Chasing the Shadow: Our Guide to the March 9th Total Solar Eclipse

Totality! The total solar eclipse of November 14th, 2012. Image credit: Narayan Mukkavilli

Ready for the ultimate in astronomical events? On the morning of Wednesday, March 9th, the Moon eclipses the Sun for viewers across southeast Asia.

Many intrepid umbraphiles are already in position for the spectacle. The event is the only total solar eclipse of 2016, and the penultimate total solar eclipse prior the ‘Big One’ crossing the continental United States on August 21st, 2017.

Image credit: Great American Eclipse/Michael Zeiler
The path of tomorrow’s eclipse. Image credit: Great American Eclipse/Michael Zeiler

Tales of the Saros

This particular eclipse is member 52 of 73 eclipses in saros cycle 130, which runs from 1096 AD to 2394. If you saw the total solar eclipse which crossed South America on February 26th, 1998, then you caught the last solar eclipse from the same cycle.

Image credit: NASA/GSFC/A.T. Sinclair
An animation of the event. Image credit: NASA/GSFC/A.T. Sinclair

Weather prospects are dicey along the eclipse track, as March is typically the middle of monsoon season for southeast Asia. Most eclipse chasers have headed to the islands of Indonesia or cruises based nearby to witness the event. The point of greatest eclipse lies off of the southeastern coast of the Philippine Islands in the South China Sea, with a duration of 4 minutes and 10 seconds. Most observers, however, will experience a substantially shorter period of totality. For example, totality lasts only 2 minutes and 35 seconds over island of Ternate, where many eclipse chasers have gathered. The Sun will be 48 degrees above the horizon from the island during totality.

A great place to check cloud cover and weather prospects along the eclipse track is the Eclipsophile website.

Image credit; SkippySky
A dicey sky: prospects for cloud cover over Australia. Image credit; SkippySky

The umbra of the Earth’s Moon will sweep across Sumatra at sunrise and across the island of Borneo, to landfall one last time for Indonesia over the island of North Maluku before sweeping across the central Pacific. This eclipse is unusual in that it makes landfall over a very few countries: the island nation of Indonesia, and just a few scattered atolls in Palau and Micronesia.

Partial phases of the eclipse are also visible from India at sunrise, across northeast Asia along the northernmost track, to central Australia in the south, and finally, to southern Alaskan coast at sunset. Honolulu Hawaii sees a 65% partial solar eclipse in the late afternoon on March 8th.

Expect great views, both from Earth and from space. We typically get images from solar observing spacecraft, to include the joint NASA/JAXA Hinode mission, and the European Space Agency’s PROBA-2 spacecraft. Both are in low-Earth orbit, and see a given eclipse as a swift, fleeting event. Other solar observatories—such as the Solar Heliospheric Observatory and the Solar Dynamics Observatory—occupy a different vantage point in space, and miss the eclipse.

Image credit: Starry Night Education Software
The orientation of the Sun and planets at totality (click to enlarge). Image credit: Starry Night Education Software

As of this writing, we know of several folks that have made the journey to stand in the path of totality, to include Sharin Ahmad (@Shagazer), Michael Zeiler (@GreatAmericanEclipse) and Justin Ng.

Good luck and clear skies to all observers out there, awaiting darkness in the path of totality.

Live in the wrong hemisphere? There are several live webcasts planned from the eclipse zone:

NASA and the National Science Foundation are working with a team from San Francisco’s Exploratorium to bring a live webcast of the eclipse from the remote atoll island of Woleai, Micronesia. The feed starts at 7:00 EST/0:00 Universal Time (UT) and runs for just over three hours. You can follow the exploits of the team leading up to show time here.

The venerable Slooh will also feature a webcast of the eclipse with astronomer Paul Cox from Indonesia running for three hours starting at 6:00 PM EST/23:00 UT.

A view of the partial phases of the eclipse from the Hong Kong science center also starts at 5:30 PM EST/22:30 UT:

Don’t forget: though the eclipse occurs on the morning of March 9th local time in southeast Asia, the path crosses the International Dateline, and the webcasts kick off on the evening of Tuesday March 8th for North America.

And hey, Alaska Airlines flight 870 from Anchorage to Honolulu will divert from its flight plan slightly… just to briefly intercept the Moon’s shadow (its already a fully booked flight!)

From there, 2016 features only two faint penumbral lunar eclipses on March 23rd and September 16th, and an annular solar eclipse crossing central Africa on September 1st.

We’ll be doing a post-eclipse round up, with tales from totality and the pics to prove it… stay tuned!

Got eclipse pictures to share? Send ’em to Universe Today… we just might feature them in our round up!

Don’t miss our eclipse-fueled science fiction tales: Exeligmos and Shadowfall.

The Solar Heliospheric Observatory at 20

Image credit:

Flashback to 1995: Clinton was in the White House, Star Trek Voyager premiered, we all carried pagers in the pre-mobile phone era, and Windows 95 and the Internet itself was shiny and new to most of us. It was also on this day in late 1995 when our premier eyes on the Sun—The SOlar Heliospheric Observatory (SOHO)—was launched. A joint mission between NASA and the European Space Agency, SOHO lit up the pre-dawn sky over the Florida Space Coast as it headed space-ward atop an Atlas IIAS rocket at 3:08 AM EST from launch complex 39B at Cape Canaveral Air Force Station.

Envisioning SOHO

soho_photo3
SOHO on Earth

There aren’t a whole lot of 20th century spacecraft still in operation; SOHO joins the ranks of Hubble and the twin Voyager spacecraft as platforms from another era that have long exceeded their operational lives. Seriously, think back to what YOU were doing in 1995, and what sort of technology graced your desktop. Heck, just thinking of how many iterations of mobile phones spanned the last 20 years is a bit mind-bending. A generation of solar astronomers have grown up with SOHO, and the space-based observatory has consistently came through for researchers and scientists, delivering more bang for the buck.

“SOHO has been truly extraordinary and revolutionary in countless ways,” says  astrophysicist Karl Battams at the Naval Research Laboratory in Washington D.C. “SOHO has completely changed our way of thinking about the Sun, solar active regions, eruptive events, and so much more. I honestly can’t think of a more broadly influential space mission than SOHO.”

SOHO has monitored the Sun now for the complete solar cycle #23 and well into the ongoing solar cycle #24. SOHO is a veritable Swiss Army Knife for solar astrophysics, not only monitoring the Sun across optical and ultraviolet wavelengths, but also employing the Michelson Doppler Imager to record magnetogram data and the Large Angle Spectrometric Coronograph (LASCO) able to create an artificial solar eclipse and monitor the pearly white corona of the Sun.

Image credit
Peering into the solar interior.

SOHO observes the Sun from its perch one million miles sunward located at the L1 Sun-Earth point. It actually circles this point in space in what is known as a lissajous, or ‘halo’ orbit.

