Observing Challenge: Catch a Series of Mutual Eclipses by Jupiter’s Moons

Credit: Michael Phillips

Missing the planets this month? With Mars receding slowly to the west behind the Sun at dusk, the early evening sky is nearly devoid of planetary action in the month of November 2014. Stay up until about midnight local, however, and brilliant Jupiter can be seen rising to the east.  Well placed for northern hemisphere viewers in the constellation Leo, Jupiter is about to become a common fixture in the late evening sky as it heads towards opposition next year in early February.

November 25th
The line-up during the November 25th eclipse event (see chart below).  Note that Jupiter’s moons are in 1-2-3-4 order! Credit: Stellarium.

An interesting phenomenon also reaches its climax, as we make the first of a series of passes through the ring plane of Jupiter’s moons this week on November 8th, 2014. This means that we’re currently in a season where Jupiter’s major moons not only pass in front of each other, but actually eclipse and occult one another on occasion as they cast their shadows out across space.

These types of events are challenging but tough to see, owing to the relatively tiny size of Jupiter’s moons. Followers of the giant planet are familiar with the ballet performed by the four large Jovian moons of Io, Europa, Ganymede, and Callisto. This was one of the first things that Galileo documented when he turned his crude telescope towards Jupiter in late 1609. The shadows the moons cast back on the Jovian cloud tops are a familiar sight, easily visible in a small telescope. Errors in the predictions for such passages provided 17th century Danish astronomer Ole Rømer with a way to measure the speed of light, and handy predictions of the phenomena for Jupiter’s moons can be found here.

Credit
A look at selected upcoming occultation events. Credit: Starry Night.
Credit and copyright Christoper Go, used with permission.
Credit and copyright Christoper Go, used with permission.

Mutual occultations and eclipses of the Jovian moons are much tougher to see. The moons range in size from 3,121 km (Europa) to 5,262 km (Ganymede), which translates to 0.8”-1.7” in apparent diameter as seen from the Earth. This means that the moons only look like tiny +6th magnitude stars even at high magnification, though sophisticated webcam imagers such as Michael Phillips and Christopher Go have managed to actually capture disks and tease out detail on the tiny moons.

Author
A double shadow transit from 2013. Photo by author.

What is most apparent during these mutual events is a slow but steady drop in combined magnitude, akin to that of an eclipsing variable star such as Algol. Running video, Australian astronomer David Herald has managed to document this drop during the 2009 season (see the video above) and produce an effective light curve using LiMovie.

Such events occur as we cross through the orbital planes of Jupiter’s moons. The paths of the moons do not stray more than one-half of a degree in inclination from Jupiter’s equatorial plane, which itself is tilted 3.1 degrees relative to the giant planet’s orbit. Finally, Jupiter’s orbit is tilted 1.3 degrees relative to the ecliptic. Plane crossings as seen from the Earth occur once every 5-6 years, with the last series transpiring in 2009, and the next set due to begin around 2020. Incidentally, the slight tilt described above also means that the outermost moon Callisto is the only moon that can ‘miss’ Jupiter’s shadow on in-between years. Callisto begins to so once again in July 2016.

Mutual events for the four Galilean moons come in six different flavors:

Credit:
A look at the six types of phenomena possible with Jupiter’s four large moons. Created by the author.

This month, Jupiter reaches western quadrature on November 14th, meaning that Jupiter and its moons sit 90 degrees from the Sun and cast their shadows far off to the side as seen from the Earth. This margin slims as the world heads towards opposition on February 6th, 2015, and Jupiter once again joins the evening lineup of planets.

Early November sees Jupiter rising around 1:00 AM local, about six hours prior to sunrise. Jupiter is also currently well placed for northern hemisphere viewers crossing the constellation Leo.

The Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCEE) based in France maintains an extensive page following the science and the circumstances for the previous 2009 campaign and the ongoing 2015 season.

We also distilled down a table of key events for North America coming up through November and December:

Credit
A look at selected events through the end of 2014. 1=Io, 2=Europa, 3=Ganymede, 4=Callisto. O=Occultation, E=Eclipse. Created by the author, adapted from the IMCCEE chart for the 2014-15 season.

Fun fact: we also discovered during our research for this piece that these events can also produce a total solar eclipse very similar to the near perfect circumstances enjoyed on the Earth via our Moon:

Note that this season also produces another triple shadow transit on January 24th, 2015.

Observing and recording these fascinating events is as simple as running video at key times. If you’ve imaged Jupiter and its moons via our handy homemade webcam method, you also possess the means to capture and analyze the eclipses and occultations of Jupiter’s moons.

Credit NASA/JPL
A view never seen from the Earth… Io (upper left) paired with a crescent Europa during New Horizons’ 2007 flyby. Credit: NASA/JPL.

Good luck, and let us know of your tales of astronomical tribulation and triumph!

Orbiting Solar Observatory Sees It Burn, Burn, Burn: The Ring of Fire

Image of the Oct. 23, 2014 eclipse acquired with the Hinode spacecraft's X-ray telescope. (NASA/JAXA/SAO)

Did you catch the solar eclipse on October 23? If so, you saw the Moon “take a bite” out of the Sun (to various extents, depending on your location) during what was a partial eclipse for viewers on Earth. But for the Hinode (pronunciation alert: that’s “HEE-no-day”) solar observatory satellite, in its Sun-synchronous orbit around Earth at an altitude of 600 km (373 miles), the eclipse was annular – a “ring of fire.”

The image above was captured with Hinode’s X-ray Telescope at the moment of maximum annularity. Want to watch it burn, burn, burn like Hinode did? Check out a video below:

Not to be confused with “annual,” meaning yearly, an annular eclipse occurs when the Moon passes directly in front of the Sun but at such a distance from Earth to not quite manage to fully cover the Sun’s disk. The bright ring of visible Sun around the Moon’s silhouette gives the event its name: annular is from the Latin word anulus, meaning ring.

The next annular eclipse to be visible from Earth will occur on Sept. 1, 2016.

Led by the Japan Aerospace Exploration Agency (JAXA), the Hinode mission is a collaboration between the space agencies of Japan, the United States, the United Kingdom, and Europe, and is now in its eighth year. NASA helped in the development, funding, and assembly of the spacecraft’s three science instruments. Learn more about the mission here.

Image and video credits: NASA/JAXA/SAO

Beautiful Images of the October 23, 2014, Partial Solar Eclipse

The partial solar eclipse of October 23, 2014. Credit and copyright: Derek Mellott.

“The Sun looks like it has a bite taken out of it!” said one enthusiastic viewer of the partial solar eclipse on October 23. Although I only had my paper plate pinhole projector that I shared with a crowd of folks (you can see an image of it near the bottom of the images here), the funny-looking Sun projected onto the plate definitely looked like a cookie with bite out of it or a clipped fingernail. But thankfully, as the Moon moved in front of the Sun today, legions of astrophotographers were out to take fantastic images of the eclipse. And the gigantic sunspot named AR 2192 made a cameo appearance as well. Enjoy the gallery below!

