stars!

Thursday, May 17 – Today in 1835, J. Norman Lockyer was born. While that name might not stand out, Lockyer was the first to note previously unknown absorption lines while making visual spectroscopic studies of the Sun in 1868. Little did he know at the time, he had correctly identified the second most abundant element in our universe – helium – an element not discovered on Earth until 1891! Also known as the “Father of Archeoastronomy,” Sir Lockyer was one of the first to make the connection with ancient astronomical structures such as Stonehenge and the Egyptian pyramids. (As a curious note, 14 years after Lockyer’s notation of helium, a sun-grazing comet made its appearance in photographs of the solar corona taken during a total eclipse in 1882… It hasn’t been seen since.)

If you would like to see a helium rich star, look no further tonight than Alpha Virginis – Spica. As the sixteenth brightest star in the sky, this brilliant blue/white “youngster” appears to be about 275 light-years away and is about 2300 times brighter than our own Sun. Although we cannot see it visually, Spica is a double star. Its spectroscopic companion is roughly half its size and is also helium rich.

Now, shake your fist at Spica – because that’s all it takes to find the awesome M104 (Right Ascension: 12 : 40.0 – Declination: -11 : 37), eleven degrees due west. (If you still have trouble finding M104 even after practicing earlier this year, don’t worry. Try this trick! Look for the upper left hand star in the rectangle of Corvus – Delta. Between Spica and Delta is a diamond-shaped pattern of 5th magnitude stars. Aim your scope or binoculars just above the one furthest south.)

Also known as the “Sombrero,” this gorgeous 8th magnitude galaxy was discovered by Pierre Mechain in 1781, added by hand to Messier’s catalog and observed independently by Herschel as H I.43 – who was probably the first to note its dark inclusion. The Sombrero’s rich central bulge is comprised of several hundred globular clusters and can be hinted at in just large binoculars and small telescopes. Large aperture will revel in this galaxy’s “see through” qualities and bold, dark dustlane – making it a seasonal favorite!

Friday, May 18 – On this day in 1910, Comet Halley transited the Sun, but could not be detected visually. Since the beginning of astronomical observation, transits, eclipses and occultations have provided science with some very accurate determinations of size. Since Comet Halley could not be spotted against the solar surface, we knew almost a century ago that the nucleus had to be smaller than about 100 km.

Once the sky has become fully dark, it is time to get serious. For the large telescope and seasoned observer, your challenge for this evening will be five and a half degrees south of Beta Virginis and one half degree west. Classified as Arp 248 (Right Ascension: 11h 46m 36s – Declination -3º 52′ 00”) and more commonly known as “Wild’s Triplet,” these three very small interacting galaxies are a real treat! Best with around a 9mm eyepiece, use wide aversion and try to keep the star just north of the trio at the edge of the field to cut glare. Be sure to mark your Arp Galaxy challenge list!

Saturday, May 19 – Tonight we’re heading for the galaxy fields of Virgo about four fingerwidths east-southeast of Beta Leonis. As part of Markarian’s Chain, this set of galaxies can all be fitted within the same field of view with a 32mm eyepiece and a 12.5″ scope, but not everyone has the same equipment. Set your sights toward M84 and M86 and let’s discover!

Good binoculars and small telescopes reveal this pair with ease as a matched set of ellipticals. Mid-sized telescopes will note the western member of the pair – M84 (Right Ascension: 12 : 25.1 – Declination: +12 : 53) – is seen as slightly brighter and visibly smaller. To the east and slightly north is larger M86 (Right Ascension: 12 : 26.2 – Declination: +12 : 57) – whose nucleus is broader, and less intensely brilliant. In a larger scope, we see the galaxies literally “leap” out of the eyepiece at even the most modest magnifications. Strangely though, additional structure fails to be seen.

As aperture increases, one of the most fascinating features of this area becomes apparent. While studying the bright galactic forms of M84/86 with direct vision, aversion begins to welcome many other mysterious strangers into view. Forming an easy triangle with the two Messiers and located about 20 arc-minutes south is NGC 4388 (Right Ascension: 12 : 25.8 – Declination: +12 : 40). At magnitude 11.0, this edge-on spiral has a dim star-like core to mid-sized scopes, but a classic edge-on structure in larger ones.