SOHO has revolutionized solar physics and the way we perceive our host star. We nearly lost SOHO early on in its career in 1998, when gyroscope failures caused the spacecraft to lose a lock on the Sun, sending it into a lazy one revolution per minute spin. Quick thinking by engineers led to SOHO using its reaction wheels as a virtual gyroscope, the first spacecraft to do so. SOHO has used this ad hoc method to point sunward ever since. SOHO was also on hand to document the 2003 Halloween flares, the demise of comet ISON on U.S. Thanksgiving Day 2013, and the deep and strangely profound solar minimum that marked the transition from solar cycle 23 to 24.

What was your favorite SOHO moment?

Massive sunspot
A massive sunspot witnessed by SOHO in 2000, compared to the Earth.

SOHO is also a champion comet hunter, recently topping an amazing 3000 comets and counting. Though it wasn’t designed to hunt for sungrazers, SOHO routinely sees ’em via its LASCO C2 and C3 cameras, as well as planets and background stars near the Sun. The effort to hunt for sungrazing comets crossing the field of view of SOHO’s LASCO C3 and C2 cameras represents one of the earliest crowd-sourced efforts to do volunteer science online. SOHO has discovered enough comets to characterize and classify the Kreutz family of sungrazers, and much of this effort is volunteer-based. SOHO grew up with the internet, and the images and data made publicly available are an invaluable resource that we now often take for granted.

Image credit
A ‘neat’ image…  Comet NEAT photobombs the view of SOHO’s LASCO C3 camera.

NASA/ESA has extended SOHO’s current mission out to the end of 2016. With any luck, SOHO will complete solar cycle 24, and take us into cycle 25 to boot.

“Right now, it (SOHO) is operating in a minimally funded mode, with the bulk of its telemetry dedicated solely to the LASCO coronagraph,” Battams told Universe Today. “Many of its instruments have now been superseded by instruments on other missions. As of today it remains healthy, and I think that’s a testament to the amazing collaboration between ESA and NASA. Together, they’ve kept a spacecraft designed for a two-year mission operating for twenty years.”

Today, missions such as the Solar Dynamics Observatory, Hinode, and Proba-2 have joined SOHO in watching the Sun around the clock. The solar occulting disk capabilities of SOHO’s LASCO C2 and C3 camera remains unique, though ESA’s Proba-3 mission launching in 2018 will feature a free-flying solar occulting disk.

Happy 20th SOHO… you’ve taught us lots about our often tempestuous host star.

-It’s also not too late to vote for your favorite SOHO image.

Can Lunar Earthshine Reveal Ashen Light on Venus?

Image credit

A recent celestial event provided a fascinating look at a long-standing astronomical mystery.

Is the ‘ashen light of Venus’ a real phenomena or an illusion?

On October 8th, the waning crescent Moon occulted (passed in front of) the bright planet Venus for observers in the southern hemisphere. And while such occurrences aren’t at all rare—the Moon occults Venus 3 times in 2015, and 25 times in this decade alone worldwide—the particulars were exceptional for observers in Australia, with a -4.5 magnitude, 40% illuminated Venus 30” in size emerging under dark skies 45 degrees west of the Sun from behind the dark limb of the Moon.

David and Joan Dunham rose to the challenge, and caught an amazing sequence featuring a brilliant Venus reappearing from behind the Moon as seen from the Australian Outback. When I first watched the video posted on You Tube by International Occultation Timing Association (IOTA) North American coordinator Brad Timerson, I was a bit perplexed, until I realized we were actually seeing the dark nighttime side of a waning Moon, with the bright crescent just out of view. Venus fully emerges in just under a minute after first appearing, and its -4th magnitude visage shines like a spotlight when revealed in its full glory.

Image credit:
A simulation of Venus on the limb of the Moon on October 8th. Image credit: Stellarium

“Joan and I observed the reappearance of Venus from behind the dark side of the 15% sunlit waning crescent Moon, from a dark and wide parking area on the east side of the Stuart Highway that afforded a low (1-2 degree) horizon to the east,” Dunham said. “Since the past observations of ashen light were visual, I decided that it would be best to use the 25mm eyepiece with the 8-inch visually rather than just make a redundant video. Neither the real-time visual observation, nor close visual inspection of the video recording, showed any sign of the dark side of Venus.”

Image credit:
Dunham’s ‘box scope’ imaging set up Image credit: David Dunham

We’ve written about the strange puzzle of ashen light on the nighttime side of Venus previously.

Reports by visual observers of ashen light on the dark limb of Venus over the centuries remain a mystery. On the crescent Moon, it’s easy to explain, as the Earth illuminates the nighttime side of our natural satellite; no such nearby illumination source exists in the case of Venus. Ashen light on Venus is either an illusion—a trick of the dazzling brilliance of a crescent Venus fooling the eye of the observer—or a real, and not as yet fully described phenomenon. Over the years, suggestions have included: lightning, airglow, volcanism, and aurora. A good prime candidate in the form of an ‘auroral nightglow” was proposed by New Mexico State University researchers in 2014. 19th century astronomers even proposed we might be seeing the lights of Venusian cities, or perhaps forest fires!

Could we ever separate the bright crescent of Venus from its nighttime side? A lunar occultation, such as the October 8th event provides just such a fleeting opportunity.  Though it’s hard to discern in the video, Dunham also watched the event visually through the telescope, and noted that, in his words, “the dark side of Venus remains dark,” with no brief appearance prior to sighting the crescent shining through the lunar valleys.

A tentative light curve made by Mr. Timerson seems to support this assertion, as the appearance of Venus quickly over-saturates the view:

Image credit
A rough light curve of the event. Photon counts are along the vertical axis, each tick mark along the horizontal equals one second. Image credit: Brad Timerson

Of course, this is far from conclusive, but seems to support the idea that the ashen light of Venus noted by ground observers is largely an optical illusion. Not all occultations of Venus by the Moon are created equal, and the best ones to test this method occur when Venus is less than half illuminated and greater than 40 degrees from the Sun against a relatively dark sky. Compounding problems, the ‘dark’ limb of the Moon has a brightness of its own, thanks to Earthshine. Dunham notes that observers in southern Alaska may have another shot at seeing this same phenomenon on December 7th, when the 13% illuminated crescent Moon occults a -4.2 magnitude 69% illuminated Venus, 42 degrees west of the Sun… the rest of North and South America will see this occultation in the daytime, still an interesting catch.

Image credit
The occultation footprint for the Dec 7 event. The dashed lines indicate where the event happens during daylight. Image credit: Occult 4.1

Looking at future occultations, there’s an intriguing possibility to hunt for the ashen light on the evening of October 10th, 2029, when then Moon occults a 57% illuminated Venus against dark skies for observers along the U.S. West Coast. Incidentally, a dawn occultation provides a better circumstance than a dusk one, as Venus always reemerges from the Moon’s dark limb when it’s waning. It enters the same when waxing, perhaps allowing for observer bias.

Image credit:
A simulation of the 2029 event. Image credit: Stellarium

Can’t wait for December? The Moon also occults the bright star Aldebaran on October 29th for Europe and North America on November 26th near Full phase… the good folks at the Virtual Telescope will carry the October event live.