Thanks to everyone who uploaded images to our Flickr page or shared their images on Twitter.

An artistic view of the Partial Solar Eclipse, October 23, 2014. Credit and copyright: A Nartist.
An artistic view of the Partial Solar Eclipse, October 23, 2014. Credit and copyright: A Nartist.
The setting Sun, shadowed by the Moon and spotted with intense magnetic activity on October 23, 2014. Credit and copyright: Tavi Greiner.
The setting Sun, shadowed by the Moon and spotted with intense magnetic activity on October 23, 2014. Credit and copyright: Tavi Greiner.
Solar eclipse over the Flatirons near Boulder, Colorado.  A syzygy, with the Earth and Moon simultaneously transiting the Sun. Credit and copyright: Alex Parker.
Solar eclipse over the Flatirons near Boulder, Colorado. A syzygy, with the Earth and Moon simultaneously transiting the Sun. Credit and copyright: Alex Parker.
Partial Solar Eclipse of October 23, 2014 at 280mm. Credit and copyright: Forrest Tanaka.
Partial Solar Eclipse of October 23, 2014, at 280mm. Credit and copyright: Forrest Tanaka.
The sun sets while still in eclipse as seen from Duluth, Minn. Thursday evening October 23. Credit and copyright: Bob King.
The sun sets while still in eclipse as seen from Duluth, Minn., Thursday evening October 23. Credit and copyright: Bob King.
The solar eclipse on October 23, 2014, showing the Sun dotted by sunspots and airplane contrails. Credit and copyright: Greg Hogan.
The solar eclipse on October 23, 2014, showing the Sun dotted by sunspots and airplane contrails. Credit and copyright: Greg Hogan.
A cloudy closeup of the partial solar eclipse on October 23, 2014. Credit and copyright: JCC_Starguy on Flickr.
A cloudy closeup of the partial solar eclipse on October 23, 2014. Credit and copyright: JCC_Starguy on Flickr.
The cusps of the Sun's disk are just visible above the horizon as the solar eclipse of October 23, 2014 fades out over Iowa. Credit and copyright: Alan Boyle/NBC News.
The cusps of the Sun’s disk are just visible above the horizon as the solar eclipse of October 23, 2014, fades out over Iowa. Credit and copyright: Alan Boyle/NBC News.
A partial solar eclipse is visable just before sunset Thursday, Oct. 23, 2014, in Arlington, VA. Photo Credit: (NASA/Bill Ingalls)
A partial solar eclipse is visable just before sunset Thursday, Oct. 23, 2014, in Arlington, VA. Photo Credit: (NASA/Bill Ingalls)
The partial solar eclipse as viewed through a paper plate pinhole projector. Credit, copyright and pinhole: Nancy Atkinson.
The partial solar eclipse as viewed through a paper plate pinhole projector. Credit, copyright and pinhole: Nancy Atkinson.

See more great images on Universe Today’s Flickr pool page.

Beastly Sunspot Amazes, Heightens Eclipse Excitement

Ron Cottrell captured the sunspot in all its swirly magnetic goodness in hydrogen-alpha light on October 19. To appreciate its size, he included the Earth (lower left) for reference. Credit: Ron Cottrell

That’s one big, black blemish on the Sun today! Rarely have we been witness to such an enormous sunspot. Lifting the #14 welder’s glass to my eyes this morning I about jumped back and bumped into the garage.

Properly shielded, it was very easy to see with the naked eye. Unlike some other naked eye sunspots, this one showed structure. The eastern end was darker, the western half grayer and more extended.


Watch the giant spot rotate into view and grow right before your eyes in this 72-hour time-lapse video taken by SOHO’s HMI imager Oct. 18-20, 2014

Through a small telescope, the mix of dark umbras scattered amid weirdly sculpted penumbral “islands” was incredible to see. Photographs like the one above are wonderful documents, but witnessing this beautiful complex magnetic mess with your own eyes is another experience altogether. Region 2192 continues to grow and size and complexity and is now the largest sunspot group of solar cycle 24 which began in 2009 – more than five years ago!

Active region 2192 is now the largest sunspot group to appear in over five years. Credit: Alex Young
Active region 2192 is now the largest sunspot group to appear in over five years. Compare to Jupiter and the Earth. Credit: SDO/HMI/Alex Young

Every sunspot marks a region on the Sun’s shiny outer skin called the photosphere where magnetic energy is concentrated. Strong magnetic fields within a sunspot group quell the turbulent churning of the photosphere, chilling the region by several thousand degrees. Sunspots appear dark against the Sun’s blazing disk because they’re cooler. Cooler meaning 8,000 F instead of 11,000 F, so yes, they’re still VERY hot.


Watch as Region 2192 crackles with energy and flares as seen in far ultraviolet light with NASA’s Solar Dynamics Observatory.

Energy stored in sunspots’ twisted magnetic fields can suddenly be released in violent, explosions called solar flares. Billions of tons of solar plasma – the sizzling mix of protons and electrons that composes the Sun – are heated to millions of degrees during the explosion and rapidly accelerated into space. Radiation from radio waves to X-rays and gamma rays fans out at the speed of light. Fortunately for us, our atmosphere and planetary magnetic field protect us from most of what flares can fling our way.

NASA's Solar Dynamics Observatory took this photo of the sun and Jupiter-sized sunspot 2192 this morning Oct. 22 at 8:45 a.m. CDT. The view in a small telescope equipped with a safe solar filter is even better! Credit: NASA
NASA’s Solar Dynamics Observatory took this photo of the Sun and Jupiter-sized sunspot region 2192 this morning Oct. 22 at 8:45 a.m. CDT. The view in a small telescope equipped with a safe solar filter is even better! Credit: NASA

But as the Sun rotates this monster into our line of sight, possibilities for Earth-directed flares and coronal mass ejections increase as do geomagnetic storms, the bringer of auroras. Already in the past 48 hours, the spot has dished out seven M-class flares and a powerful X-1 flare even before it has fully come into view.  There’s more to come – Region 2192 harbors an unstable beta-gamma-delta magnetic field ripe for additional flaring including more of the X-class variety.

The sun on October 21 showing smaller sunspot regions along with our featured group. Credit: Sarah and Simon Fisher
The Sun on October 21 showing smaller sunspot regions along with our featured group. Credit: Sarah and Simon Fisher

There’s no doubt now that this behemoth will stick around to add a whole new dimension to tomorrow’s partial solar eclipse. I can’t wait to see the Moon’s black curve approach and at least partially occult the group from view. If you’re interested in getting some one-of-a-kind pictures of the scene, please see our own Dave Dickinson’s excellent guide on photographing the partial eclipse.

A sliver of a Moon rises in morning twilight today October 22 just a day away from its appointment with the Sun. Credit: Bob King
A sliver of a Moon rises in morning twilight today October 22 just a day away from its appointment with the Sun. Credit: Bob King

While we’re on the Moon, early morning risers had the pleasure of its company just one day before New Moon and solar eclipse. I was out watching the Orionid meteor shower. While not rich like the Perseids or Geminids I managed to catch a few including a few lucky shots with the camera.