At magnitude 12, NGC 4387 (Right Ascension: 12 : 25.7 – Declination: +12 : 49) is located in the center of a triangle formed by the two Messiers and NGC 4388 (Right Ascension: 12 : 25.8 – Declination: +12 : 40). NGC 4387 is a dim galaxy – hinting at a stellar nucleus to smaller scopes, while the larger ones will see a very small face-on spiral with a brighter nucleus. Just a breath north of M86 is an even dimmer patch of nebulosity – NGC 4402 (Right Ascension: 12 : 26.1 – Declination: +13 : 07) – which needs higher magnifications to be detected in smaller scopes. Large apertures at high power reveal a noticeable dust lane. The central structure forms a curved “bar” of light. Luminosity appears evenly distributed end to end, while the dust lane cleanly separates the central bulge of the core.

East of M86 is two brighter NGC galaxies – 4435 and 4438. Through average scopes, NGC 4435 (Right Ascension: 12 : 27.7 – Declination: +13 : 05) is easily picked out at low power with a simple star-like core and wispy round body structure. NGC 4438 (Right Ascension: 12 : 27.8 – Declination: +13 : 01) is dim, but even large apertures make elliptical galaxies a bit boring. The beauty of NGC 4435 and NGC 4438 is simply their proximity to each other. 4435 shows true elliptical structure, evenly illuminated, with a sense of fading toward the edges… But 4438 is quite a different story! This elliptical is much more elongated. A highly conspicuous wisp of galactic material can be seen stretching back toward the brighter, nearby galaxy pair M84/86. Happy hunting!

Sunday, May 20 – Heads up! It’s eclipse time… According to NASA’s Fred Espenak, an annular solar eclipse will be visible from a 240 to 300 kilometre-wide track that traverses eastern Asia, the northern Pacific Ocean and the western United States. A partial eclipse is seen within the much broader path of the Moon’s penumbral shadow which includes much of Asia, the Pacific and the western 2/3 of North America. Partial phases of the eclipse are visible primarily from the USA, Canada, the Pacific and East Asia. Be sure to visit the resources pages for a visibility map and link to pages for precise times and locations!

New Moon! Since tonight will be our last chance to galaxy hunt for awhile, let’s take a look at one of the brightest members of the Virgo Cluster – M49 (Right Ascension: 12 : 29.8 – Declination: +08 : 00).

Located about 8 degrees northwest of Delta Virginis almost directly between a pair of 6th magnitude stars, giant elliptical M49 holds the distinction of being the first galaxy in the Virgo cluster to be discovered – and the second beyond our local group. At magnitude 8.5, this type E4 galaxy will appear as an evenly illuminated egg shape in almost all scopes, and as a faint patch in binoculars. While a possible supernova event occurred in 1969, don’t confuse the foreground star noted by Herschel with something new!

Although most telescopes won’t be able to pick this region apart – there are also many fainter companions near M49, including NGC 4470 (Right Ascension: 12 : 29.6 – Declination: +07 : 49). But a sharp-eyed observer named Halton Arp noticed them and listed them as “Peculiar Galaxy 134” – one with “fragments!”

Until next week? May all your journeys be at light speed!

Buy Some Eclipse Glasses for the Upcoming Annular Eclipse or Venus Transit

Folding Eclipse Glasses
Folding Eclipse Glasses

[/caption]

There are two amazing events coming up that you’re going to want to watch: the May 20th Annular Eclipse, and the June 5/6 Venus Transit. If you want to watch these spectacles with your own eyes, you need to protect your vision from the burning ball of plasma in the sky – get a pair of Eclipse Glasses.

Astronomy Without Borders has partnered up with Woodland Hills Telescopes to sell AWB-branded eclipse glasses.

Here are the details:

These Eclipse Shades® Safe Solar Glasses are absolutely safe for direct solar viewing of solar eclipses and sunspots. The black polymer lens material is scratch resistant, optical density 5 and CE certified. It filters out 100% of harmful ultra-violet, 100% of harmful infrared, and 99.999% of intense visible light and creates a pleasing orange image of the Sun.

The glasses cost $0.95 each when you order 10-25, with bigger discounts from there – so you need to buy in bulk. Obviously, you’d only order these for your classroom, astronomy club, or eclipse/transit party. And if you do buy, 100% of sale proceeds go to Astronomers Without Borders to support astronomy programs worldwide.

Click here to find out more.

If you want to order a smaller number of eclipse glasses, check out this option from Amazon.com.