Image credit:
The occultation footprint for the 2029 event. Image credit: Occult 4.1

For now, the ashen light of Venus remains an intriguing mystery. Perhaps, an airborne observation could extend the appearance of Venus during an occultation, or maybe the recently announced Discovery-class mission to Venus could observe the night side of the planet for an Earthly glow… if nothing else, it’s simply amazing to watch the two brightest objects in the nighttime sky come together.

Is This Month’s Jupiter-Venus Pair Really a Star of Bethlehem Stand In?

Image credit and copyright: Clapiotte Astro

Eclipse tetrads of doom. Mars, now bigger than the Full Moon each August. The killer asteroid of the month that isn’t. Amazing Moons of all stripes, Super, Blood, Black and Blue…

Image credit and copyright: @TaviGrainer(ck)
Venus, Mars, Jupiter and the Moon from October 9th. Image credit and copyright: @TaviGreiner

The internet never lets reality get in the way of a good meme, that’s for sure. Here’s another one we’ve caught in the wild this past summer, one that now appears to be looking for a tenuous referent to grab onto again next week.

You can’t miss Jupiter homing in on Venus this month, for a close 61.5’ pass on the morning on Oct 25th. -1.4 magnitude Jupiter shows a 33” disk on Sunday’s pass, versus -4 magnitude Venus’ 24” disk.

Oct 26 Stellarium
Looking east on the morning of October 26th. Credit: Stellarium

We also had a close pass on July 1st, which prompted calls of ‘the closest passage of Venus and Jupiter for the century/millennia/ever!’ (spoiler alert: it wasn’t) Many also extended this to ‘A Star of Bethlehem convergence’ which, again, set the web a-twittering.

Will the two brightest planets in the sky soon converge every October, in the minds of Internet hopefuls?

This idea seems to come around every close pass of Jupiter and Venus as of late, and may culminate next year, when an extra close 4’ pass occurs on August 27th, 2016. But the truth is, close passes of Venus and Jupiter are fairly common, occurring 1-2 times a year. Venus never strays more than 47 degrees from the Sun, and Jupiter moves roughly one astronomical constellation eastward every Earth year.

Much of the discussion in astrological circles stems from the grouping of Jupiter, Venus and the bright star Regulus this month. Yes, this bears a resemblance to a grouping of the same seen in dawn skies on August 12th, 2 BCE. This was part of a series of Jupiter-Venus conjunctions that also occurred on May 24th, 3 BCE and June 17th, 1 BCE. The 2 BCE event was located in the constellation Leo the Lion, and Regulus rules the sign of kings in the minds of many…

Stall
Looking eastward on the morning of August 12th, 2 BCE. Credit: Stellarium

But even triple groupings are far from uncommon over long time scales. Pairings of Jupiter, Venus in any given zodiac constellation come back around every 11-12 years. Many great astronomical minds over the centuries have gone broke trying to link ‘The Star’ seen by the Magi to the latest astronomical object in vogue, from conjunctions, to comets, to supernovae and more. If there’s any astronomical basis to the allegorical tale, we’ll probably never truly know.

Starry Night
The October 25th pass of Venus vs Jupiter. Created using Starry Night Education software.
Aaron Adair, the author of The Star of Bethlehem: A Skeptical View has this to say to Universe Today:
“The 3/2 BCE conjunctions don’t fit the time of Jesus’ birth. There is also no evidence that these sorts of conjunctions were considered all that good; I even found evidence that they were bad news for a king, especially if Jupiter was circling around Regulus. And of course, none of this even comes close to doing the things the Star of Bethlehem was claimed to have done. 
So, we have a not terribly rare situation in the sky that conforms to something that doesn’t really fit the Gospel story in a time frame that doesn’t fit the Jesus chronology which doesn’t really have anything all that auspicious about that to ancient observers.” 

The dance of the planets also gives us a brief opening teaser on Saturday morning, as Mars  passes just 0.38 degrees NNE of Jupiter on Oct 17th looking like a fifth pseudo-moon.

Finally, the crescent Moon joins the scene once again on November 7th, passing 1.9 degrees SSW of Jupiter and 1.2 SSW of Venus, a great time to attempt to spy both in the daytime using the crescent Moon as a guide. And keep an eye on Venus, as the next passage of the crescent Moon on December 7th features a close grouping with binocular Comet C/2013 US10 Catalina as well.

How close can the two planets get?

Stick around ‘til November 22nd 2065, and you can watch Venus actually transit the face of Jupiter:

Though rare, such an occlusion involving the two brightest planets happens every other century or so… we ran a brief simulation, and uncovered 11 such events over the next three millennia:

Credit: Dave Dickinson
Credit: Dave Dickinson

Bruce McCurdy of the Royal Canadian Astronomical Society posed a further challenge: how often does Venus fully occult Jupiter? We ran a simulation covering 9000 BC to 9000 AD, and found no such occurrence, though the July 14th, 4517 AD meeting of Jupiter and Venus is close.

Let’s see, I’ll be on my 3rd cyborg body, in the post- Robot Apocalypse by then…

This sort of total occlusion of Jupiter by Venus turns out to be rarer than any biblical conjunction. Why?

Well, for one thing, Venus is generally smaller in apparent size than Jupiter. When Jupiter is near Venus, it’s also near the Sun and in the 30-35” size range. Venus only breaks 30” in size for about 20% of its 584 synodic period. But we suspect a larger cycle may be in play, keeping the occurrence of a large Venus meeting and covering a shrunken Jove in our current epoch.

A Moon, a star, three planets and... a space station? A close pass of Tiangong-1 (arrowed) near this month's grouping. Image credit: Dave Dickinson
A Moon, a star, three planets and… a space station? A close pass of Tiangong-1 (arrowed) near this month’s grouping. Image credit: Dave Dickinson

Astronomy makes us ponder the weirdness of our skies gracing our backyard over stupendously long time scales. Whatever your take on the tale and the modern hype, be sure to get out and enjoy the real show on Sunday morning October 25th, as the brightest of planets make for a brilliant pairing.

Why Was September’s Lunar Eclipse So Dark?

The September 17, 2015 total lunar eclipse - the last of the recent tetrad of lunar eclipses over the past 17 months - was darker than expected. Several factors described below were in play. This photo was taken in Washington's Olympic National Park. Credit: Rick Klawitter

First off, a huge thank you to everyone who made and sent their Danjon scale estimate of the totally-eclipsed Moon’s brightness to Dr. Richard Keen, University of Colorado atmospheric scientist. Your data were crucial to his study of how aerosols in Earth’s atmosphere and other factors influence the Moon’s appearance.

Grateful for your help, Keen received a total of 28 observations from 7 different countries.

Graphs created by Dr. Richard Keen plotting Danjon L values submitted by Universe Today readers and others that compare expected values (top curve) with observed values. The Moon was about half as bright during totality as expected with L=1.9. Credit: Dr. Richard A. Keen
Graph created by Dr. Richard Keen plotting Danjon L values submitted by Universe Today readers and others that compare predicted values (top curve) with observed values. The Moon was about half as bright during totality as expected with L=1.9. Credit: Dr. Richard A. Keen

Using the Danjon information and estimates of the Moon’s brightness using the reverse binocular method, Keen crunched the data and concluded that the Moon was about 0.6 L (Danjon) units darker than expected and 0.4 magnitude dimmer, a brightness reduction of 33%. This agrees well with my own observation and possibly yours, too. No wonder so many stars sparkled near the Moon that night.