An Orionid meteor slashes across the top of the frame directly above the constellation Orion early this morning October 22, 2014. Details: 24mm lens, f/2.8, 30-seconds at ISO 1600. Credit: Bob King
An Orionid meteor slashes across the top of the frame directly above the constellation Orion early this morning October 22, 2014. Details: 24mm lens, f/2.8, 30-seconds at ISO 1600. Credit: Bob King

The shower has peaked but will still be active the remainder of the week if you’re inclined to take a look. And I can’t resist. How about one last sweet close-up photo of sunspot group 2192? I have a feeling you won’t mind.

Monster Sunspot AR12192 taken by Karzaman Ahmad on October 21, 2014 from Langkawi Nagtional Observatory, Malaysia credit: Karzaman Ahmad and shared at spaceweather.com
Monster Sunspot AR12192 taken by Karzaman Ahmad on October 21, 2014, from Langkawi Nagtional Observatory, Malaysia. Credit: Karzaman Ahmad and shared at spaceweather.com. Click the image to see additional animations and photos on Alex Young’s site

How to Take Great Photographs of the October 23rd Partial Solar Eclipse and More

The Partially eclipsed Sun rising over the Vehicle Assembly Building on the Florida Space Coast on November 3rd, 2013.

Get those solar viewers out… the final eclipse of 2014 occurs this Thursday on October 23rd, and most of North America has a front row seat. Though this solar eclipse will be an exclusively partial one as the Moon takes a ‘bite’ out the disk of the Sun, such an event is always fascinating to witness. And for viewers across the central U.S. and Canada, it will also provide the chance to photograph the setting crescent Sun along with foreground objects.

Michael Zieler
A map showing the eclipse prospects over the CONUS. (click to enlarge). Credit: Michael Zeiler @EclipseMaps, www.thegreatamericaneclipse.com.

The shadow or ‘antumbra’ of the Moon just misses northern limb of the Earth on October 23rd, resulting in a solar eclipse that reaches a maximum of 81% partial as seen from the high Canadian Arctic. The eclipse would be annular in any event had the Moon’s shadow touched down on Earth’s surface, as the Moon just passed apogee on October 18th. The penumbral cone of the Moon’s shadow touches down at 19:38 UT in the Bering Sea just west of the International Date Line before racing eastward across North America to depart the Earth over southern Texas at 23:52 UT.

NASA/GSFC
An animated .gif of this week’s partial solar eclipse.  Credit: NASA/GSFC/A.T. Sinclair.

The farther northwest you are, the greater the eclipse: For example, Anchorage and Seattle will see 54.8% and 54.5% of the Sun obscured by the Moon, while Mexico City and Phoenix, Arizona will see 4.8% and 33% of the Sun’s disk obscured.

A key region will be the zone of longitude running a few hundred miles east and to the west of Ontario, the Great Lakes and the Mississippi River, which will see the Sun setting during greatest eclipse.

Stellarium
Simulated views of the October 23rd partial solar eclipse from around North America. Created using Stellarium.

Successful sunset viewing of the eclipse will call for a clear, uncluttered western horizon. As of 48+ hours out, the current weather prospects call for clear skies across most of the U.S. on Thursday, with the exception of the U.S. northwest… but you only need a gap in the clouds to observe an eclipse!

NOAA
Predicted cloud cover for the CONUS hours prior to the start of the Oct 23 partial solar eclipse. Credit: NWS/NOAA.

It’s also worth noting that massive sunspot region AR 2192 is currently turned Earthward and will make for a very active and photogenic Sun during Thursday’s eclipse.

SDO/HMI
Sunspot activity leading up to this week’s eclipse. Credit: NASA/SDO/HMI

Proper safety precautions must be taken while observing the Sun through all stages of a partial solar eclipse. Don’t end up like 19th century psychologist Gustav Fechner, who blinded himself staring at the Sun! With the recent interest in the event, we’ve been fielding lots of questions on eclipse imaging, which presents safety challenges of its own.

blogger-image-845084267
An homemade solar optical filter using Baader film. Credit: Eric Teske/Stellar Neophyte.

Imaging the Sun with a solar filter is pretty straightforward. Glass solar filters for telescopes fitting over the full aperture of the instrument can be had from Orion for about $100 USD, and we’ve made inexpensive filter masks out of Baader AstroSolar Safety Film for everything from binoculars to DLSR cameras to telescopes. Make sure these fit snugly in place, and inspect them for pin holes prior to use. Also, be sure to cover or remove any finderscopes as well. And throw away those old screw-on eyepiece filters sold by some department store scope manufacturers in the 60s and 70s, as they can overheat and crack!

Catching the eclipsed Sun with a silhouetted foreground requires more practice. We’ve had great luck using a DSLR and a neutral density filter to take the f-stop and glare down while preserving the foreground view. Remember, though, an ND filter is for photographic use only… never stare at the Sun through one! Likewise, you’ll need to physically block off your camera’s viewfinder to resist the same temptation of looking while aiming. Shooting several quick frames at 1/1000th of a second or faster will help get the ISO/f-stop settings for the local illumination just right. Even 1% sunlight is surprisingly bright, as we noticed observing the May 10th 1994 annular eclipse from the shores of Lake Erie.

You’ll also need a lens with a focal length of 200mm or better to have the Sun appear larger than a dot in your images. Several key landmarks, such as the Saint Louis Arch and the Sears Tower in Chicago lie along the key sunset zone Thursday and  would make great potential foreground shots… our top pick would be the 1978 World’s Fair Sunsphere Tower in Knoxville, Tennessee for a photo with a true visual double entendre. Scout out the geometry of such a shot the evening beforehand, and remember that you’ll need a good amount of distance (half a mile or more) for a building or foreground object to appear equal in size to the Sun.

And don’t miss the spectacle going on around you during an eclipse as well. Projecting the disk of the Sun using a pinhole camera or binoculars onto a piece of paper makes for a great shot. Hundreds of crescents may litter the ground, caused by natural “pinhole projectors” such as gaps in leaves or latticework. And photographs of everyday folks wearing eclipse glasses standing enthralled by the ongoing event can be just as captivating as the eclipse itself.

Photo by author
Imaging a partial solar eclipse via a homemade shoebox binocular projector. Photo by author.

Up for a challenge? Another unique opportunity awaits eclipse viewers in the northwest, as the International Space Station will cross the disk of the Sun around ~21:08 UT during the eclipse. You’ll need to run video to catch such a speedy (about a second in duration) event, but it would make for a great capture! Be sure to check CALSky for predictions of ISS solar and lunar transits within 48 hours of the event.

ISS path
The path of the ISS over the US during the partial eclipse. Credit: Orbitron.

Robotic eyes in low Earth orbit will be watching the eclipse as well. JAXA’s Hinode and ESA’s Proba-2 routinely observe the Sun and will catch fleeting eclipses on successive passes on Thursday… in the case of Hinode, it may score a direct “hit” with an annular eclipse seen from space around 21:03 UT:

And don’t forget, we’re now less than three years out from the next total solar eclipse to (finally!) grace the United States from coast to coast on August 21st, 2017. This week’s partial solar eclipse offers a great test run to hone your photographic technique!

