Forging Stars – Peering Into Starbirth and Death

The Large Magellanic Cloud is one of the closest galaxies to our own. Astronomers have now used the power of the ESO’s Very Large Telescope to explore NGC 2035, one of its lesser known regions, in great detail. This new image shows clouds of gas and dust where hot new stars are being born and are sculpting their surroundings into odd shapes. But the image also shows the effects of stellar death — filaments created by a supernova explosion (left). Credit: ESO

Some 160,000 light years away towards the constellation of Dorado (the Swordfish), is an amazing area of starbirth and death. Located in our celestial neighbor, the Large Magellanic Cloud, this huge stellar forge sculpts vast clouds of gas and dust into hot, new stars and carves out ribbons and curls of nebulae. However, in this image taken by ESO’s Very Large Telescope, there’s more. Stellar annihilation also awaits and shows itself as bright fibers left over from a supernova event.

For southern hemisphere observers, one of our nearest galactic neighbors, the Large Magellanic Cloud, is a well-known sight and holds many cosmic wonders. While the image highlights just a very small region, try to grasp the sheer size of what you are looking at. The fiery forge you see is several hundred light years across, and the factory in which it is contained spans 14,000 light years. Enormous? Yes. But compared to the Milky Way, it’s ten times smaller.

Even at such a great distance, the human eye can see many bright regions where new stars are actively forming, such as the Tarantula Nebula. This new image, taken by ESO’s Very Large Telescope at the Paranal Observatory in Chile, explores an area cataloged as NGC 2035 (right), sometimes nicknamed the Dragon’s Head Nebula. But, just what are we looking at?

The Dragon’s Head is an HII region, more commonly referred to as an emission nebula. Here, young stars pour forth energetic radiation and illuminate the surrounding clouds. The radiation tears electrons away from the atoms contained within the gas. These atoms then gel again with other atoms and release light. Swirling in the mix is dark dust, which absorbs the light and creates deep shadows and create contrast in the nebula’s structure.

However, as we look deep into this image, there’s even more… a fiery finale. At the left of the photo you’ll see the results of one of the most violent events in the Universe – a supernova explosion. These troubled tendrils are all that’s left of what once was a star and its name is SNR 0536-67.6. Perhaps when it exploded, it was so bright that it was capable of outshining the Magellanic Cloud… fading away over the weeks or months that followed. However, it left a lasting impression!

Original Story Source: ESO Image Release.

Gorgeous Telescope Timelapse Makes You Feel Like You’re Standing In Chile

Lasers like this one, at the VLT in Paranal, help counteract the blurring effect of the atmosphere. Powerful arrays of much larger lasers could hide our presence from aliens. (ESO/Y. Beletsky)
Lasers like this one, at the VLT in Paranal, help counteract the blurring effect of the atmosphere. Powerful arrays of much larger lasers could hide our presence from aliens. (ESO/Y. Beletsky)

As the chill of winter settles into the northern hemisphere, fantasies of down-south travel pervade a lot of people’s dreams. Well, here’s a virtual journey to warm climes for astronomy buffs: a beautiful, music-filled timelapse of several European Southern Observatory telescopes gazing at the heavens in Chile.

Uploaded in 2011 (but promoted this morning on ESO’s Twitter feed), the timelapse was taken by astrophotographers Stéphane Guisard (also an ESO engineer) and José Francisco Salgado (who is also an astronomer at Chicago’s Adler Planetarium.) Telescopes include:

We’ve covered their work before on Universe Today. In 2009, Guisard  participated in GigaGalaxy Zoom, which produced a 360-degree panorama of the entire sky. He also released a 3-D view of several telescopes that same year. Also, Guisard and Salgado collaborated on another 2011 timelapse of the Very Large Telescope and nearby sites.

ALMA Spots a Nascent Stellar Monster

ALMA/Spitzer image of a monster star in the process of forming

Even though it comprises over 99% of the mass of the Solar System (with Jupiter taking up most of the rest) our Sun is, in terms of the entire Milky Way, a fairly average star. There are lots of less massive stars than the Sun out there in the galaxy, as well as some real stellar monsters… and based on new observations from the Atacama Large Millimeter/submillimeter Array, there’s about to be one more.