Depending on how clear the atmosphere is, the Moon's color can vary dramatically from one eclipse to another. The numbers, called the Danjon Scale, will help you estimate the color of Sunday night's eclipse. Credit: Bob King
Lunar eclipse brightness is rated on the Danjon scale where “0” equals a dark gray totality and “4” a bright, coppery yellow. Credit: Bob King

I think it’s safe to say, most of us expected a normal or even bright totality. So why was it dark? Several factors were at play — one to do with the Moon’s location in Earth’s shadow, the other with a volcanic eruption and a third with long-term, manmade pollution.

During a perigee eclipse, the moon passes more deeply into Earth’s shadow compared to one that happens near apogee, when the moon is most distant from Earth. Moon distances not to scale and for illustration only. Credit: Bob King
During a perigean eclipse, the Moon passes more deeply into Earth’s shadow compared to one that happens near apogee, when the moon is most distant from Earth. Moon distances not to scale and for illustration only. Credit: Bob King

You’ll recall that the eclipse occurred during lunar perigee, when the Moon swings closest to Earth in its 27-day orbit. Being closer, it also tracked deeper into Earth’s umbra or inner shadow which narrows the farther back of the planet it goes. An apogean Moon (farthest from Earth) passes through a more tapered cone of darkness closer to the penumbra, where sunlight mixes with shadow. A Moon nearer Earth would find the umbral shadow roomier with the light-leaking penumbra further off in the distance.

Around midday on April 24, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of the ash and gas plume from Calbuco volcano in southern Chile. Credit: NASA
On April 24, 2015, NASA’s Terra satellite acquired this photo of the ash and gas plume from Calbuco volcano in southern Chile. Credit: NASA

But there’s more. Working independently, Steve Albers of NOAA and Brazilian astronomer Helio Vital suggested another reason: aerosols in the atmosphere. “Earth’s stratosphere is no longer completely clean of volcanic ashes,” said Vital in an e-mail communication. “In fact, lingering aerosols (ash, dust, sulfuric acid droplets) from the explosion of Calbuco five months ago may be to blame for that excessive darkening.”

With the lunar horizon in the foreground, the Earth passes in front of the Sun on September 27, 2015 in this simulation, revealing the red ring of sunrises and sunsets along the limb of the planet responsible for illuminating the Moon during the eclipse. The clarity of the stratosphere at eclipse time can greatly affect lunar brightness during totality. The Earth and Sun are in Virgo for observers on the Moon with the bright star Beta Virginis at top. Click to see the video. Credit: NASA's Scientific Visualization Studio
With the lunar horizon in the foreground, the Earth passes in front of the Sun on September 27, 2015 in this simulation, revealing the red ring of sunrises and sunsets along the limb of the planet responsible for illuminating the Moon during the eclipse. The clarity of the stratosphere at eclipse time can greatly affect lunar brightness during totality. The Earth and Sun are in Virgo for observers on the Moon with the bright star Beta Virginis at top. Click to see the video. Credit: NASA’s Scientific Visualization Studio

While much of the debris blasted into the stratosphere made for colorful sunsets in the southern hemisphere, some of that material has likely made its way to the northern hemisphere. Albers has noticed an increase in yellow and purple sunsets in his home town of Boulder in recent months, telltale signs of volcanic spew at play.

Forest fires that raged across the western states and Canadian provinces all spring and summer may also have contributed. Most of that smoke usually stays in the lower part of the atmosphere, but some may have found its way to the stratosphere, the very layer responsible for transmitting most of the sunlight that falls into Earth’s shadow and colors the moon.

Graph showing magnitude estimates of the Moon's brightness during totality using the reverse binocular method. The predicted magnitude was -1.7 (a little brighter than Sirius) vs. the observed -1.3. Credit: Dr. Richard A. Keen
Graph showing magnitude estimates of the Moon’s brightness during totality using the reverse binocular method. The predicted magnitude was -1.7 (a little brighter than Sirius) vs. the observed -1.3. Credit: Dr. Richard A. Keen

Sunlight has to pass through these light-absorbing minerals and chemicals on its way through the atmosphere and into Earth’s shadow. Less light means a darker moon during total eclipse. Coincidentally, much of the totally eclipsed Moon passed through the southern half of the umbra which “increased the effectiveness of the Calbuco aerosols (which are still more concentrated in the southern hemisphere than the northern) at dimming the light within the umbra,” writes Keen.

Oceanus Procellarum and Mare Imbrium are large, dark volcanic plains that contributed to the Moon's faintness and dark-hued totality. Credit: Bob King
Oceanus Procellarum and Mare Imbrium are large, dark volcanic plains that contributed to the Moon’s faintness and dark-hued totality. Credit: Bob King

It also so happened that the darkest part of the moon coincided with two vast, dark volcanic plains called Oceanus Procellarum (Ocean of Storms) and Mare Imbrium, artificially enhancing the overall gloom over the northern half of the Moon.

U.S. satellite-derived map of PM2.5 averaged over 2001-2006. Credit: Dalhousie University, Aaron van Donkelaar
U.S. satellite-derived map of PM2.5 (fine particulate matter which includes sulfates and soot) averaged over 2001-2006. Credit: Dalhousie University, Aaron van Donkelaar

Finally, the human hand may also have played a role in lunar color and brightness. The burning of coal and oil has caused a gradual increase in the amount of human-made sulfate aerosols in the atmosphere since the start of the industrial revolution. According to NASA, at current production levels, human-made sulfate aerosols are believed to outweigh the naturally produced sulfate aerosols. No surprise that the concentration of aerosols is highest in the northern hemisphere where most industrial activity is found.

Isn’t it fascinating that one blood-red Moon can tell us so much about the air we breathe? Thank you again for your participation!

First Lunar Eclipse Ever Photographed with a Transit of the ISS

A montage of images taken during the lunar eclipse on September 28, 2015, as see from Rambouillet, France. ISS transit duration (total): 1.7 seconds. This is the first time an ISS transit has been photographed during an eclipse. Credit and copyright: Thierry Legault.

To our knowledge, this is the first time anyone has ever photographed a transit of the International Space Station of the Moon DURING a lunar eclipse. And guess who did it?

Not surprisingly, it was the legendary astrophotographer Thierry Legault.
Usually, Thierry will travel up to thousands of miles to capture unique events like this, but this time, he only had to go 10 miles!

“Even if I caught a cold, I could not miss it,” Thierry told Universe Today in an email. “The Moon was very low on the horizon, only 16 degrees, so the seeing was not very good, but at least the sky was clear.”

Still, a stunning — and singularly unique — view of the “Super Blood Moon” eclipse!

See the video below:

It was a quick pass, with the ISS transit duration lasting a total of 1.7 seconds. Thierry uses CalSky to calculate where he needs to be to best capture an event like this, then studies maps, and has a radio synchronized watch to know very accurately when the transit event will happen.