-Send those eclipse pics in to Universe Today’s Flickr forum.

How to Safely Enjoy the October 23 Partial Solar Eclipse

The partially eclipsed sun sets over Island Lake north of Duluth, Minn. on May 20, 2012. Credit: Jim Schaff

2014 – a year rich in eclipses. The Moon dutifully slid into Earth’s shadow in April and October gifting us with two total lunars. Now it’s the Sun’s turn. This Thursday October 23 skywatchers across much of the North America and Mexico will witness a partial solar eclipse. From the eastern U.S. the eclipse will reach maximum around the time of sunset, making for dramatic picture-taking opportunities. Further west, the entire eclipse will occur with the sun up in the afternoon sky. Either way, you can’t go wrong.

During a solar eclipse, the orbiting Moon passes between the Sun and Earth completely blocking the Sun from view as shown here. In Thursday's partial eclipse, the moon will pass a little north of a line connecting the three orbs, leaving a piece of the sun uncovered for a partial eclipse. Credit: Wikipedia
During a solar eclipse, the orbiting Moon passes between the Sun and Earth completely blocking the Sun from view as shown here. In Thursday’s eclipse, the moon will pass a little north of a line connecting the three orbs, leaving a portion of the sun uncovered. To view a partial solar eclipse, a safe solar filter is necessary. Credit: Wikipedia

Solar eclipses occur at New Moon when the Moon passes between the Sun and the Earth and blocks the Sun from view. During a total solar eclipse, the Sun, Earth and Moon are exactly aligned and the Moon completely hides the brilliant solar disk. Partial eclipses occur when the Moon passes slight north or south of the line connecting the three bodies, leaving a slice of the Sun uncovered. For that reason, a safe solar filter is required to protect your eyes at all times. We’ll delve into that in a minute, but first let’s look at the particulars of this eclipse.

Map showing times and percentage of the sun covered during Thursday's partial solar eclipse. Times are Pacific Daylight - add 1 hour for MDT, 2 hours for CDT and 3 hours for EDT. Credit: NASA, F. Espenak with additions by the author
Map showing times and percentage of the sun covered during Thursday’s partial solar eclipse. Times are Pacific Daylight – add 1 hour for MDT, 2 hours for CDT and 3 hours for EDT. Interpolate between the lines to find your approximate viewing time. The arc marked A shows where the eclipse begins at sunset; B = Maximum eclipse at sunset and C = Eclipse ends at sunset. Credit: NASA, F. Espenak,with additions by Bob King

Nowhere will this eclipse be total. At best, polar bears and musk oxen in Canada’s Nunavut Territory near Prince of Wales Island will see 81% of the sun covered at sunset at maximum eclipse. Most of the rest of us will witness about half the Sun covered with the northern U.S. getting around 65% and the southern states  closer to 40%.  In Minneapolis, Minn. for instance, the eclipse begins at 4:23 p.m. CDT, reaches a maximum of 62% at 5:35 p.m. and continues on till sunset at 6:14 p.m. For times, coverage and other local circumstances for your town, click over to  U.S. cities and cities in Canada and Mexico.

Safe solar filters for looking at the sun come in several different varieties. Read down to learn more about each kind. Photo: Bob King
Safe solar filters come in several varieties ranging from plastic glasses to a #14 welder’s glass for visual observation and snug-fitting optical filters that fit over the end of a telescope. Credit: Bob King

There are several ways to observe a partial eclipse safely, but they all start with this credo: Never look directly at the Sun. Dangerous ultraviolet and infrared light focused on your retinas will damage your vision for life. Nothing’s worth that risk. Happily, filters and indirect viewing methods are available. Eclipse glasses fitted with mylar or polymer lenses are a great choice. I’ve used them all but my favorite’s still the classic #14 welder’s glass because it slips in the pocket easily and takes a beating. Make sure it’s a #14, not a #13 or lower.

You can mount binoculars on a tripod, cover one lens with a lenscap and project the sun's image safely onto a sheet of white cardboard. Credit: Bob King
You can mount binoculars on a tripod, cover one lens with a lenscap and project the sun’s image safely onto a sheet of white cardboard. Credit: Bob King

Telescopes should be outfitted with an optical mylar or aluminized glass solar filter that fits snugly over the top end of the tube. A welder’s glass gives a green solar image, mylar a blue one and black polymer a pale orange. Filters work by only allowing a fraction of the Sun’s light to reach the eye. At the end of this article I’ve listed several sites that sell a variety of safe solar filters for naked eye and telescopic use.


Easy guide to building a pinhole projector for solar eclipse viewing

Indirect methods for safe viewing include projecting the Sun’s image through a small telescope or pair of binoculars onto a sheet of white paper or cardboard. You can also build a pinhole projector shown in the video above. A box and piece of aluminum foil are all you need.

Tiny gaps along the length of this palm frond created a series of solar crescents during the July 1991 eclipse. Credit: Bob King
Tiny gaps along the length of this palm frond created a series of solar crescents during the July 1991 eclipse. Credit: Bob King

If for some reason you aren’t able to get a solar filter, all is not lost. The tiny spaces between leaves on a tree act like pinhole projectors and will cast hundreds of images of the Sun on the ground below during the eclipse. To see the effect even better, bring along a white sheet or blanket and spread it out beneath the tree. You can even cross your hands over one another at a right angle to create a pattern of small “holes” that will reveal the changing shape of the Sun as the eclipse proceeds.

The white crescents show how much of the Sun will be visible from a variety of locations at maximum eclipse. The farther north you go, the deeper the eclipse. Credit: Jay Anderson
The white crescents show how much of the Sun will be visible from a variety of locations at maximum eclipse. The farther north you go, the deeper the eclipse. Credit: Jay Anderson

Now that you’re rockin’ to go, here are some other cool things to look for during the eclipse:

* Sunspots appear black when viewed through a filtered telescope, but they’re no match for the opaque-black  Moon silhouetted against the Sun. Compare their unequal degrees of darkness. With a little luck, the giant sunspot region 2192  will provide a striking contrast with the moon plus add interest to the eclipse. This region only recently rotated onto the Sun’s front side and will be squarely in view on Thursday.

* The moon may look smooth and round to the eye, but its circumference is bumpy with crater rims and mountain peaks. Watch for these tiny teeth to bite into the solar disk as the eclipse progresses.

* From locations where half or more the Sun’s disk is covered, look around to see if you can tell the light has changed. Does it seem somehow “grayer” than normal? Is the blueness of the sky affected?

As I learned from comet discoverer and author David Levy many years ago, every eclipse involves the alignment of four bodies: Sun, Earth, Moon and you. We wish you good weather and a wonderful eclipse, but if clouds show up, you can still watch it via live stream on SLOOH.

