Rosetta’s Philae Lander Snaps a Selfie

Rosetta's solar panels as seen by Philae's CIVA imaging system on April 14, 2014. Credit: ESA/Rosetta/Philae/CIVA

Philae is awake… and taking pictures! This image, acquired last night with the lander’s CIVA (Comet nucleus Infrared and Visible Analyzer) instrument, shows the left and right solar panels of ESA’s well-traveled Rosetta spacecraft, upon which the 100-kilogram Philae is mounted.

Philae successfully emerged from hibernation on March 28 via a wake-up call from ESA.

After over a decade of traveling across the inner Solar System, Rosetta and Philae are now in the home stretch of their ultimate mission: to orbit and achieve a soft landing on comet 67/P Churyumov-Gerasimenko. It will be the first time either feat has ever been attempted by a spacecraft. Read more here.

Source: ESA Rosetta Blog

Handy! 3-D Printing Could Build Moon Bases And Improve Items Used In Space

Two 3-D replicas of a glove worn by European Space Agency astronaut Hans Schlegel. The one on right is lifesize and the other at one-tenth scale. The models were created "using fused deposition modelling of thermoplastic", ESA stated, at a mechanical workshop at the Netherlands' European Space Research and Technology Centre. Credit: ESA-Anneke Le Floc'h

Star Trek replicators, here we come. The European Space Agency has released a list of how 3-D printing could change space exploration forever. And lest you think this type of printing is far in the future, images like those disembodied hands above show you it’s come a long way. Those are 3-D replicas of a glove worn by European Space Agency astronaut Hans Schlegal.

The applications range from the small — making lighter valves, for example — to ambitious projects such as constructing a moon base. Below are some ESA images showing uses for 3-D printing, and if they’ve missed some, be sure to let us know in the comments.

Two valves -- which is the 3-D printed one? It's the one on the right. The original (left) is a water on-off valve (Woov) flown on the European Space Agency's Columbus module on the International Space Station. The replica is 40 percent less massive. Credit: ESA
Two valves — which is the 3-D printed one? It’s the one on the right. The original (left) is a water on-off valve (Woov) flown on the European Space Agency’s Columbus module on the International Space Station. The replica is 40 percent less massive. Credit: ESA
Artist's conception of a lunar dome based on 3-D printing. Credit: ESA/Foster + Partners
Artist’s conception of a lunar dome based on 3-D printing. Credit: ESA/Foster + Partners
A 3-D printed showerhead injector that apparently saves on time in the normal manufacturing process: usually it takes "more than 100 separate welds to produce", according to the European Space Agency. The holes, however, are made by secondary processing. Credit: ESA
A 3-D printed showerhead injector that apparently saves on time in the normal manufacturing process: usually it takes “more than 100 separate welds to produce”, according to the European Space Agency. The holes, however, are made by secondary processing. Credit: ESA
A closeup of a titanium lattice ball made using a 3-D printer. According to the European Space Agency, the hollow spheres have a "complex external geometry" that cannot be made with the usual manufacturing processes. Credit: ESA
A closeup of a titanium lattice ball made using a 3-D printer. According to the European Space Agency, the hollow spheres have a “complex external geometry” that cannot be made with the usual manufacturing processes. Credit: ESA

After The Flood: Ancient Waters Carved These Martian Channels

A December 2013 image of Osuga Valles taken by the European Space Agency's Mars Express spacecraft, highlighted by the agency in April 2014. Credit: ESA/DLR/FU Berlin

This picture is an example of why Martian scientists like to get their groove on. This late 2013 snapshot of Osuga Valles — a part of the vast Valles Marineris gorge that cuts across the Red Planet — shows the leftovers of an ancient flood. The European Space Agency highlighted the area in a release this week.

“Catastrophic flooding is thought to have created the heavily eroded Osuga Valles and the features within it. Streamlines around the islands in the valley indicate that the direction of flow was towards the northeast … and sets of parallel, narrow grooves on the floor of the channel suggest that the water was fast flowing,” the European Space Agency stated.

“Differences in elevation within the feature, along with the presence and cross-cutting relationships of channels carved onto the islands, suggest that Osuga Valles experienced several episodes of flooding.”

Things get even more interesting when you look a bit closer up, as you can see below.