In a previous article on Universe Today, Legault shared how he figures out the best places to travel to from his home near Paris to get the absolute best shots:

“For transits I have to calculate the place, and considering the width of the visibility path is usually between 5-10 kilometers, but I have to be close to the center of this path,” Legault explained, “because if I am at the edge, it is just like an eclipse where the transit is shorter and shorter. And the edge of visibility line of the transit lasts very short. So the precision of where I have to be is within one kilometer.”

Here’s the specs: ISS Speed: 25000 km/h (15500 mph). ISS Distance: 1100 km; Moon distance: 357,000 km (320x).

You can see other imagery from around the world of the lunar eclipse here, with images taken by Universe Today readers and staff.

Earlier this year, Thierry captured an ISS transit during the March 20, 2015 SOLAR eclipse, which you can see here.

Universe Today’s David Dickinson said he’s been trying to steer people towards trying to capture an ISS transit during a lunar eclipse for quite some time, and concurred that Thierry’s feat is a first. Dave made a video earlier this year to explain how people might photograph it during the April 2015 lunar eclipse, but unfortunately, no astrophotographers had any luck.

Thanks again to Thierry Legault for sharing his incredible work with Universe Today. Check out his website for additional imagery and information.

You can also see some of Legault’s beautiful and sometimes ground-breaking astrophotography here on Universe Today, such as images of the space shuttle or International Space Station crossing the Sun or Moon, or views of spy satellites in orbit.

If you want to try and master the art of astrophotography, you can learn from Legault by reading his book, “Astrophotography,” which is available on Amazon in a large format book or as a Kindle edition for those who might like to have a lit version while out in the field. It is also available at book retailers like Barnes and Noble and Shop Indie bookstores, or from the publisher, Rocky Nook, here.

A Bloody Beautiful Supermoon Eclipse!

"The red Moon did not disappoint tonight," writes Arnar Kristjansson. Credit: Arnar Kristjansson

Like some of you, I outran the clouds just in time to catch last night’s total lunar eclipse. What a beautiful event! Here are some gorgeous pictures from our readers and Universe Today staff — souvenirs if you will — of the last total lunar eclipse anywhere until January 31, 2018. The sky got so dark, and the Moon hung like a plum in Earth’s shadow for what seemed a very long time. Did you estimate the Moon’s brightness on the Danjon Scale? My brother and I both came up with L=2 from two widely-separated locations; William Wiethoff in Hayward, Wisconsin rated it L=1. All three estimates would indicate a relatively dark eclipse.

Nicely-done sequence of eclipse phases taken early September 28, 2015. Credit: Own Llewellyn
Nicely-done sequence of eclipse phases taken early September 28, 2015. Click to enlarge. Credit: Own Llewellyn

The darkness of the umbra was particularly noticeable in the west quarter of the Moon in the giant volcanic plain known as Oceanus Procellarum. This makes sense as that portion of the Moon was located closest to the center of the Earth’s dark, inner umbra. The plain is also dark compared to the brighter lunar highlights, which being more reflective, formed a sort of pale ring around the northern rim of the lunar disk.

Salute to the eclipse! Credit: Jason Major
Salute to the final eclipse of the current tetrad that began 17 months ago.  Credit: Jason Major

The bottom or southern rim of the Moon, located farthest from the center of the umbra, appeared a lighter yellow-orange throughout totality.

Wide angle view of the Moon during totality in star-rich sky with the Aquila Milky visible at right. Credit: Bob King
Wide angle view of the Moon (lower left) during totality in a star-rich sky with the Aquila Milky Way visible at right. Credit: Bob King

This is just a small sampling of the excellent images arriving from our readers. More are flowing in on Universe Today’s Flickr site.  Thank you everyone for your submissions!

A crowd gather to watch the Moon during partial eclipse prior to totality. Credit: Robert Sparks
A crowd gather to watch the Moon during partial eclipse prior to totality. Credit: Robert Sparks
A hint of the penumbra shows in this photo. Hint: look near left top. Credit: Roger Hutchinson
A hint of the penumbra shows in this photo. Hint: look near left top. Credit: Roger Hutchinson
A bloody Moon iindeed! Credit: Chris Lyons
A bloody Moon iindeed! Notice how dark Oceanus Procellarum (top) appears. Credit: Chris Lyons
"Super Blood Moon". Credit: Alok SInghal
“Super Blood Moon”. Credit: Alok Singhal
Nice montage of images from eclipse start to finish. Credit: Mike Greenham
Nice montage of images from eclipse start to finish. Credit: Mike Greenham
One of the most awesome aspects of the eclipse was how many stars could be seen near the Moon. This picture was taken with a 100mm telesphoto lens. Credit: Bob King
One of the most awesome aspects of the eclipse was how many stars could be seen near the Moon. This picture was taken with a 100mm telesphoto lens. Credit: Bob King
Rare shot of the totally eclipsed Moon and bright meteor. Credit: VegaStar Carpentier Photography
Rare shot of the totally eclipsed Moon and bright meteor. Credit: VegaStar Carpentier Photography
A lucky break in the clouds made this photographer happy. Credit: Moe Ali
A lucky break in the clouds made this photographer happy. Credit: Moe Ali
Mary Spicer made exposures every 5 minutes. During totality the Moon dropped behind a tree so I had to relocate the camera, hence the small gap in the sequence. 35 shots in total, stacked using StarStax. Credit: Mary Spicer
Mary Spicer made exposures of the eclipsed Moon every 5 minutes. During totality, the Moon dropped behind a tree so she had to relocate the camera, hence the small gap in the sequence. 35 shots in total and stacked into one frame using StarStax. Credit: Mary Spicer
The Moon caught after totality between clouds through a small refracting telescope. Credit: Bob King
The Moon caught after totality between clouds through a small refracting telescope. Credit: Bob King
Another nice montage displaying all the partial phases, early, mid and late totality. Credit: Andre van der Hoeven
Another fine montage displaying all the partial phase plus early, mid and late totality. Credit: Andre van der Hoeven

How to (Hopefully) Find Clear Skies for Tonight’s Total Lunar Eclipse

Weather looking a bit iffy tonight? Using the resources described below, you just might be able to escape the clouds. Credit: Bob King

We’ve arrived at eclipse day, so now the big question is, will it be clear? My favorite forecast for major astronomical events reads something like this: Fair skies tonight with light winds and lows in the middle 50s.While I hope that’s exactly what’s predicted for your town, in my corner of the world we’re expecting “increasing clouds with a chance for thunderstorms”.

That’s just not nice. Same by you? Here’s how to find that clear spot if you’re facing bad weather tonight.

One of my favorite cloud-checking sites is the GOES East view of the U.S., Canada and Central America taken from geostationary orbit. Credit: NASA
One of my favorite cloud-checking sites is the GOES East view of the U.S., Canada and Central America taken from geostationary orbit. This map shows the scene at 10:45 a.m. CDT this morning. Credit: NASA

I usually check the GOES (Geostationary Operational Environmental Satellite) images that weather forecasters use to display and animate the movement of clouds and weather fronts during the nightly newscasts. Once I know the location and general drift of the clouds, I get in a car and drive to where it’s likely to either remain or become clear. Depending on the “magnitude” of the event I might drive 50 to 150 miles. If nothing else, doing astronomy guarantees many adventures.