Not only will the sun be eclipsed this afternoon but the planet Venus shines just 1.1 degrees to its north. Venus is very close to superior conjunction which occurs early Saturday. In the photo, the planet is in the background well behind the Sun. Don’t count on seeing Venus – too much glare! This photo was taken from space by NASA’s Solar and Heliospheric Observatory this afternoon using a coronagraph to block the Sun from view. Credit: NASA/ESA
UPDATE: Not only will the sun be eclipsed Thursday afternoon but the planet Venus will shine just 1.1 degrees to its north. Venus is just two days from superior conjunction. In the photo, the planet is in the background well behind the Sun. Don’t count on seeing it – too close and too much dangerous glare! This photo was taken from space by NASA’s Solar and Heliospheric Observatory early Thursday Oct. 23 using a coronagraph to shade the Sun. Credit: NASA/ESA

Solar filter suppliers – for a #14 welder’s glass, check your local phone book for a welding supply shop:

* Thousand Oaks Optical — Large variety of solar filters for telescopes and cameras. Sheets of black polymer available if you want to make your own.
* Rainbow Symphony — Eclipse glasses and solar viewers as well as filters for binoculars and telescopes. The basic glasses cost less than a buck apiece, but you’ll need to buy a minimum of 25 pairs.
* Opt Corp — Offers high-quality Baader mylar optical filter material to make your own.
* Orion Telescopes — Glass and mylar filters for telescopes and binoculars.
* Amazon.com – Filters for naked eye use

Stunning Photos of the Hunter’s Moon Lunar Eclipse

Lunar eclipse timelapse into totality. Taken from Palmyra, New Jersey on the Delaware River near Philadelphia, Pennsylvania. Night began with stormy clouds and transitioned to clearer skies as the eclipse progressed. Sequence from approx 4AM EDT to 7AM sunrise. Credit and copyright: Frank Miller.

Did you see it? On October 8, 2014, early risers in North and South America, east Asia, Australia and the Pacific saw unique and rare views of the Hunter’s Moon as was eclipsed by Earth’s shadow. We’ve got so many great pictures to share from our Flickr group and from social media! In some shots, the fully eclipsed Moon glows with a coppery red hue, and in others the partially eclipsed Moon appears to have a bite taken out of its bright surface. Some images pair the Moon with a faint planet Uranus.

This is the second and final total lunar eclipse of 2014, and the second of four in a quartet series of lunar eclipses known as a tetrad — a series of 4 consecutive total eclipses occurring at approximately six month intervals. The next total eclipse will be on April 4, 2015, with another occurring on Sept. 28, 2015.

Enjoy the images below!

Montage of the various views of the Moon during the lunar eclipse on October 8, 2014. Credit and copyright: Chuck Manges.
Montage of the various views of the Moon during the lunar eclipse on October 8, 2014. Credit and copyright: Chuck Manges.
Near-totality eclipsed Moon, in Pisces, with Uranus at left. Delta Psc is that brightest star at upper-right of Moon. Imaged near Calabash, North Carolina. Credit and copyright: Tavi Greiner.
Near-totality eclipsed Moon, in Pisces, with Uranus at left. Delta Psc is that brightest star at upper-right of Moon. Imaged near Calabash, North Carolina. Credit and copyright: Tavi Greiner.
The red 'blood Moon' of the October 8, 2014 lunar eclipse, as seen from the Mare Island Observatory. Credit and copyright: Clifton Reed.
The red ‘blood Moon’ of the October 8, 2014, lunar eclipse, as seen from the Mare Island Observatory. Credit and copyright: Clifton Reed.
The eclipsed Moon sets over the Andes (Mts. Lopez and Capilla, Bariloche). Credit and copyright:  Guillermo Abramson.
The eclipsed Moon sets over the Andes (Mts. Lopez and Capilla, Bariloche). Credit and copyright: Guillermo Abramson.
Total Lunar Eclipse through the clouds as seen from Weatherly, PA on October 8, 2014. Credit and copyright: Tom Wildoner.
Total Lunar Eclipse through the clouds as seen from Weatherly, PA on October 8, 2014. Credit and copyright: Tom Wildoner.
'Eclipse on the edge,'  shot from the front of the Mizpah Hotel in Tonopah, Nevada. Credit and copyright: David Dickinson.
‘Eclipse on the edge,’ shot from the front of the Mizpah Hotel in Tonopah, Nevada. Credit and copyright: David Dickinson.
Last moments of the eclipse as seen from Calama, Chile. Credit and copyright: srta Andrea on Flickr.
Last moments of the eclipse as seen from Calama, Chile. Credit and copyright: srta Andrea on Flickr.
The October 8th 2014 lunar eclipse from Houston, Texas, taken with a 500m lens featuring a statue of Sam Houston. Credit and copyright: Sergio Garcia Rill.
The October 8th, 2014, lunar eclipse from Houston, Texas, taken with a 500m lens featuring a statue of Sam Houston. Credit and copyright: Sergio Garcia Rill.
Image of the lunar eclipse taken just before the midpoint of totality. Taken with a modified Canon 450D + Celestron C6-N telescope. f/4 ISO400 4s exposure. Credit and copyright: Fred Locklear.
Image of the lunar eclipse taken just before the midpoint of totality. Taken with a modified Canon 450D + Celestron C6-N telescope. f/4 ISO400 4s exposure. Credit and copyright: Fred Locklear.
Lunar Eclipse on 10-08-2014 Huffman Dam, Dayton, Ohio Canon 6D, 80mm refractor,2x Barlow (1200mm) ISO 6400,  2 sec exposure. Credit and copyright: John Chumack/Galactic Images.
Lunar Eclipse on 10-08-2014
Huffman Dam, Dayton, Ohio
Canon 6D, 80mm refractor,2x Barlow (1200mm) ISO 6400,
2 sec exposure. Credit and copyright: John Chumack/Galactic Images.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

REAL Images of Eclipses Seen From Space

JAXA

That ‘amazing astro-shot that isn’t’ is making the rounds of ‘ye ole web again.

You know the one. “See an Amazing Image of an Eclipse… From SPACE!!!” screams the breathless headline, with the all-too-perfect image of totality over the limb of the Earth, with the Milky Way thrown in behind it for good measure.

As the old saying goes, if it looks too good to be true, it probably is. Sure, the pic is a fake, and it’s been debunked many, many times since it was first released into the wild a few years back. But never let reality get in the way of a good viral meme. As eclipse season 2 of 2 gets underway tonight with a total lunar eclipse followed by a partial solar eclipse on October 23rd both visible from North America, the image is once again making its rounds. But there’s a long history of authentic captures of eclipses from space that are just as compelling. We’ve compiled just such a roll call of real images of eclipses seen from space:

SDO
A partial solar eclipse as captured by SDO. Credit: NASA/SDO.

The Solar Dynamics Observatory:

Launched in 2010, The Solar Dynamics Observatory or SDO is NASA’s premier orbiting solar observatory. But unlike Sun-staring satellites based in low Earth orbit, SDO’s geosynchronous orbit assures that it tends to see a cycle of partial solar eclipses twice a year, roughly around the equinoxes. And like many satellites, SDO also passes into the Earth’s shadow as well, offering unique views of a solar eclipse by the limb of the Earth from its vantage point.