A Mardi Gras Moon Crossing

SDO AIA image of the Sun and Moon at 14:11 UT on Feb. 21, 2012

[/caption]

The Sun seems to be glowing in traditional Mardi Gras colors in this image, made from three AIA channels taken today at approximately 14:11 UT (about 9:11 a.m. EST) as the Moon passed between it and the Solar Dynamics Observatory spacecraft. Looks like it’s that time of year again!

During portions of the year, the Moon transits the Sun on a regular basis from the perspective of NASA’s SDO spacecraft, which lies within the Moon’s orbit. When this happens we are treated to an improvised eclipse… and it gives SDO engineers a way to fine-tune the observatory’s calibration as well.

Here are more AIA views of the same event captured in different wavelengths:

Lunar transit on 2-21-12; AIA 304
Lunar transit on 2-21-12; AIA 193
Lunar transit on 2-21-12; AIA 4500

…and here’s an interesting image taken in HMI Dopplergram:

HMI Dopplergram image of transit

While the AIA (Atmospheric Imaging Assembly) images the Sun in light sensitive to different layers of its atmosphere, the Helioseismic and Magnetic Imager (HMI) studies oscillations in the Sun’s magnetic field at the surface layer.

Watch a video of the path of this lunar transit, posted by the SDO team here.

And if you happen to be reading this as of the time of this writing (appx. 10:06 a.m. EST) you can keep up with the latest images coming in on the SDO site at http://sdo.gsfc.nasa.gov/.

It’s Mardi Gras and the Moon doesn’t want to miss out on any of the fun!

Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. Hat-tip to Mr. Stu Atkinson who called the AIA alert on Twitter.

A Blood-Red Moon

December 10 lunar eclipse by Joseph Brimacombe

[/caption]

Photographer Joseph Brimacombe created this stunning image of a ruddy Moon made during the total lunar eclipse of December 10, 2011. Images taken during the penumbral and total phases of the eclipse were combined to create a full-face image of the Moon in color. Beautiful!

The red tint of the Moon during an eclipse is caused by sunlight passing through Earth’s atmosphere, in effect projecting the colors of all the world’s sunsets onto the Moon’s near face. The vibrancy and particular hue seen depends on the clarity of the Earth’s atmosphere at the time of the eclipse.

Joseph’s location in Cairns, Australia allowed for great viewing of the eclipse in totality, whereas many areas of North and South America and Europe missed the full eclipse event.

See more images by Joseph on Flickr.

Image © Joseph Brimacombe. All rights reserved. Used with permission.

Skywatchers Share Lunar Eclipse Photos, Videos

Indian Peaks in Colorado with the eclipsing Moon setting overhead. Credit: Patrick Cullis
A big eclipsed Moon over Indian Peaks in Colorado. Credit: Patrick Cullis

It was the final lunar eclipse of the year, and the last total lunar eclipse event for the western portion of the Americas until 2014, so skywatchers took advantage of clear skies, and many have shared their images and videos with Universe Today. Enjoy the views! For many of the images you can click on them and see larger versions on our Flickr group.

Above is a view in Colorado, taken by Patrick Cullis, showing the Indian Peaks with the eclipsing Moon setting overhead, taken during the lunar eclipse in the early morning hours of December 10, 2011. The Indian Peaks are a series of peaks on the continental divide near Boulder, Colorado. “The Moon set behind the continental divide right before totality, but it was still an awesome sight,” Cullis said.

Below is a video a to-die-for view of the eclipse over the Pacific Ocean.

Continue reading “Skywatchers Share Lunar Eclipse Photos, Videos”

International Measure The Moon Night – December 10, 2011

Are you planning on watching the lunar eclipse on Saturday, December 10? Would you like to try your hand at doing something new and unusual, like measuring the Moon? Then join the The Classroom Astronomer (TCA) magazine effort by using time-honored techniques – with a modern twist! Step inside and we’ll tell you where to get the information on how it’s done…

During the total lunar eclipse, viewers will be participating by observing the Moon’s location in the sky and its path through Earth’s shadow. These methods, known as the “Shadow Transit Method” and the “Lunar Parallax Method” are techniques that have been used throughout astronomical history.