GOES West view of the western U.S., Canada and Hawaii taken at 11 a.m. CDT. Credit: NASA
GOES West view of the western U.S., Canada and Hawaii taken at 11 a.m. CDT. Credit: NASA

You’ll find these most helpful images at either the GOES East site, which features a photo of the entire mainland U.S., Central America and much of Canada, updated every 15 minutes. Since the satellite taking the photos is centered over the 75° west parallel of longitude, its focus is primarily the eastern two-thirds of the U.S. and Canada. For the western U.S., western Canada and Hawaii, head over to the GOES West site.

After you set the width and height to maximum values, you'll get a picture like this which was taken at 11 a.m. CDT and features the upper and lower Midwest. Credit: NASA
After you set the width and height to maximum values, you’ll get a picture like this, taken at 11 a.m. CDT. Credit: NASA

Once there, you’ll be presented with a big picture view of the U.S., etc., but you can click anywhere on the map for a zoomed-in look at a particular region. Before you do, set the “width” and “height” boxes to their maximum values of 1400 (width) and 1000 (height). That way you’ll get a full-screen, nifty, 1-kilometer image when you go in close. All images have a time stamp in the upper left corner given in Universal or Greenwich Mean Time (GMT). Subtract 4 hours to convert to Easter Daylight; 5 for CDT; 6 for MDT and 7 for PDT.

You can check back all day long for fresh photos and watch the march of the clouds over time. Or you can have the site assemble up to 30 of the most recent images into an animation loop and watch it as a movie. Combing current photos, the animation and your local forecast will inform your plans about whether to remain at home to watch the eclipse or get the heck out of town.

Infrared image of the east-central U.S. at 11 a.m. CDT today. Credit: NASA
Infrared image of the east-central U.S. at 11 a.m. CDT today. Clouds can be seen and tracked at night using the infrared channel on the GOES East and West sites. Credit: NASA

When night arrives, you can still get a reasonably good idea of where the clouds are and aren’t by clicking on the infrared channel link at the top of the site. I also like to use the NCAR (National Center for Atmospheric Research Real-Time Weather Data) site. They offer a black and white infrared option that provides a clearer picture. At the site, select your “channel” then click on one of the regional acronyms on the interactive U.S. map.

So far, we’ve been talking about the weather in real time. When it comes to forecasts, one of the most useful tools of all and a true godsend to amateur astronomers is Attilla Danko’s ClearDarkSky site. Click on the Clear Sky Charts link to access interactive charts for thousands of locations across the U.S., Canada and parts of Mexico. For example, if you click on Illinois, you’ll get a list of sky conditions for 105 locations throughout the state. The Chicago link pops up six rows of data-packed squares with colors ranging from deep blue to white.

The cloud cover forecast for Chicago for the next day as depicted in Attilla Danko's Clear Dark Sky site. Copyright: Attilla Danko
The cloud cover forecast for Chicago today Sept. 27 through early Tuesday Sept. 29 as depicted in Attilla Danko’s Clear Dark Sky site. The forecasts can be sponsored for a donation by various groups or individuals. This one is by the Chicago Astronomical Society. Copyright: Attilla Danko

The first row indicates cloud clover with varying shades of blue representing the percentage of clear sky. Medium blue means partly cloudy; white indicates 100% overcast. Additional data sets include sky transparency, seeing conditions, hours of darkness, wind, temperature and humidity. While no forecast is 100% accurate, the reliability of the models Danko uses makes Clear Sky Charts one of best tools available for skywatchers. Want a real treat? If you click on one of the squares in the Cloud Cover row, a large image showing cloud cover at the time will pop up. You’ll also find another, more general interactive cloud forecast graphic at WeatherForYou.com.

Thanks to a helpful reader suggestion, I recently learned of Clear Outside, a forecasting site similar to Clear Sky Charts but worldwide. Be sure to check it out. Satellite imagery like the U.S. GOES East and West is available for European and African observers at Sat24.

So what does the U.S. look like for weather tonight? Mostly clear skies are expected from New York State up through Maine, across the center of the country, the desert Southwest and the Northwest. Expect partly cloudy conditions (with some mostly cloudy spots) for the Upper and central Midwest, and mostly cloudy to overcast skies in the southern and southeastern seaboard states.

But who knows? By using these sites, you might just improve your chances of seeing what promises to be a spectacular lunar eclipse tonight. Some of you reading this undoubtedly have your own favorite weather hangouts. Please share them with us in the comments section. The more the merrier!

As always, if you’re completely shut out, here are a few sites where you can watch it live on the Web:

What Color Is the Moon? A Simple Science Project For Sunday Night’s Eclipse

Depending on how clear the atmosphere is, the Moon's color can vary dramatically from one eclipse to another. The numbers, called the Danjon Scale, will help you estimate the color of Sunday night's eclipse. Credit: Bob King

There are many ways to enjoy tomorrow night’s total lunar eclipse. First and foremost is to sit back and take in the slow splendor of the Moon entering and exiting Earth’s colorful shadow. You can also make pictures, observe it in a telescope or participate in a fun science project by eyeballing the Moon’s brightness and color. French astronomer Andre Danjon came up with a five-point scale back in the 1920s to characterize the appearance of the Moon during totality. The Danjon Scale couldn’t be simpler with just five “L values” from 0 to 4:

L=0: Very dark eclipse. Moon almost invisible, especially at mid-totality.
L=1: Dark Eclipse, gray or brownish in coloration. Details distinguishable only with difficulty.
L=2: Deep red or rust-colored eclipse. Very dark central shadow, while outer edge of umbra is relatively bright.
L=3: Brick-red eclipse. Umbral shadow usually has a bright or yellow rim.
L=4: Very bright copper-red or orange eclipse. Umbral shadow has a bluish, very bright rim.

The Danjon Scale is used to estimate the color of the totally eclipsed moon. By making your own estimate, you can contribute to atmospheric and climate change science. Credit: Alexandre Amorim
The Danjon Scale is used to estimate the color of the totally eclipsed moon. By making your own estimate, you can contribute to atmospheric and climate change science. Credit: Alexandre Amorim

The last few lunar eclipses have been bright with L values of 2 and 3. We won’t know how bright totality will be during the September 27-28 eclipse until we get there, but chances are it will be on the bright side. That’s where you come in. Brazilian amateur astronomers Alexandre Amorim and Helio Carvalho have worked together to create a downloadable Danjonmeter to make your own estimate. Just click the link with your cellphone or other device and it will instantly pop up on your screen.

On the night of the eclipse, hold the phone right up next to the moon during mid-eclipse and estimate its “L” value with your naked eye. Send that number and time of observation to Dr. Richard Keen at [email protected]. For the sake of consistency with Danjon estimates made before mobile phones took over the planet, also compare the moon’s color with the written descriptions above before sending your final estimate.