Early science observations with ALMA have provided astronomers with the best view yet of a monster star in the process of forming within a dark cloud of dust and gas. Located 11,000 light-years away, Spitzer Dark Cloud 335.579-0.292 is a stellar womb containing over 500 times the mass of the Sun — and it’s still growing. Inside this cloud is an embryonic star hungrily feeding on inwardly-flowing material, and when it’s born it’s expected to be at least 100 times the mass of our Sun… a true stellar monster.

The location of SDC 335.579-0.292 in the southern constellation of Norma (ESO, IAU and Sky & Telescope)
The location of SDC 335.579-0.292 in the southern constellation of Norma (ESO, IAU and Sky & Telescope)

The star-forming region is the largest ever found in our galaxy.

“The remarkable observations from ALMA allowed us to get the first really in-depth look at what was going on within this cloud,” said Nicolas Peretto of CEA/AIM Paris-Saclay, France, and Cardiff University, UK. “We wanted to see how monster stars form and grow, and we certainly achieved our aim! One of the sources we have found is an absolute giant — the largest protostellar core ever spotted in the Milky Way.”

Watch: What’s the Biggest Star in the Universe?

SDC 335.579-0.292 had already been identified with NASA’s Spitzer and ESA’s Herschel space telescopes, but it took the unique sensitivity of ALMA to observe in detail both the amount of dust present and the motion of the gas within the dark cloud, revealing the massive embryonic star inside.

“Not only are these stars rare, but their birth is extremely rapid and their childhood is short, so finding such a massive object so early in its evolution is a spectacular result.”

– Team member Gary Fuller, University of Manchester, UK

The image above, a combination of data acquired by both Spitzer and ALMA (see below for separate images) shows tendrils of infalling material flowing toward a bright center where the huge protostar is located. These observations show how such massive stars form — through a steady collapse of the entire cloud, rather than through fragmented clustering.

SDC 335.579-0.292 seen in different wavelengths of light.
SDC 335.579-0.292 seen in different wavelengths of light.

“Even though we already believed that the region was a good candidate for being a massive star-forming cloud, we were not expecting to find such a massive embryonic star at its center,” said Peretto. “This object is expected to form a star that is up to 100 times more massive than the Sun. Only about one in ten thousand of all the stars in the Milky Way reach that kind of mass!”

(Although, with at least 200 billion stars in the galaxy, that means there are still 20 million such giants roaming around out there!)

Read more on the ESO news release here.

Image credits: ALMA (ESO/NAOJ/NRAO)/NASA/JPL-Caltech/GLIMPSE

A Galaxy Grows Fat on Nearby Gas

An artist’s impression showing a galaxy in the process of pulling in cool gas from its surroundings. (ESO/L. Calçada/ESA/AOES Medialab)

If you live in the U.S. you may be enjoying a sultry summer day off in honor of Independence Day, or at least have plans to get together with friends and family at some point to partake in some barbecued goodies and a favorite beverage (or three). And as you saunter around the picnic table scooping up platefuls of potato salad, cole slaw, and deviled eggs, you can also draw a correlation between your own steady accumulation of mayonnaise-marinated mass and a distant hungry galaxy located over 11 billion light-years away.

Astronomers have always suspected that galaxies grow by pulling in material from their surroundings, but this process has proved very difficult to observe directly. Now, ESO’s Very Large Telescope has been used to study a very rare alignment between a distant galaxy and an even more distant quasar — the extremely bright center of a galaxy powered by a supermassive black hole. The light from the quasar passes through the material around the foreground galaxy before reaching Earth, making it possible to explore in detail the properties of the in-falling gas and giving the best view so far of a galaxy in the act of feeding.

“This kind of alignment is very rare and it has allowed us to make unique observations,” said Nicolas Bouché of the Research Institute in Astrophysics and Planetology (IRAP) in Toulouse, France, lead author of the new paper. “We were able to use ESO’s Very Large Telescope to peer at both the galaxy itself and its surrounding gas. This meant we could attack an important problem in galaxy formation: how do galaxies grow and feed star formation?”