“The Shadow technique can be done anyplace where the Moon can be watched through the beginning partial, total and end partial phases of the eclipse. It can be recorded by drawing or photography.” says MTM. “The Parallax technique has to be done with two observers sufficiently far apart (we estimate at least 2000 miles (3200 kilometers). It must be recorded with photography and the photographs have to be taken at the exact same time, with a field of view wide enough (4-8 degrees) such that the neighboring stars can be recorded at the same time on both photographs. A comparison of photographs through overlay procedures will show the shift of the stars (or Moon) as seen from one side of Earth to the other. The larger the shift, the closer the Moon.”

The Classroom Astronomer has created a website – MeasureTheMoon.org to help generate interest – for everyone from general observers to classrooms. Think of what a great activity this would make for your public outreach event!

When it comes to the Shadow Transit Method, the website has a downloadable template with lunar illustrations for hand plots of the shadow over the Moon’s face and a timeline sheet for putting those drawings and cut-out of the template into the proper position. A table to calculate the Moon’s distance and size from the resulting plot is also online. More information on the MeasureTheMoon.org website includes a map that shows where on Earth you need to be to use both methods. When the total lunar eclipse has ended, the website will open a venue where you can upload your photos, along with your Moon distance and diameter observations.

Have fun!!

Information provided by Measure The Moon.

Lunar Eclipse – Saturday, December 10, 2011

Aligning his camera on the same star for nine successive exposures, Sky & Telescope contributing photographer Akira Fujii captured this record of the Moon’s progress dead center through the Earth’s shadow in July 2000. Credit: Sky & Telescope / Akira Fujii

[/caption]

Are you ready for some good, old-fashioned observing fun? Although you might not want to get up early, it’s going to be worth your time. This Saturday, December 10, 2011, marks the last total lunar eclipse event for the western portion of the Americas until 2014. While a solar eclipse event has a very small footprint where it is visible, a lunar eclipse has a wide and wonderful path that encompasses a huge amount of viewers. “We’re all looking at this together,” says Sky & Telescope senior editor Alan MacRobert.

How much of the dawn lunar eclipse will be visible for you? For your location, this map tells what stage the eclipse will have progressed to by the time the Moon sets below your west-northwestern horizon. Credit: Sky & Telescope
If you live in the eastern portion of the Americas, sorry… You’ll miss out on this one. In the Central time zone, the Moon will be setting while it is partially eclipsed. However, beginning in a line that takes in Arizona and the Dakotas you’ll be treated to the beginning of the lunar eclipse, totality, and it will set as it is beginning to come out of eclipse. If you live in the western portion of the US or Canada? Lucky you! You’ll get to enjoy the Moon as it goes through the initial states of eclipse, see totality and even might catch the phases as it slips out of Earth’s shadow again – just as the Sun begins to rise. For Skywatchers in Hawaii, Australia, and East Asia, you’ll have it better. Seen from there, the whole eclipse happens high in a dark sky from start to finish. For Europe and Africa, the eclipsed Moon will be lower in the east during or after twilight on the evening of the 10th.

When exactly does the event begin? The lunar eclipse will be total from 6:05 to 6:57 a.m. Pacific Standard Time. The partial stage of the eclipse begins more than an hour earlier, at 4:45 a.m. PST. Be sure to watch the southern lunar edge, too. Because the Moon will be skimming by the southern edge of the Earth’s shadow, it will remain slightly brighter and add to the dimensional effect you’ll see. Enjoy the coppery colors from the refracted sunlight! The Moon won’t be black – but it will most certainly be a very photogenic experience.

“That red light on the Moon during a lunar eclipse comes from all the sunrises and sunsets around the Earth at the time,” explains Sky & Telescope editor in chief Robert Naeye. “If you were an astronaut standing on the Moon and looking up, the whole picture would be clear. The Sun would be covered up by a dark Earth that was ringed all around with a thin, brilliant band of sunset- and sunrise-colored light — bright enough to dimly illuminate the lunar landscape around you.”

May clear skies be yours!

Original News Source: Sky and Telescope News Release. Image Credits: Sky and Telescope.

Black Friday’s Secret Solar Eclipse

Annular solar eclipse observed by the Hinode spacecraft on Jan. 6, 2011. Credit: Hinode/XRT

[/caption]

While many in the U.S. will be recovering from Thanksgiving day meals and looking for ways to stretch their holiday shopping dollars at (hopefully local) retailers’ “Black Friday” sales, the face of the Sun will grow dark as the Moon passes in front of it, casting its shadow over the Earth. But it won’t be visible to American shoppers – or very many people at all, in fact… this eclipse will be hiding in the southern skies above Antarctica!

