Gaia Mission is Mapping Out the Bar at the Center of the Milky Way

Credit: Data: ESA/Gaia/DPAC, A. Khalatyan(AIP) & StarHorse team; Galaxy map: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

Despite the many advancements made in the field of astronomy, astronomers still struggle to get an accurate assessment of the Milky Way Galaxy. Because we are embedded in its disk, it is much more difficult to assess its size, structure, and extent – unlike galaxies located millions (or billions) of light-years away. Luckily, thanks to improved instruments and tireless efforts, progress is being made all the time.

For instance, a team of astronomers recently combined the latest data obtained by the ESA’s Gaia observatory with the infrared and optical observations of other telescopes to start mapping the bar-shaped collection of stars at the center of our Milky Way. This constitutes the first time in history that astronomers have been able to make direct measurements of this barred structure.

Continue reading “Gaia Mission is Mapping Out the Bar at the Center of the Milky Way”

The ESA’s SpaceBok Robot Will Hop Its Way Around Low-Gravity Worlds

The SpaceBok is a hopping exploration robot being developed for use on low-gravity worlds. Image Credit: ESA

The ESA is helping a group of students from Zurich test and develop their hopping exploration robot. Called SpaceBok, the robot is designed to operate on low-gravity bodies like the Moon or asteroids. It’s based on the concept of ‘dynamic walking’, something that animals on Earth use.

Continue reading “The ESA’s SpaceBok Robot Will Hop Its Way Around Low-Gravity Worlds”

Meet the Comet Interceptor. It’ll Wait Patiently In Space for a Comet, Then Pounce On It

An artist’s overview of the mission concept for the Comet Interceptor spacecraft, which will fly from the vicinity of Earth to rendezvous with a long-period comet or interstellar object inbound from the outer solar system. Credit: ESA

The ESA has announced a new mission to explore a comet. The Comet Interceptor mission will have a spacecraft wait in space until a pristine comet approaches the inner Solar System. Then it will make a bee line for it, and do some ground-breaking science.

Continue reading “Meet the Comet Interceptor. It’ll Wait Patiently In Space for a Comet, Then Pounce On It”

The Most Efficient Way to Explore the Entire Milky Way, Star by Star

Modelling galactic settlement. Credit: ESA/ACT

It seems like the stuff of dreams, the idea that humanity will one day venture beyond the Solar System and become an interstellar species. Who knows? Given enough time and the right technology (and assuming there’s not some serious competition), we might even be able to colonize the entire Milky Way galaxy someday. And while this seems like a far-off prospect at best, it makes sense to contemplate what a process like this would entail.

That’s what a think tank from the ESA’s Advanced Concepts Team (ACT) managed to do recently. As part of the tenth annual Global Trajectory Optimization Competition (GOTC X), they created a simulation that showed how humanity could optimally colonize the Milky Way. This was in keeping with the competition’s theme of “Settlers of the Galaxy“, which challenged teams to find the most energy-efficient way of settling as many star systems as possible.

Read more

Satellites Equipped With a Tether Would be Able to De-Orbit Themselves at the end of Their Life

Artist's impression of the orbital debris problem. Credit: UC3M

There’s no denying it, we are facing an orbital debris problem! As of January 2019, the ESA’s Space Debris Office estimates that there are at least 34,000 pieces of large debris in Low Earth Orbit (LEO) – a combination of dead satellites, spent rocket stages, and other assorted bits of space junk. And with thousands of satellites scheduled to be launched in the next decade, that problem is only going to get worse.

This is a situation that cries out for solutions, especially when you consider the plans to commercialize LEO and start sending crewed missions to deep space in the coming years. A team of scientists from the Universidad Carlos III de Madrid (UC3M) has come up with a simple but elegant idea: equip future satellites with a tether system so they can de-orbit themselves at the end of their lives.

Continue reading “Satellites Equipped With a Tether Would be Able to De-Orbit Themselves at the end of Their Life”

Don’t Worry About Asteroid 2006QV89. There’s Only a 1 in 7000 Chance It’ll Hit the Earth in September

One of the many PHOs (Potentially Hazardous Objects) that we're keeping an eye on. Image Credit: NASA
One of the many PHOs (Potentially Hazardous Objects) that we're keeping an eye on. Image Credit: NASA

Whenever scientists announce an upcoming close encounter with an asteroid, certain corners of the internet light up like the synaptic rush that accompanies a meth binge, with panicky headlines shouted straight from the brain stem. But never mind that. We’re not that corner of the internet. We’re sober, yo!

Continue reading “Don’t Worry About Asteroid 2006QV89. There’s Only a 1 in 7000 Chance It’ll Hit the Earth in September”

Europe is Working On a Reusable Space Transport System: Space Rider

The ESA is developing a reusable spacecraft called the Space Rider. Image Credit: ESA-Jacky Huart

The ESA is developing its own spacecraft capable of re-entry into Earth’s atmosphere. The reusable spacecraft is called the Space RIDER (Reusable Integrated Demonstrator for Europe Return), and the ESA says that the Space Rider will be ready for launch by 2022. It’s being designed to launch on the Vega-C rocket from Europe’s spaceport in Kourou, French Guiana.

Continue reading “Europe is Working On a Reusable Space Transport System: Space Rider”

How Will NASA and ESA Handle Mars Samples When They Get Them Back to Earth?

A graphic showing what's required to get samples from Mars to Earth. Image Credit: ESA

We’ve learned a lot about Mars in recent years. Multiple orbiters and hugely-successful rover missions have delivered a cascade of discoveries about our neighbouring planet. But to take the next step in unlocking Mars’ secrets, we need to get Martian samples back to Earth.

Continue reading “How Will NASA and ESA Handle Mars Samples When They Get Them Back to Earth?”

The World’s Glaciers are Down by 9 Trillion Tonnes of Ice in the Last Half Century

This graphic shows the change in cumulative ice mass over the last 50 years in different glacial regions on Earth. Image Credit: ESA, adapted from Zemp et al. (2019) Nature, and data courtesy of World Glacier Monitoring Service
This graphic shows the change in cumulative ice mass over the last 50 years in different glacial regions on Earth. Image Credit: ESA, adapted from Zemp et al. (2019) Nature, and data courtesy of World Glacier Monitoring Service

Things are not looking good for Earth’s glaciers. Usually, when it comes to climate change and melting ice, we think of the Earth’s polar regions. But they’re not the only important ice formations, and they’re not the only ice that’s melting due to climate change.

Continue reading “The World’s Glaciers are Down by 9 Trillion Tonnes of Ice in the Last Half Century”