JAXA
The Moon ‘photobombs’ the view of Hinode. Credit: NASA/JAXA.

Hinode:

A joint mission between NASA and JAXA (the Japanese Aerospace Exploration Agency) launched in 2006, Hinode observes the Sun from low Earth orbit. As a consequence, it nearly has a similar vantage point as terrestrial viewers and frequently nabs passages of the Moon as solar eclipses occur. Such events, however, are fleeting; moving at about eight kilometres per second, such eclipses last only seconds in duration!

ESA
Catching the passage of the Moon during a brief partial eclipse. Credit: ESA.

Proba-2:

Like Hinode, Proba-2 is the European Space Agency’s flagship solar observing spacecraft based in low Earth orbit. It also catches sight of the occasional solar eclipse, and these fleeting passages of the Moon in front of the Earth happen in quick multiple cycles. Recent images from Proba-2 are available online.

Eclipses from the ISS:

The International Space Station isn’t equipped to observe the Sun per se, but astronauts and cosmonauts aboard have managed to catch views of solar eclipses in an unusual way, as the umbra of the Moon crosses the surface of the Earth. Such a view also takes the motion of the ISS in low Earth orbit into account. Cosmonauts aboard the late Mir space station also caught sight of the August 11th, 1999, total solar eclipse over Europe.

NASA GOES
NASA’ s GOES-WEST spies the umbra of the Moon. Credit: NASA-GOES.

NASA-GOES:

Weather satellites can, and do, occasionally catch sight of the inky black dot of the Moon’s penumbra crossing the disk of the Earth.  GOES-West snapped the above image of the November 13th, 2012, solar eclipse. The umbra of the Moon’s shadow races about 1700 kilometres per hour from west to east during an eclipse, and we can expect some interesting images in 2017 when the next total solar eclipse crosses the United States on August 21st, 2017.

NASA
An ‘Apollo eclipse!’ Credit: NASA.

Apollo-Soyuz Test Project:

The final mission of Apollo program, the 1975 Apollo-Soyuz Test Project, also yielded an unusual and little known effort to observe the Sun. The idea was to use the Apollo command module as a “coronagraph” and have cosmonauts image the Sun from the Soyuz as the Apollo spacecraft blocked it out after undocking. Unfortunately, the Apollo thrusters smeared the exposure, and it became a less than iconic— though unusual — view from the space age.

Gemini XII
A partial solar eclipse snapped by the crew of Gemini XII. Credit: NASA.

Gemini XII and the first eclipse seen from space:

On November 12th, 1966, a total solar eclipse graced South America. Astronauts James Lovell Jr. and Edwin “Buzz” Aldrin Jr. were also in orbit at the time, and managed to snap the first image of a solar eclipse from space. Gemini XII was the last flight of the program, and the astronauts initially thought they’d missed the eclipse after a short trajectory burn.

ISS
The 2012 transit of Venus as seen from the ISS. Credit: NASA/Don Pettit.

ISS Astronauts catch a transit of Venus:

We were fortunate that the International Space Station had its very own amateur astronomer in residence in 2012 to witness the historic transit of Venus from space. NASA astronaut Don Pettit knew that the transit would occur during his rotation, and packed a full-aperture white light solar filter for the occasion. Of course, a planetary transit meets the very loosest definition of a partial eclipse, but it’s a unique capture nonetheless.

Kaguya:

Japan’s SELENE-Kaguya spacecraft entered orbit around the Moon in 2007 and provided some outstanding imagery of our solitary natural neighbor. On February 10th, 2009, it also managed to catch a high definition view of the Earth eclipsing the Sun as seen from lunar orbit. A rare catch, such an event occurs during every lunar eclipse as seen from the Earth.

Mars eclipse
Curiosity captures a misshapen eclipse from the surface of Mars. Credit: NASA/JPL.

An unusual eclipse… seen from Mars:

We’re fortunate to live in an epoch in time and space where total solar eclipses can occur as seen from the Earth. But bizarre eclipses and transits can also be seen from Mars. The Spirit and Opportunity rovers have witnessed brief transits of the Martian moons Phobos and Deimos across the face of the Sun, and in 2010, the Curiosity rover recorded the passage of Phobos in front of the Sun in a bizarre-potato shaped “annular eclipse”. But beyond just the “coolness” factor, the event also helped researchers refine our understanding of orbital path of the Martian moon.

The future: It’s also interesting to think of what sort of astronomical wonders await travelers as we venture out across the solar system. For example, no human has yet to stand on the Moon and witness a solar eclipse. Or how about a ring plane passage through Saturn’s rings, thus far only witnessed via the robotic eyes of Cassini? Of course, for the best views of Saturn’s rings, we recommend a vacation stay on Iapetus, the only major Saturnian moon whose orbit is inclined to the ring plane. And stick around ‘til November 10th, 2084, and you can witness a transit of Earth, the Moon and Phobos as seen from the slopes of Elysium Mons on Mars:

Hopefully, they’ll have perfected that whole Futurama “head-in-a-jar” thing by then…

-Looking for eclipses in science fiction? Check out the author’s tales Exeligmos and Shadowfall.

How to Take Great Photos of the Lunar Eclipse

On Wednesday morning October 8, Earth's shadow will nibble away at the moon for this year's second total lunar eclipse. Credit: Bob King

Ready for Wednesday’s morning lunar eclipse Some people – and I envy them at times – treat an eclipse more casually. They enjoy the show with no desire to set up a telescope or take a photo. For those of us can’t part with our cameras, here’s a little guide to help you get better pictures.

From Philadelphia and other eastern U.S. cities the partial phases of the eclipse will take place with the moon well up in the western sky. By the start of totality, the moon will have dropped to within about 6º of the horizon as shown here. Source: Stellarium
From Philadelphia and other eastern U.S. cities the partial phases of the eclipse will take place with the moon well up in the western sky. By the start of totality, the moon will have dropped to within about 6º of the horizon as shown here. Source: Stellarium

If you’re also into photography and would like to grab a few shots, here are a few tips on what equipment you’ll need and camera settings. This eclipse offers unique opportunities especially for the eastern half of the country because the eclipsed moon will be low in the western sky near the start of and during morning twilight.

In the Midwest at the start of the hour-long totality, the red moon will be about 20º (two fists) above the western horizon. From the East Coast the moon slips into total eclipse only a half hour before sunrise 6-7º high. So if you live in the eastern half of the country, find a site with a good view to the west.

Seen from Denver, total eclipse begins with the moon 30º high (three fists). All of totality and all partial phases of the eclipse will be visible from western Midwest west to Hawaii and Alaska. Source: Stellarium
Seen from Denver, total eclipse begins with the moon 30º high (three fists). All of totality and all partial phases of the eclipse will be visible from western Midwest west to Hawaii and Alaska. Source: Stellarium

A low moon means easier framing with a pleasing foreground like a grove of fall trees, a church or distant line of mountain peaks. And the lower it drops, the longer the telephoto lens you can use to enlarge the moon relative to the foreground. When the moon is high in the sky it’s more difficult to find a suitable foreground.