Visibility of Nov. 25 2011 annular eclipse. NASA GFSC

On Friday, November 25, an annular eclipse will occur, reaching a maximum coverage at 06:20:17 UT of magnitude .905. It will be the largest – and last – partial eclipse of the year.

But its visibility will be limited to the most southern latitudes… outside of the Antarctic continent, only New Zealand, Tasmania and parts of South Africa will have any visibility of the event.

An annular eclipse is similar to a total eclipse, except that the Moon is at a further distance from Earth in its orbit and so does not completely cover the disc of the Sun. Instead a bright ring of sunlight remains visible around the Moon’s silhouette, preventing total darkness.

The next solar eclipse will occur on May 20, 2012. It will also be annular, and even darker than the Black Friday one at a magnitude of .944. It will be visible from China, Japan, the Pacific and Western U.S.

Following that, the main event of 2012 would have to be a total eclipse on November 13, which will be visible from Australia, New Zealand and South America (greatest totality will occur over the South Pacific.) Several sites have already set up group travel events to witness it!

Feeling left out on cosmic occultations? Not to worry… there will be a very visible total lunar eclipse on the night of December 10, 2011 (weather permitting, of course) to viewers across the Northern Hemisphere. The Moon will pass into Earth’s shadow, turning gradually darker in the night sky until it is colored a deep rusty red. It’s a wonderful event to watch, even if not as grandiose as a total eclipse of the Sun.

(Plus it’s completely safe to look at, as opposed to solar eclipses which should never be directly observed without safety lenses or some projection device… for the same reasons that you shouldn’t stare at the Sun normally.)

For a listing of past and future eclipses, both solar and lunar, visit Mr. Eclipse here. And you can read more about the Nov. 25 eclipse on AstroGuyz.com.

 

Do-It-Yourself Guide to Measuring the Moon’s Distance

The Moon. Photo credit: NASA.

[/caption]

When the distance from the Earth to the Moon comes up, the common figure thrown around is 402,336 km (or 250,000 miles). But have you every wondered how astronomers got that figure? And how exact it really is? There are a couple of ways you can measure the distance of the Moon that don’t require lasers or any instruments. All you need are your eyes, a clear sky, and someone else willing to stand outside all night with you. 

There are two ways to measure the distance from the Earth to the Moon on your own: using a Lunar eclipse and using parallax. Let’s look at eclipses first.

The phases of a Lunar eclipse. Photo credit: Keith Burns for NASA/JPL

The Ancient Greeks used Lunar eclipses – the phenomena of the Earth passing directly between the sun and the Moon – to determine the distance from the Earth to its satellite. It’s a simple matter of tracking and timing how long it takes the Earth’s shadow to cross over the Moon.

Start with the few knowns. We know, as did the Ancient Greeks, that the Moon travels around the Earth at a constant speed – about 29 days per revolution. The diameter of the Earth is also known to be about 12,875 km or 8,000 miles.By tracking the movement of the Earth’s shadow across the Moon, Greek astronomers found that the Earth’s shadow was roughly 2.5 times the apparent size of the Moon and lasted roughly three hours from the first to last signs of the shadow.

From these measurements, it was simple geometry that allowed Aristarchus (c. 270 BC) to determined that the Moon was round 60 Earth radii away (about 386,243 km or 240,000 miles). This is quite close to the currently accepted figure of 60.3 radii.

You can follow Aristarchus’ method in your own backyard if you have a clear view of a Lunar eclipse. Track the movement of the Earth’s shadow on the Moon by drawing the changes and time the eclipse. Use your measurements to determine the Moon’s distance.

Lunar parallax: the moon as observed from Italy and China at the same time during a lunar eclipse. Photo credit: measurethemoon.org/wordpress

For the second method, you’ll need a friend to help out. The Ancient Greeks also knew about parallax, an object’s apparent change in position when seen from two different viewpoints. You can experience parallax by holding a pen out at arm’s length and looking at it with one eye at a time. As you switch between your left and right eye, the pen will appear to move back and forth.

The same thing can be seen on a giant scale. Two observers in different parts of the world (at least 3,200 km or 2,000 miles apart) will see the Moon’s position as different from where calculations say it should be in the night sky.

To find the distance of the Moon from the Earth, you and a friend stand 3,200 km apart and each take a picture of the Moon at exactly the same time. Then, compare your images. The Moon will be in a different spot, but the background stars will be in the same place. What your images have given you is a triangle. You know the base (the distance between you and your friend), and you can find the angle at the top (the point of the Moon in this triangle). Simple geometry will give you a value for the distance of the Moon.