A beam from the Laser Star Guide on one of the VLT's four Unit Telescopes helps to correct the blurring effect of Earth's atmosphere before making observations (ESO/Y. Beletsky)
A beam from the Laser Star Guide on one of the VLT’s four Unit Telescopes helps to correct the blurring effect of Earth’s atmosphere before making observations (ESO/Y. Beletsky)

Galaxies quickly deplete their reservoirs of gas as they create new stars and so must somehow be continuously replenished with fresh gas to keep going. Astronomers suspected that the answer to this problem lay in the collection of cool gas from the surroundings by the gravitational pull of the galaxy. In this scenario, a galaxy drags gas inwards which then circles around it, rotating with it before falling in.

Although some evidence of such accretion had been observed in galaxies before, the motion of the gas and its other properties had not been fully explored up to now.

Astronomers have already found evidence of material around galaxies in the early Universe, but this is the first time that they have been able to show clearly that the material is moving inwards rather than outwards, and also to determine the composition of this fresh fuel for future generations of stars. And in this particular instance, without the quasar’s light to act as a probe the surrounding gas would be undetectable.

“In this case we were lucky that the quasar happened to be in just the right place for its light to pass through the infalling gas. The next generation of extremely large telescopes will enable studies with multiple sightlines per galaxy and provide a much more complete view,” concluded co-author Crystal Martin of the University of California Santa Barbara.

This research was presented in a paper entitled “Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3”, to appear in the July 5, 2013 issue of the journal Science.

Source: ESO news release

Zodiacal Light Over ESO’s La Silla Observatory

Moonlight and zodiacal light lights up the skies over ESO's La Silla observatory. (Credit: Alan Fitzsimmons/ESO)

We don’t put much stock in astrology or horoscopes here at Universe Today, but there’s one thing related to the zodiac that’s all science and no superstition: zodiacal light, captured here in a gorgeous photo by astronomer Alan Fitzsimmons above ESO’s La Silla Observatory.

Created by sunlight reflected off fine particles of dust concentrated inside the plane of the Solar System, zodiacal light appears as a diffuse, hazy band of light visible in dark skies stretching away from a recently-set Sun (or before the Sun is about to rise).

The Moon is located just outside the frame of this picture, bathing the observatory in an eerie light that is reflected off the clouds below.

The La Silla Observatory is located at the outskirts of the Chilean Atacama Desert at an altitude of 2400 meters (7,900 feet). Like other observatories in this area, La Silla is located far from sources of light pollution and, like ESO’s Paranal Observatory, it has some of the darkest night skies on the Earth.

The dome in the foreground, just to the right, is the Swiss 1.2-metre Leonhard Euler Telescope named in honor of the famous Swiss mathematician Leonhard Euler (1707–83).

Image credit: A. Fitzsimmons/ESO

Three Potentially Habitable Planets Found Orbiting Gliese 667C

Nearby star Gliese 667C might have three potentially habitable planets. Credit: Planetary Habitability Laboratory, University of Puerto Rico Arecibo.

A closer look at the previously-studied nearby star Gliese 667C has revealed a treasure trove of planets – at least six – with three super-Earths in the habitable zone around the star. Gliese 667C is part of a triple star system (Gliese 667) and is just over one third of the mass of our Sun. Now that we know there are multiple planets in the so-called Goldilocks zone – a region where liquid water could exist — Gliese 667C might be the best candidate for harboring habitable exo-worlds.

“We knew that the star had three planets from previous studies, so we wanted to see whether there were any more,” said Mikko Tuomi from the University of Hertfordshire in the UK, one of the astronomers who led the new study of Gliese 667C. “By adding some new observations and revisiting existing data we were able to confirm these three and confidently reveal several more. Finding three low-mass planets in the star’s habitable zone is very exciting!”

Artist’s conception of the seven planets possibly found orbiting Gliese 667C. Three of them (c, f and e) orbit within the habitable zone of the star. Image is courtesy of Rene Heller/ Carnegie Institution for Science.
Artist’s conception of the seven planets possibly found orbiting Gliese 667C. Three of them (c, f and e) orbit within the habitable zone of the star. Image is courtesy of Rene Heller/ Carnegie Institution for Science.