Sometimes it's nice to have a foreground object to add character to your eclipse photos. Last April's totally eclipsed moon joins the old Central High School clock tower in downtown Duluth, Minn. Mars at upper right. Details: 80mm lens, f/5, 1.6-second exposure at ISO 400 on a tripod. Credit: Bob King
Sometimes it’s nice to have a foreground object to add character to your eclipse photos. Last April’s totally eclipsed moon joins the old Central High School clock tower in downtown Duluth, Minn. Mars at upper right. Details: 80mm lens, f/5, 1.6-second exposure at ISO 400 on a tripod. Credit: Bob King

As the scene brightens during twilight, balancing the light of the dim moon, your photos will get even more interesting. Textures and details in foreground objects will stand out instead of appearing as silhouettes.

Use the table below to plan when to watch depending on your time zone. The blanks mean the moon will have set by the time of the event.

Eclipse Events                                                EDT                 CDT                MDT                 PDT

Penumbra first visible 4:45 a.m. 3:45 a.m. 2:45 a.m. 1:45 a.m.
Partial eclipse begins 5:15 a.m. 4:15 a.m. 3:15 a.m. 2:15 a.m.
Total eclipse begins 6:25 a.m. 5:25 a.m. 4:25 a.m. 3:25 a.m.
Mid-eclipse 6:55 a.m. 5:55 a.m. 4:55 a.m. 3:55 a.m.
Total eclipse ends 7:24 a.m. 6:24 a.m. 5:24 a.m. 4:24 a.m.
Partial eclipse ends ——— 7:34 a.m. 6:34 a.m. 5:34 a.m.
Penumbra last visible ——— ——— 7:05 a.m. 6:05 a.m.

 

Exposures and lens settings

Partial phase during the April 14-15 eclipse this year. Details: Telescope (=1300mm telephoto lens) at f/11, 1/250 second at ISO 400. Credit: Bob King
Partial phase during the April 14-15 eclipse this year. Details: Telescope (=1300mm telephoto lens) at f/11, 1/250 second at ISO 400. Credit: Bob King

The full moon and even the partially eclipsed moon (up to about half) are so bright you can shoot a handheld photo without resorting to a tripod. Exposures at ISO 400 are in the neighborhood of f/8 at 1/250-1/500 second. Only thing is, all you’ll get is the moon surrounded by blackness. These exposures are so brief almost nothing will show in your foreground except for possibly moonlit clouds. That’s usually fine for the early partial phases.

Once the moon is more than half smothered by shadow, open up your lens to a wider setting – f/2.8 to f/4 – or increase the exposure. Let the back of the camera be your guide. If the images look too bright, dial back. If too dim, increase exposure or open the lens to a wider aperture.

To capture the encroaching shadow during partial phases you'll need to overexpose the sunlit part of the moon. Details: f/11, 2-second exposure at ISO 400. Credit: Bob King
To capture the encroaching shadow during partial phases you’ll need to overexpose the sunlit part of the moon. Details: f/11, 2-second exposure at ISO 400. Credit: Bob King

While you can continue to shoot the partially eclipsed moon at f/8 from 1/30-1/125 second, you’ll miss the best part – the portion filling up with Earth’s red shadow. To capture that, break out the tripod, open the lens all the way up – f/2.8-f/4 – and expose at ISO 400 between 1/4 and 1 second.

You can also shoot at ISO 800 and cut those times in half, important if you’re using a longish telephoto lens. Remember, Earth’s rotation means the moon’s on the move and will show trailing if you expose longer than a few seconds. On the other hand, this won’t be a problem if you’re shooting with a wide angle lens though they have their limits, too.

The moon completely immersed in Earth's umbra during totality. Details: f/11, 6-second exposure, ISO 400. Credit : Bob King
The moon completely immersed in Earth’s umbra during totality. Details: f/11, 6-second exposure, ISO 400. To prevent trailing I used a motorized mount to track the moon. Credit : Bob King

During totality, expose anywhere from 1/2 to 5 seconds at f/2.8-4.5 at ISO 400. Let’s say you want to include both scenic foreground and stars in the picture using a wide angle or standard lens. Dial up the ISO to 800, open your lens wide and expose between 6-10 seconds. On the 6-second end you’ll catch only the brightest stars, but the moon won’t show trailing; on the longer end you’ll get lots more stars with some overexposure of the eclipsed moon.

Of course, you can go to even higher ISOs and shorten exposure times considerably. But in all but the newest, high-end cameras that comes at the price of increased graininess and less color saturation.

Wide scene from April's total eclipse with Spica below the moon and Mars to the right. Details: 24mm lens at f/2.8, 8-second exposure at ISO 800. The moon was deliberately overexposed to show it in a field of stars. You can vary the exposure to your taste but the shorter it is,  the fewer stars. Longer exposures will show trailing. Credit: Bob King
Wide scene from April’s total eclipse with Spica below the moon and Mars to the right. Details: 24mm lens at f/2.8, 8-second exposure at ISO 800. The moon was deliberately overexposed to show it in a field of stars. You can vary the exposure to your taste but the shorter it is, the fewer stars. Longer exposures will show trailing. Credit: Bob King

Where parts of the eclipse happen in twilight, even mobile phones may suffice. There should be enough light to capture a pretty scene with the moon just emerging from total eclipse and during the ensuing partial phases.

The partial lunar eclipse of June 4, 2012, pre-dawn at moonset, from home in southern Alberta. This is a single exposure with the Canon 60Da and 18-200mm Sigma lens at 115mm and at f/5.6 for 0.4 sec at ISO 160. Copyright: Alan Dyer
The partial lunar eclipse of June 4, 2012, pre-dawn at moonset, from home in southern Alberta. This is a single exposure with the Canon 60Da and 18-200mm Sigma lens at 115mm and at f/5.6 for 0.4 sec at ISO 160. Copyright: Alan Dyer

If you’re clouded out or on the wrong side of the planet for the eclipse, you can catch live webcasts from the following sites:

* Gianluca Masi’s Virtual Telescope
* Griffith Observatory in Los Angeles
* SLOOH 

Clear skies!

Our Complete Guide to the October 8th “Hunter’s Moon” Total Lunar Eclipse

Photo by author

October 2014 means eclipse season 2 of 2 for the year is upon us.

Don’t fear the ‘Blood Moon’ that’s currently infecting the web, but if you find yourself on the correct moonward facing hemisphere of the planet, do get out and observe the total lunar eclipse coming right up on the morning of Wednesday, October 8th. This is the second and final total lunar eclipse of 2014, and the second of four in a quartet series of lunar eclipses known as a tetrad.

And the good news is, the eclipse once again favors nearly all of North America. From the western U.S. and Canada, the Moon will be high in the western skies when partial phases begin early in the morning on October 8th. The western U.S., Canada and Alaska will see the entire 61 minute span of totality, just 18 minutes shorter than last April’s lunar eclipse. The Moon will be high in the sky during totality for the Hawaiian Islands, and viewers in Australia and the Pacific Far East will witness the eclipse in the evening hours.