A close-up view of Osuga Valles created from data acquired with the Mars Express' High Resolution Stereo Camera. Water flowed towards the top of this image. Credit: ESA/DLR/FU Berlin
A close-up view of Osuga Valles created from data acquired with the Mars Express’ High Resolution Stereo Camera. Water flowed towards the top of this image. Credit: ESA/DLR/FU Berlin

“The grooved nature of the valley floor suggests the water was fast flowing, carving out the features as it flooded the region,” ESA added. “The elevated ‘island’ blocks are also carved with small channels, recording the history of previous flood episodes.”

You can read more about Mars Express’ 10 years of exploration at this ESA website. We’ve also highlighted the top 10 discoveries in this past Universe Today story.

Source: European Space Agency

European Satellite Dodged Space Debris Hours After Reaching Orbit

Artist's conception of Sentinel-1, an environment-monitoring satellite from the European Space Agency. Credit: ESA/ATG medialab

Yesterday, the European Space Agency disclosed a serious problem early in the Sentinel-1A mission, which lifted off April 3 on a mission to observe the Earth. The spacecraft — which reportedly cost 280 million Euros ($384 million) to launch — came close to a collision in orbit.

“At the end of the first day after the launch (4 April): all deployments have been executed during the night and completed early in the morning at the beginning of the first ‘day shift’,” read a blog post from the Sentinel-1A team on the European Space Agency’s website.

“As the first day shift nears its end, a serious alert is received: there is a danger of a collision with a NASA satellite called ACRIMSAT, which has run out of fuel and can no longer be maneuvered. Not much information at the beginning, we are waiting for more information, but a collision avoidance maneuver may be needed.  ‘Are you kidding? A collision avoidance maneuver during LEOP [launch and early orbit phase]? This has never been done before, this has not been simulated!’ ”

Worse, as controllers looked at the data they realized there was not one, but two possible points of collision. Cue the inevitable Gravity reference, and then a solution: to essentially move the satellite out of the way. The maneuver took about 39 seconds, and safely skirted Sentinel-1A out of danger.

You can read more about the situation in the blog post. ESA’s main Twitter feed and the ESA Operations Twitter feed also first reported the near-collision yesterday, nearly a week after it occurred. It should also be noted that the Europeans (among many other space agencies) are looking at ways to reduce space debris.

The successful liftoff of Sentinel-1A in April 2014. Credit: ESA-S.Corvaja, 2014
The successful liftoff of Sentinel-1A in April 2014. Credit: ESA-S.Corvaja, 2014

If You Could Ride on the Outside of a Rocket, Here’s Your View While Blasting Into Space

Separation of the third stage during the Sentinel-1 launch in April 2014. Credit: Arianespace/European Space Agency /Roscosmos (YouTube/screenshot)

Imagine clinging on to the side of a rocket, somehow able to hang on despite the high speeds and diminishing oxygen. Looking down, this is what you’ll see — the view in the video above. This incredible sequence shows Sentinel-1a during its initial climb to orbit last week and, if you wait long enough, you can even see the separation of the third stage.

“Arianespace’s successful Soyuz Flight VS07 — which deployed Sentinel-1A to Sun-synchronous orbit — gave the world a front-row seat in space,” the company stated on YouTube. “Cameras mounted on the Soyuz’ Fregat upper stage captured the spectacular footage … as Sentinel-1A was separated at approximately 700 km [434 miles] above the Earth to commence its life in orbit.”

Sentinel-1a is the first of a series of environmental monitoring satellites overseen by the European Space Agency, a set that promises views of the Earth in high-definition.

Read more about the mission here. You can also see more video views of Sentinel-1a in this story.

Two Rocket Launches Yesterday Provided Double The Space Fun

The successful liftoff of Sentinel-1A in April 2014. Credit: ESA-S.Corvaja, 2014

And we have liftoff — two times over! Launch fans got a double treat yesterday when two space missions successfully left Earth. First came a morning launch at 10:46 a.m. Eastern (2:46 p.m. UTC) when DMSP-19 (a satellite of the Defense Meteorological Satellite Program) took off from Vandenberg Air Force Base in California. You can watch the replay below the jump.