It might be a little more labour intensive than searching the internet, but determining the Moon’s distance yourself is sure to be more fun! If you really want to get involved, check out International Measure the Moon Night on Dec. 10, 2011. Join participants around the world who register their own events and share their images and observations!

A graph showing which parts of the world have the best chance of measuring the moon's distance using these two methods. Regions in red can see full eclipses while regions covered in red bars are best suited to measurements using parallax. Photo credit: measurethemoon.org/wordpress

Lunar Eclipse Images from Around the World; June 15, 2011

A mosiac of lunar eclipse images by Marko Posavec in Koprivnica, Croatia.

[/caption]

Now updated with more images and video!

It was an event that hasn’t happened in 11 years and won’t happen again until 2018. The total lunar eclipse of June 15, 2011 didn’t disappoint. Take a look at some of the amazing images taken by astrophotographers from around the world — well, the “eastern” side of the world anyway, as the eclipse wasn’t visible in North and South America. Our lead image is a fantastic mosaic taken by Marko Posavec in Koprivnica, Croatia. We have another image by Posavic below, but you can see more of his images via his Twitter account.

A blood red Moon as seen by Leonard E. Mercer in Malta.

The redness of the Moon during the eclipse was perhaps enhanced by the major volcanic eruption in Chile which has polluted the stratosphere with a haze, making the eclipse appear dark red. This image was taken by Leonard Mercer in Malta. You can see more of his images at his website.

The eclipsed Moon over buildings in Pisa, Italy. Credit: @UgoRom

Here’s a nice shot of the eclipsed Moon in Pisa, Italy, sent via Twitter from @UgoRom.

ISS flyby with an eclipsed Moon near the horizon in Koprivnica, Croatia. Credit: Marko Posavec

Here’s two skywatching events at once: and ISS flyby along with the eclipse, taken by Marko Posavec in Croatia.

Lunar eclipse from Germany. Credit: Daniel Fischer

Daniel Fischer from Germany, who writes the Cosmos4U blog and Skyweek German blog, took this image and said, “against all odds skies cleared *and* the geometry was better than expected about 10 minutes after totality. This is when this picture was taken, the reddish (outer) umbra still very evident.” You can read his recap of the eclipse here.

The June 15, 2011 lunar eclipse from South Australia. Credit: Julie Grise

Julie Grise from Adelaide in South Australia said “It clouded out here for totality – but between the clouds I managed a few images.”

Here’s a video from Nahum Chazarra, sent via Twitter taken from el Llano de la Perdiz, in Granada, Spain:

Lunar eclipse among the clouds in Vientiane, Lao PDR in southeast Asia. Credit: Janet Pontin
The red eclipsed Moon over Vientiane, Lao PDR in southeast Asia. Credit: Janet Pontin

The two images above are from Janet Pontin from Vientiane, Lao PDR in southeast Asia, who wrote to say, “We were very pleased that the thick clouds that had been sitting all evening cleared away, mostly, as the eclipse went underway. Complete view was from around 2.30 to 3am our time.”

Lunar eclipse. Credit: Gadi Eidelheit

Longtime UT reader Gadi Eidelheit from Israel took this image and said, “We had over 600 parents and children at the school where I did the observation.” A picture of Gadi and part of the group is below. He said the IAA (Israel Astronomy Association) volunteers operated about 30 observation places, and the eclipse was covered in all major papers, TV networks and news sites.”

Over 600 gathered to watch the eclipse at a school in Israel. Picture courtesy Gadi Eidelheit
A panoramic view of the eclipse near Ankara, Turkey. Credit: M. Rasid Tugral.

This beautiful panorama was taken near Ankara, Turkey and sent in by M. Rasid Tugral.

The lunar eclipse over western Switzerland. Credit: Alistair Scott

This image from Switzerland was sent in by Alistair Scott, author of The Greatest Guide to Photography.

The Moon during the early part of the June 15, 2011 eclipse over Tehran, Iran. Credit: Saeed Amiri and Hadi Emami.
A red, eclipsed Moon over Tehran, Iran. Credit: Saeed Amiri and Hadi Emami.

The two images above were sent in by Saeed Amiri Hadi Emami in Tehran, Iran, who took them with Canon SX210 camera.

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.