Tuomi, along with Guillem Anglada-Escudé of the University of Göttingen, Germany looked at existing radial velocity data from the HARPS spectrograph at ESO’s 3.6-metre telescope in Chile. The team said they are extremely confident on the data on the first five planets, while the sixth is tentative, and a potential seventh planet even more tentative.

The team writes in their paper:

Up to seven periodic signals are detected in the Doppler measurements of GJ 667C data, being the last (seventh) signal very close to our detection threshold.

The significance of the signals is not affected by correlations with activity indices and we could not identify any strong wavelength dependence with any of them.

The first six signals are strongly present in subsamples of the data. Only the seventh signal is unconfirmed using half of the data only. Our analysis indicates that any of the six stronger signals would had been robustly spotted with half the available data if each had been orbiting alone around the host star.

If all seven planets are confirmed, the system would consist of three habitable-zone super-Earths, two hot planets further in, and two cooler planets further out.

This diagram shows the system of planets around the star Gliese 667C. A record-breaking three planets in this system are super-Earths lying in the zone around the star where liquid water could exist, making them possible candidates for the presence of life. This is the first system found with a fully packed habitable zone. The relative approximate sizes of the planets and the parent star are shown to scale, but not their relative separations. Credit: ESO
This diagram shows the system of planets around the star Gliese 667C. A record-breaking three planets in this system are super-Earths lying in the zone around the star where liquid water could exist, making them possible candidates for the presence of life. This is the first system found with a fully packed habitable zone. The relative approximate sizes of the planets and the parent star are shown to scale, but not their relative separations. Credit: ESO

But the team said the three in the habitable zone are confirmed to be super-Earths. These are planets more massive than Earth, but less massive than planets like Uranus or Neptune. This is the first time that three such planets have been spotted orbiting in this zone in the same system.

“The number of potentially habitable planets in our galaxy is much greater if we can expect to find several of them around each low-mass star,” said co-author Rory Barnes from the University of Washington, “instead of looking at ten stars to look for a single potentially habitable planet, we now know we can look at just one star and find several of them.”

Gliese 667 (a.k.a GJ 667) is 22 light-years away from Earth in the constellation of Scorpius.
The planets in the habitable zone and those closer to the star are expected to always have the same side facing the star, so that their day and year will be the same lengths, with one side in perpetual sunshine and the other always night.

The researchers say that the ‘f’ planet is “a prime candidate for habitability.”

“It likely absorbs less energy than the Earth, and hence habitability requires more greenhouse gases, like CO2 or CH4,” the team wrote in their paper. “Therefore a habitable version of this planet has to have a thicker atmosphere than the Earth, and we can assume a relatively uniform surface temperature.”

The other stars in the triple system would provide a unique sunset: the two other suns would look like a pair of very bright stars visible in the daytime and at night they would provide as much illumination as the full Moon.

Are there more planets to be found in this abundant system? Perhaps, but not in the habitable zone. The team said the new planets completely fill up the habitable zone of Gliese 667C, as there are no more stable orbits in which a planet could exist at the right distance to it.

An artist’s impression of the orbits of the planets in the Gliese 667C system:

Read the team’s paper.

Sources: ESO, Carnegie , Planetary Habitability Laboratory

Dust In The Wind… Black Hole Style

This artist’s impression shows the surroundings of the supermassive black hole at the heart of the active galaxy NGC 3783 in the southern constellation of Centaurus (The Centaur). Credit: ESO/M. Kornmesser

Over the years, researchers have taken myriad observations of black holes and their environs, but now ESO’s Very Large Telescope Interferometer is giving us the most detailed look of the dust around a black hole at the center of an active galaxy ever obtained. Originally expected to be contained within the ring-shaped torus around the black hole, the observation held a surprise as astronomers discovered that a significant amount of the dust was located both above and below the torus. What can this mean? According to the latest findings and contrary to popular theory, it is possible the dust is being evacuated from the region as a cool wind.