“The satellite launched today is equipped with a sophisticated sensor suite that can capture visible and infrared cloud cover; measure precipitation, surface temperature and soil moisture; and collect specialized global meteorological, oceanographic and solar-geophysical information in all weather conditions. DMSP-19 joins six other satellites in polar orbit providing weather information,” stated Lockheed Martin, the long-standing prime contractor of the program.

And just above this paragraph is the French Guiana launch of Sentinel-1A, the first half of a pair of environmental monitoring satellites that should show the Earth in high-definition to the European Space Agency and customers. Then below the jump you can see the successful separation of Sentinel-1A in space. The launch took place at 5:02 p.m. Eastern (9:02 p.m. UTC).

Watch Live: Next-Gen Environment Satellite Aims For Space

Artist's conception of Sentinel-1, an environment-monitoring satellite from the European Space Agency. Credit: ESA/ATG medialab

UPDATE, APRIL 4: The satellite safely made it into space! Watch the launch replay and successful satellite separation here.

Just in case you aren’t already in French Guiana, here’s your chance to watch a European environment radar satellite take a rocket ride. Tune into the webcast above to see Sentinel-1A’s launch. If the schedule holds, the launch will be at 5:02 p.m. EDT (9:02 p.m. UTC) on April 3, 2014. Watch live above!

ESA heralds Sentinel-1 as a “new era in Earth observation” because the satellite duo (yes, it will be eventually two satellites) will vastly improve their ability to send out information on natural disasters and quick-moving Earth observation events. Sentinel-1 will in fact be the first of a satellite series feeding into the same information system.

Once the second half of the duo launches in 2016, Sentinel-1 will have a wide swath of geographical coverage, could go to the same areas quickly, and would send data out quickly. Repeatable and rapid Earth observations will bring data quickly into the hands of the authorities who could make decisions about evacuations and other things. 

This information will be fed into Copernicus, a new system that will co-ordinate all of the Sentinel satellites for users to gain information.

“The Sentinels will provide a unique set of observations, starting with the all-weather, day and night radar images from Sentinel-1 to be used for land and ocean services,” ESA stated in an explanation about Copernicus.

“Sentinel-2 will deliver high-resolution optical images for land services and Sentinel-3 will provide data for services relevant to the ocean and land. Sentinel-4 and Sentinel-5 will provide data for atmospheric composition monitoring from geostationary and polar orbits, respectively.”

And here are a few of the other applications ESA foresees it would be useful for: sea-ice measurements, looking for oil spills, tracking ships, flagging land with “motion risks” and also doing mapping for the forestry industry.

As far as the webcast, there’s a schedule of speeches and events beforehand at the European Space Agency’s space operations center in Darmstadt, Germany. Be sure to tune in a bit earlier at 3:30 p.m. EST (7:30 p.m. UTC) to see the ceremonies.

Source: European Space Agency

ESA Awakens Rosetta’s Comet Lander

Artist's impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.

Little Philae is awake! ESA sent a wake-up call to the 100-kg (220-lb) lander riding aboard the Rosetta spacecraft this morning at 06:00 GMT, bringing it out of its nearly 33-month-long slumber and beginning its preparation for its upcoming (and historic) landing on the surface of a comet in November.

Unlike Rosetta, which awoke in January via a pre-programmed signal, Philae received a “personal wake-up call” from Earth, 655 million kilometers away.

Hello, world! ESA's Rosetta and Philae comet explorers are now both awake and well!
Hello, world! ESA’s Rosetta and Philae comet explorers are now both awake and well!

A confirmation signal from the lander was received by ESA five and a half hours later at 11:35 GMT.

After over a decade of traveling across the inner Solar System, Rosetta and Philae are now in the home stretch of their ultimate mission: to orbit and achieve a soft landing on the inbound comet 67/P Churyumov-Gerasimenko. It will be the first time either feat has ever been attempted — and hopefully achieved — by a spacecraft.

Read more: Rosetta Spacecraft Spies Its Comet As It Prepares For An August Encounter

After Rosetta maneuvers to meet up with the comet in May and actually enters orbit around it in August, it will search its surface for a good place for Philae to make its landing in November.

With a robotic investigator both on and around it, 67/P CG will reveal to us in intimate detail what a comet is made of and really happens to it as it makes its close approach to the Sun.