Visibility
The visibility regions for the total lunar eclipse. Credit: NASA/GSFC/Espenak.

This lunar eclipse is part of saros 127, and marks number 42 of a series of 72 for that particular saros. If you witnessed the total lunar eclipse visible from North America and Europe on September 27th, 1996, you caught the last of the series, and if you catch the next eclipse in the saros on October 18th, 2032, you’ve earned a veteran lunar eclipse-watchers badge of seeing an exeligmos, or “triple saros” of eclipses.

The path of the Moon through the Earth’s umbra on October 8th. Adapted from NASA/GFSC.

Timings for key phases of the eclipse are as follows:

P1- Penumbral phase begins: 8:14 UT/4:14 EDT/1:14 PDT

U1- Umbral (partial) phase begins: 9:15 UT/5:14 EDT/2:14 PDT

U2- Totality begins: 10:24 UT/6:24 EDT/3:24 PDT

Mid-totality- 10:55 UT/6:55 EDT/3:55 PDT

U3- Totality ends: 11:25 UT/7:25 EDT/4:25 PDT

U4- Umbral phase ends: 12:35 UT/5:35 PDT

P4- Penumbral phase ends: 13:35/6:35 PDT

Not all total lunar eclipses are the same when it comes to color. Totality can appear anywhere from a dark brick color, as happened during the December 9th, 1992, eclipse following the eruption of Mount Pinatubo, when the Moon nearly disappeared during totality, to a bright coppery red, as seen during the April eclipse earlier this year. The Moon passes to the north of the dark central core of the Earth’ shadow next Wednesday, so expect a brighter than normal eclipse, especially along the Moon’s northeast limb. Grab a painter’s wheel and compare the eclipsed Moon to swatches of orange through red: what colors do you see? What you’re seeing is the combinations of all the world’s sunsets refracted into the cone of the Earth’s shadow, which is about three times the size of the Moon at its average distance as seen from Earth. Remember, the Moon is experiencing a total solar eclipse as we watch the lunar eclipse unfold!

Stellarium
The October 8th total solar eclipse as seen from the Apollo 11 landing site on the nearside of the Moon. Created using Stellarium.

This color can be quantified and described on what is known as the Danjon Scale, with 0 being a very dark eclipse with the Moon barely visible, to a 4, meaning a very bright eclipse.

And yes, each total lunar eclipse is now receiving the “Blood Moon” meme thanks to ye ole Internet. Expect the conspiracy-minded to note that this eclipse occurs on the Jewish holiday of Sukkot starting at sundown on the 8th, which isn’t really all that wondrous as the Jewish calendar is a luni-solar one, and total lunar eclipses have to occur during a Full Moon by definition. Wait long enough, and an occasional “Sukkot total lunar eclipse” does indeed occur.

Uranus occultation
The footprint of the October 8th occultation of Uranus by the Moon during totality. (Credit: Occult 4.1.0).

But a truly rare event does occur during this eclipse, as the Moon actually occults (passes in front of) the planet Uranus during totality for observers in northern Alaska and northeast Asia. The rest of us in the observing zone will see a near miss. Can you spy Uranus with binoculars near the lunar limb during totality? Another such rarity occurred during Shakespeare’s time on December 30th, 1591, involving Saturn and the eclipsed Moon, and another such odd occurrence transpires in 2344 A.D.

2344 eclipse
The circumstances of the 2344 eclipse/occultation. Credit: Starry Night, NASA/GSFC & Occult 4.0.1.

The brightest star to be occulted by the total eclipsed Moon as it crosses the constellation Pisces is +7.9th magnitude HIP 4231 for the northern U.S. and Canada.

And speaking of historical eclipses, there’s a Columbus Day tie-in with the phenomenon as well. Like many mariners of his day, Columbus was well-versed in celestial navigation, and used a total lunar eclipse to get a good one-time fix on his longitude at sea, an experiment that you can easily replicate. Columbus also wasn’t above using prior knowledge of an impending lunar eclipse to get himself and his crew out of a bind with the locals when the need arose.

An outstanding sequence of images taken during the April 15th, 2014 total lunar eclipse. Credit: Michael Zeiler (Eclipse-Maps) Used with permission.
An outstanding sequence of images taken during the April 15th, 2014, total lunar eclipse. Credit: Michael Zeiler (Eclipse-Maps) Used with permission.

Photographing an eclipse with a DSLR is as easy as shooting an image of the Moon. Try this a few evenings before the big event. A minimum focal length of 200mm is needed to render the Moon larger than a white dot in the image, and remember that the Moon is much darker during total eclipse, and you’ll need to step the exposure times rapidly down from 1/100th of a second to 2 to 4 seconds during totality.

A long-running effort by Sky & Telescope has been looking for amateur observations of precise crater contacts along the rim of the umbra in an effort to measure variations in the diameter of the Earth’s shadow.

starry night
The Moon versus Uranus as seen from Napa, California just past mid-eclipse on the morning of October 8th. Credit: Starry Night Education Software.

As always, weather prospects are the big question mark when it comes to eclipses. Typically, the southwestern U.S. experiences 13-20 clear days in the month of October; prospects worsen to the northwest, with an average of 3-12 days. We’ll be looking at resources such as NOAA, Skippy Sky and ClearSkyChart on the evenings leading up to the 8th. The great thing about a lunar eclipse is, you don’t need a 100% clear sky to see it: just a clear view of the Moon!

Up for a challenge? We’ve yet to see a capture of a shadow transit of the International Space Station in front of the eclipsed Moon. This time around, such a capture should be possible across southern coastal California and the Baja peninsula just minutes prior to the onset of totality.

Orbitron
A shadow pass of the International Space Station just prior to the onset of totality. Note the position of the Moon. Created using Orbitron.

Another bizarre catch, known as a selenelion — witnessing the end of lunar totality after sunrise — may just be possible across the northeastern U.S. into the Canadian Maritimes as the eclipsed Moon sets during totality. The more elevation you can get the better! This works because the Moon lingers a bit in the large shadow of the Earth, plus atmospheric refraction gives the low altitude Sun and Moon a slight boost.

Clouded out? On the wrong side of the planet? You can watch the eclipse online at the following links:

– Live views courtesy of Gialuca Masi and the Virtual Telescope starting at 10:00 UT on October 8th.

– A live webcast starting at 9:00 UT courtesy of Slooh:

– A Columbia State University broadcast, (time to be determined).

Planning an ad-hoc broadcast? Let us know!

And as the eclipse wraps up, the biggest question is always: When’s the next one? Well, lunar eclipse number three of the four eclipse tetrad occurs next year on April 4th, 2015… but in just two weeks time, the western United States and Canada will also witness a fine partial solar eclipse on Oct 23rd

Stay tuned!

Got images of the total lunar eclipse? Send ‘em in to Universe Today’s Flickr forum!

Interested in eclipse sci-fi? Check out our latest short stories Exeligmos and Shadowfall.