For the last two decades, astronomers have discovered that nearly all galaxies harbor a black hole at their hearts. In many cases, these monsters increase in size by accreting matter from the immediate vicinity. This, in turn, is responsible for the creation of active galactic nuclei (AGN), one of the most energetic objects in the Universe. Surrounding the super-luminous giants are rings of cosmic dust which originate from space – drawn in like water swirling down a dark drain. According to theory, the intense infrared radiation exerted by AGN must have originated from these dusty eddies.

Thanks to the powerful eye of the Very Large Telescope Interferometer (VLTI) at ESO’s Paranal Observatory in Chile, astronomers have now seen something new in a nearby active galaxy cataloged as NGC 3783. While they observed the expected hot dust clocking in at some 700 to 1000 degrees Celsius, what they also observed confounded them… Huge amounts of cooler dust both above and below the main torus.

As Sebastian Hönig (University of California Santa Barbara, USA and Christian-Albrechts-Universität zu Kiel, Germany), lead author of the paper presenting the new results, explains, “This is the first time we’ve been able to combine detailed mid-infrared observations of the cool, room-temperature dust around an AGN with similarly detailed observations of the very hot dust. This also represents the largest set of infrared interferometry for an AGN published yet.”

Is this a black hole teething ring? From their observations, the researchers suspect the newly-discovered dust is flowing outward from the central black hole. This means the wind most likely plays a critical part in the tangled relationship of both the black hole and its surroundings. Apparently the black hole pulls immediate material into it, but the incredible amount of radiation this produces also seems to be pushing it away. Scientists are far from clear as to how these two processes work together, but the discovery of this dusty wind could lead to a better understanding of their evolution.

To get the resolution needed to study the core area of NGC 3783, astronomers needed to use the combined power of the Unit Telescopes of ESO’s Very Large Telescope. Through this union, an interferometer is created – one capable of “seeing” with the equivalent of a 130-meter telescope.

Another team member, Gerd Weigelt (Max-Planck-Institut für Radioastronomie, Bonn, Germany), explains, “By combining the world-class sensitivity of the large mirrors of the VLT with interferometry we are able to collect enough light to observe faint objects. This lets us study a region as small as the distance from our Sun to its closest neighbouring star, in a galaxy tens of millions of light-years away. No other optical or infrared system in the world is currently capable of this.”

What do these new observations mean to the world of astronomy? It might very well change the pattern of how we currently understand AGN. With proof that dust is being expelled by intense radiation, new models must be created – models which include this recent information of how dust can be distributed.

Hönig concludes, “I am now really looking forward to MATISSE, which will allow us to combine all four VLT Unit Telescopes at once and observe simultaneously in the near- and mid-infrared — giving us much more detailed data.” MATISSE, a second generation instrument for the VLTI, is currently under construction.

Original Story Source: ESO News Release.

An Amazing Anniversary Image from the VLT

A new view of the spectacular stellar nursery IC 2944 (ESO)

This Saturday will mark 15 years that the European Southern Observatory’s Very Large Telescope (VLT) first opened its eyes on the Universe, and ESO is celebrating its first-light anniversary with a beautiful and intriguing new image of the stellar nursery IC 2944, full of bright young stars and ink-black clouds of cold interstellar dust.

This is the clearest ground-based image yet of IC 2944, located 6,500 light-years away in the southern constellation Centaurus.

Emission nebulae like IC 2944 are composed mostly of hydrogen gas that glows in a distinctive shade of red, due to the intense radiation from the many brilliant newborn stars. Clearly revealed against this bright backdrop are mysterious dark clots of opaque dust, cold clouds known as Bok globules. They are named after Dutch-American astronomer Bart Bok, who first drew attention to them in the 1940s as possible sites of star formation. This particular set is nicknamed the Thackeray Globules.

Larger Bok globules in quieter locations often collapse to form new stars but the ones in this picture are under fierce bombardment from the ultraviolet radiation from nearby hot young stars. They are both being eroded away and also fragmenting, like lumps of butter dropped into a hot frying pan. It is likely that Thackeray’s Globules will be destroyed before they can collapse and form stars.