“Landing on the surface is the cherry on the icing on the cake for the Rosetta mission on top of all the great science that will be done by the orbiter in 2014 and 2015. A good chunk of this year will be spent identifying where we will land, but also taking vital measurements of the comet before it becomes highly active. No one has ever attempted this before and we are very excited about the challenge!”
– Matt Taylor, Rosetta project scientist

Meanwhile, today’s successful wake-up call let the Rosetta team know Philae is doing well. Further systems checks are planned for the lander throughout April.

Watch an animation of the deployment and landing of Philae on comet 67/P CG below:

Source: ESA’s Rosetta blog

Want to welcome Rosetta and Philae back on your computer? Download a series of ESA’s “Hello, World” desktop screens here.

Rosetta Spacecraft Spies Its Comet As It Prepares For An August Encounter

The Rosetta spacecraft saw its destination (Comet 67P/Churymov-Gerasimenko) on March 20, 2014 from about three million miles (five million kilometers) away. The comet is in the small circle next to the globular star cluster M107. ESA/MPS for OSIRIS-Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

As Rosetta limbers up for its close-up encounter with a comet, we have visual confirmation that it’s on the right track! The comet spied its destination — Comet 67P/Churymov-Gerasimenko — using its OSIRIS wide-angle camera and narrow-angle camera on March 20 and March 21.

“Finally seeing our target after a 10 year journey through space is an incredible feeling,” stated OSIRIS principal investigator Holger Sierks from the Max Planck Institute for Solar System Research in Germany. “These first images taken from such a huge distance show us that OSIRIS is ready for the upcoming adventure.”

The image comes as Rosetta is preparing its science instruments for its encounter in August.

“Currently, Rosetta is on a trajectory that would, if unchanged, take it past the comet at a distance of approximately 50 000 km and at a relative speed of 800 m/s. A critical series of manoeuvres beginning in May will gradually reduce Rosetta’s velocity relative to the comet to just 1 m/s and bring it to within 100 km by the first week of August,” the European Space Agency stated.

Here’s an animation of how big the comet will appear to Rosetta as it gets closer:

“Between May and August the 4 km-wide comet will gradually ‘grow’ in Rosetta’s field of view from appearing to have a diameter of less than one camera pixel to well over 2000 pixels – equivalent to a resolution of around 2 m per pixel – allowing the first surface features to be resolved.”

For more information on the science commissioning, check out the Rosetta blog.

Artist's impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.
Artist’s impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.

Got Back Pain? This Suit Could Counteract Spine Problems In Space (And On Earth)

European Space Agency astronaut Thomas Pesquet (upside-down) testing out the "skinsuit" during a parabolic flight to simulate microgravity in March 2014. Credit: CNES/Novespace

If you’ve ever felt insecure about your height, orbit is a great place to be. Astronaut spines lengthen up to 2.75 inches (7 centimeters) while they’re in microgravity. There are big downsides, however. First there’s the backache. Second, you’re four times as likely to get a slipped disc when you return to Earth.

The solution could be as simple as tight clothing. Above you can see French astronaut Thomas Pesquet (already flying high this week after he was publicly named to a flight in 2016) trying out a prototype of the skinsuit. Essentially, it’s so tight that it could prevent you from growing, which in turn would stop the pain and risk of damage.

“The skinsuit is a tailor-made overall with a bi-directional weave specially designed to counteract the lack of gravity by squeezing the body from the shoulders to the feet with a similar force to that felt on Earth. Current prototypes are made of spandex, although new materials are being examined,” the European Space Agency wrote.

A model poses in the "skinsuit", a tight-fitting garment being tested to counteract back pain in space. Credit: ESA
A model poses in the “skinsuit”, a tight-fitting garment being tested to counteract back pain in space. Credit: ESA

The first astronaut to test the suit out in space will be Andreas Mogensen, who will launch to the International Space Station next year.

ESA says if it works, the suit would not only be useful for astronauts, but also could be great for people with back pain on Earth — and possibly, even those with conditions such as cerebral palsy.

Prototypes are being developed between ESA’s Space Medicine Office, King’s College London (United Kingdom), University College London (United Kingdom) and the Massachusetts Institute of Technology (United States).

Source: European Space Agency (1 and 2)