Graph showing the change in heating of the ground in fractions of degrees (vertical axis) as affected by volcanic eruptions and greenhouse warming since 1979. The blue shows volcanic cooling, the red shows greenhouse warming. Notice the rising trend in warming after 1996. Credit: Dr. Richard Keen
Graph showing the change in heating of the ground in fractions of degrees (vertical axis) as affected by volcanic eruptions and greenhouse warming since 1979. The blue shows volcanic cooling, the red shows greenhouse warming. Notice the rising trend in warming after 1996. Credit: Dr. Richard Keen

Keen, an emeritus professor at the University of Colorado-Boulder Department of Atmospheric and Oceanic Sciences, has long studied how volcanic eruptions affect both the color of the eclipsed moon and the rate of global warming. Every eclipse presents another opportunity to gauge the current state of the atmosphere and in particular the dustiness of the stratosphere, the layer of air immediately above the ground-hugging troposphere. Much of the sunlight bent into Earth’s shadow cone (umbra) gets filtered through the stratosphere.

Volcanoes like Mt. Pinatubo, which erupted in June 1991 in the Philippines, inject tremendous quantities of ash and sulfur compounds high into the atmosphere, where they can temporarily block the sunlight and cause a global drop in temperature. Credit: USGS
Volcanoes like Mt. Pinatubo, which erupted in June 1991 in the Philippines, inject tremendous quantities of ash and sulfur compounds high into the atmosphere, where they can temporarily block sunlight and cause a global drop in temperature. Credit: USGS

Volcanoes pump sulfur compounds and ash high into the atmosphere and sully the otherwise clean stratosphere with volcanic aerosols. These absorb both light and solar energy, a major reason why eclipses occurring after a major volcanic eruption can be exceptionally dark with L values of “0” and “1”.

The moon was so dark during the December 1982 eclipse that Dr. Keen required a 3-minute-long exposure at ISO 160 to capture it. Credit: RIchard Keen
The moon was so dark during the December 1982 eclipse that Dr. Keen required a 3-minute-long exposure at ISO 160 to capture it. Credit: Richard Keen

One of the darkest in recent times occurred on December 30, 1982 after the spectacular spring eruption of Mexico’s El Chichon that hurled some 7 to 10 million tons of ash into the atmosphere. Sulfurous soot circulated the globe for weeks, absorbing sunlight and warming the stratosphere by 7°F (4°C).

A chromolithograph from the German astronomy magazine "Sirius" compares the dark and featureless lunar disk during the eclipse a year after the eruption of Krakatoa (left) with a bright eclipse four years later, after the volcanic aerosols had settled out of the stratosphere (right).
Lithograph from the German astronomy magazine Sirius compares the dark, featureless lunar disk during the 1884 eclipse a year after the eruption of Krakatoa (left) with a bright eclipse four years later, after the volcanic aerosols had settled out of the stratosphere (right).

Meanwhile, less sunlight reaching the Earth’s surface caused the northern hemisphere to cool by 0.4-0.6°C. The moon grew so ashen-black during totality that if you didn’t know where to look, you’d miss it.

Two photos of Earth’s limb or horizon from orbit at sunset before and after the Mt. Pinatubo eruption. The top view shows a relatively clear atmosphere, taken August 30,1984. The bottom photo was taken August 8, 1991, less than two months after the eruption. Two dark layers of aerosols between 12 and 15 miles high make distinct boundaries in the atmosphere. Credit: NASA
Two photos of Earth’s limb or horizon from orbit at sunset before and after the Mt. Pinatubo eruption. The top view shows a relatively clear atmosphere, taken August 30,1984. The bottom photo was taken August 8, 1991, less than two months after the eruption. Two dark layers of aerosols between 12 and 15 miles high make distinct boundaries in the atmosphere. Credit: NASA

Keen’s research focuses on how the clean, relatively dust-free stratosphere of recent years may be related to a rise in the rate of global warming compared to volcano-induced declines prior to 1996. Your simple observation will provide one more data point toward a better understanding of atmospheric processes and how they relate to climate change.

This map shows the Moon during mid-eclipse at 9:48 p.m. CDT. Selected stars are labeled with their magnitudes. Use these stars to help you estimate the Moon's magnitude by looking at the Moon through the backwards through binoculars. Source: Stellarium
This map shows the Moon during mid-eclipse at 9:48 p.m. CDT. Selected stars are labeled with their magnitudes. Examine the Moon backwards through binoculars and find a star it most closely matches to determine its magnitude. If for instance, the Moon looks about halfway in brightness between Hamal and Deneb, then it’s magnitude 1.6. Click to enlarge. Source: Stellarium

If you’d like to do a little more science during the eclipse, Keen suggests examining the moon’s color just after the beginning and before the end of totality to determine an ‘L’ value for the outer umbra.  You can also determine the moon’s overall brightness or magnitude at mid-eclipse by comparing it to stars of known magnitude. The best way to do that is to reduce the moon down to approximately star-size by looking at it through the wrong end of a pair of 7-10x binoculars and compare it to the unreduced naked eye stars. Use this link for details on how it’s done along with the map I’ve created that has key stars and their magnitudes.

The table below includes eclipse events for four different time zones with emphasis on mid-eclipse, the time to make your observation. Good luck on Sunday’s science project and thanks for your participation!

Eclipse Events Eastern Daylight Time (EDT) Central Daylight Time (CDT) Mountain Daylight Time (MDT) Pacific Daylight Time (PDT)
Penumbra first visible 8:45 p.m. 7:45 p.m. 6:45 p.m. 5:45 p.m.
Partial eclipse begins 9:07 p.m. 8:07 p.m. 7:07 p.m. 6:07 p.m.
Total eclipse begins 10:11 p.m. 9:11 p.m. 8:11 p.m. 7:11 p.m.
Mid-eclipse 10:48 p.m. 9:48 p.m. 8:48 p.m. 7:48 p.m.
Total eclipse ends 11:23 p.m. 10:23 p.m. 9:23 p.m. 8:23 p.m.
Partial eclipse ends 12:27 a.m. 11:27 p.m. 10:27 p.m. 9:27 p.m.
Penumbra last visible 12:45 a.m. 11:45 p.m. 10:45 p.m. 9:45 p.m.

Sunday Night: Getting Ready For a ‘Super-Harvest-Blood-Moon Total Lunar Eclipse’

Image Credit:

So, heard the one about this weekend’s impending ‘Super-Harvest-Blood-Moon eclipse?’ Yeah, us too. Have no fear; fortunately for humanity, the total lunar eclipse transpiring on Sunday night/Monday morning is a harbinger of nothing more than a fine celestial spectacle, clear skies willing.

This final eclipse of the ongoing lunar tetrad has some noteworthy events worth exploring in terms of science and lore.

The Supermoon Total Lunar Eclipse of September 27-28 2015 from Michael Zeiler on Vimeo.

The Specifics: First, you almost couldn’t ask for better timing. This weekend’s total lunar eclipse occurs during prime time Sunday night for North and South America, and early Monday morning for Europe, Africa and most of the Middle East. This means the Atlantic Region and surrounding areas will see totality in its entirety. This eclipse occurs very near the northward equinoctial point occupied by the Sun during the Northern Hemisphere Spring equinox in March. The date says it all: this eclipse coincides with the Harvest Moon for 2015, falling just under five days after the September equinox.

Early cloud cover prospects for Sunday night over the contiguous United States. Image credit: The National Weather Service
Early cloud cover prospects for Sunday night over the contiguous United States. Image credit: The National Weather Service

For saros buffs, Sunday’s eclipse is part of lunar saros series 137, member 28 of 81. This saros started back in 1564 and produced its first total lunar eclipse just two cycles ago on September 6th 1979. Saros 137 runs all the way out to its final eclipse on April 20th, 2953 AD.  

And yes, this upcoming total lunar eclipse occurs very near the closest lunar perigee for 2015. How rare are ‘Supermoon’ lunar eclipses? Well, we took a look at the phenomenon, and found 15 total lunar eclipses occurring near lunar perigee for the current century:

Image credit:
Perigee eclipses for the 21st century. To make the cut, a total lunar eclipse needed to occur within 24 hours of lunar perigee.  Image credit: Dave Dickinson

You’ll note that four saroses (the plural of saros) are producing perigee or ‘Proxigean’ total lunar eclipses during this century, including saros 137.

Does the perigee Moon effect the length of totality? It’s an interesting question. Several factors come into play that are worth considering for Sunday night’s eclipse. First, the Moon moves a bit faster near perigee as per Kepler’s second law of motion. Second, the Moon is a shade larger in apparent size, 34’ versus 29’ near apogee. Lastly, the conic section of the Earth’s shadow or umbra is a bit larger closer in; you can fit three Moons side-by-side across the umbra around 400,000 kilometers out from the Earth. Sunday night’s perigee occurs 65 minutes after Full Moon at 2:52 UT/10:52 PM EDT. Perigee Sunday night is 356,876 kilometers distant, the closest for 2015 by just 115 kilometers, and just under 500 kilometers short of the closest perigee that can occur. This is, however, the closest perigee time-wise to lunar totality for the 21st century; you have to go all the way back to 1897 to find one closer, at just four minutes apart.

Image credit:
An 1888 depiction of a total lunar eclipse. Image credit: E. Weib, Bilderatlas de Sternenwelt

Now, THAT was and eclipse!

This all culminates in a period for totality on Sunday night of just under 72 minutes in duration, 35 minutes shy of the maximum possible for a central total lunar eclipse. An eclipse won’t top this weekend’s in terms of duration until January 31st 2018.

 

Here are the key times to watch for on Sunday night:

Penumbral phase begins: 00:12 UT/8:12 PM EDT (on the 27th)

Partial phase begins: 1:07 UT/9:07 PM EDT

Totality begins: 2:11 UT/10:11 PM EDT

Totality ends: 3:23 UT/11:23 PM EDT

Partial phase ends: 4:27 UT/00:27 AM EDT

Penumbral phase ends: 5:22 UT/1:22 AM EDT

Note that one 18 year 11 day and 8 hour saros period later, saros 137 will again produce a perigee eclipse nearly as close as this weekend’s on October 8th, 2033.

The classic hallmark of any total lunar eclipse is the reddening of the Moon. You’re seeing the combination of all the world’s sunsets, refracted into the inky umbra of the Earth and cast upon the surface of the Moon. To date, no human has stood upon the surface of the Moon and gazed upon the spectacle of a solar eclipse caused by the Earth.

Image credit:
The orientation of the Sun and Earth as seen from the Moon during Sunday night’s eclipse. Image credit: Stellarium

Not all eclipses are created equal when it comes to hue and color. The amount of dust and aerosols suspended in the atmosphere can conspire to produce anything from a bright, yellowish-orange tint, to a brick dark eclipse where the Moon almost disappears from view entirely. The recent rapid fire tetrad of four eclipses in 18 months has provided a good study in eclipse color intensity. The deeper the Moon dips into the Earth’s shadow, the darker it will appear… last April’s lunar eclipse was just barely inside the umbra, making many observers question if the eclipse was in fact total at all.

Image credit:
Refraction of sunlight during a total lunar eclipse. Image credit: Raycluster/Public Domain

We the describe color of the eclipsed Moon in terms of its number on the Danjon scale, and recent volcanic activity worldwide suggests that we may be in for a darker than normal eclipse… but we could always be in for a surprise!

Old time mariners including James Cook and Christopher Columbus used positional measurements of the eclipsed Moon at sea versus predictions published in almanac tables for land-based observatories to get a one-time fix on their longitude, a fun experiment to try to replicate today. Kris Columbus also wasn’t above using beforehand knowledge of an impending lunar eclipse to help get his crew out of a tight jam.

Image credit:
A long timelapse of totality during a 2003 total lunar eclipse, back from the glorious days of film. Image credit: Dave Dickinson

And speaking of the next perigee Moon total lunar eclipse for saros 137 on October 8th, 2033…  if you catch that one, this weekend’s, and saw the September 16th, 1997 lunar eclipse which spanned the Indian Ocean region, you’ll have completed an exeligmos, or a triple saros of eclipses in the same series 54 years and 33 days in length, an exclusive club among eclipse watchers and a great word to land on a triple letter word score in Scrabble…

Exeligmos is also the title of one of our original scifi tales involving eclipses, along with Shadowfall.

Image credit:
The 2010 winter solstice eclipse. Image credit: Dave Dickinson

Here’s another neat challenge: the International Space Station makes two shadow passes during the lunar eclipse over the contiguous United States. The first one occurs during totality, and spans from eastern Louisiana to central Maine from 2:14 to 2:20 UT; the second pass occurs during the final partial phases of the eclipse spanning from southern Arizona to Lake Superior from 3:47 to 3:54 UT. These are un-illuminated shadow passes of the ISS. Observers have captured transits of the ISS during a partial solar eclipse, but to our knowledge, no one has ever caught a transit of the ISS during a total lunar eclipse; ISS astros should also briefly be able to spy the eclipsed Moon from their orbital vantage point. CALSky will have refined passage times about 48 hours prior to Sunday.

Image credit:
Projections for ISS shadow passes across the Moon during Sunday night’s eclipse. The first path occurs during totality, and the second during the final partial phases of the eclipse. Image credit: Dave Dickinson/calculations from CALSky

Clouded out? Live on the wrong side of the planet? The good folks at the Virtual Telescope Project have got you covered, with a live webcast of the total lunar eclipse starting at 1:00 UT/9:00 PM EDT.

Image credit:
Image credit: The Virtual Telescope Project

And as the eclipse draws to an end, the question of the hour always is: when’s the next one? Well, the next lunar eclipse is a dim penumbral on March 23rd, 2016, which follows a total solar eclipse for southeastern Asia on March 9th, 2016… but the next total lunar won’t occur until January 31st, 2018, which also happens to be the second Full Moon of the month… a ‘Blue Blood Moon Eclipse?’

Sorry, we had to go there. Hey, we could make the case for Sunday’s eclipse also occurring on World Rabies Day, but perhaps a ‘Rabies Eclipse’ just doesn’t have the SEO traction. Don’t fear the Blood Moon, but do get out and watch the final lunar eclipse of 2015 on Sunday night!