This new picture celebrates an important anniversary for the the VLT – it will be fifteen years since first light on the first of its four Unit Telescopes on May 25, 1998. Since then the four original giant telescopes have been joined by the four small Auxiliary Telescopes that form part of the VLT Interferometer (VLTI) – one of the most powerful and productive ground-based astronomical facilities in existence.

The selection of images below — one per year — gives a taste of the VLT’s scientific productivity since first light in 1998:

A selection of images from 15 years of the VLT
A selection of images from 15 years of the VLT (Credits: ESO/P.D. Barthel/M. McCaughrean/M. Andersen/S. Gillessen et al./Y. Beletsky/R. Chini/T. Preibisch)

Read more on the ESO site here, and watch an ESOCast video below honoring the VLT’s fifteen-year milestone:

Happy Anniversary VLT!

Source: ESO

Orion’s Secret Fire Dance

In this image, the submillimetre-wavelength glow of dust clouds in the Orion A nebula is overlaid on a view of the region in the more familiar visible light, from the Digitized Sky Survey 2. The large bright cloud in the upper right of the image is the well-known Orion Nebula, also called Messier 42. Credit: ESO/Digitized Sky Survey 2

The Great Orion Nebula has captivated observers for at least four hundred years, but the ancient Mayans may have known about its secrets long before then. According to legend, the nebula might have been the smoke situated between the “Three Hearthstones” and the light of the emerging stars seen as the very embers of creation itself. Now the ESO-operated Atacama Pathfinder Experiment (APEX) in Chile has revealed what we cannot see. At wavelengths too long for human vision, this new image shows us an ancient fire dance painted in colors of cold interstellar dust.

As we know, deposits of gas and interstellar dust are virtual star factories. However, the very material which creates stars also masks them. So how do we peer behind the veil? The answer is to observe at alternative wavelengths of light. In this case, the submillimetre wavelength reveals what our eyes cannot see… dust grains igniting the view, even though they are just a few tens of degrees above absolute zero. This makes the APEX telescope with its submillimetre-wavelength camera LABOCA, located at an altitude of 5000 metres above sea level on the Chajnantor Plateau in the Chilean Andes, the perfect instrument to play the tune for this cold fire dance.

Take a look around the picture. It’s just a small portion of a vast complex known as the Orion Molecular Cloud. Wafting across hundreds of light years space some 1350 light years away, this rich arena of hot young stars, cold dust clouds and bright nebula is the epitome of stellar creation. The image reveals the submillimetre-wavelength glow in shades of orange and it is combined with visible light for a total visual experience. Note deep ribbons, sheets and bubbles… These are the product of gravitational collapse and the effects of stellar winds. Powerful stellar processes are at work here. The atmospheres of the stars are crafting the clouds much the same way a gentle breeze swirls the smoke from a fire.

Loading player…

Credit: ESO/Nick Risinger (skysurvey.org), Digitized Sky Survey 2. Music: movetwo

As beautiful as it is, there is still science behind the imagery. Astronomers have employed the data taken with ESA’s Herschel Space Observatory, along with the APEX information, to aid them in their search for early star formation. At this point in time, the researchers have been able to verify more than a dozen candidate protostars – objects which appear far brighter at longer wavelengths rather than short. It’s a triumph for the researchers. These new observations could well be the youngest protostars so far observed and it brings astronomers just one step closer to witnessing the moment when a star ignites.

Original Story Source: ESO News Release.

Anarchic Star Formation Found In Dust Cloud

The Danish 1.54-metre telescope located at ESO’s La Silla Observatory in Chile has captured a striking image of NGC 6559, an object that showcases the anarchy that reigns when stars form inside an interstellar cloud. Credit: ESO

If you think that breaking all the rules is cool, then you’ll appreciate one of the latest observations submitted by the Danish 1.54 meter telescope housed at ESO’s La Silla Observatory in Chile. In this thought-provoking image, you’ll see what kind of mayhem occurs when stars are forged within an interstellar nebula.

Towards the center of the Milky Way in the direction of the constellation of Sagittarius, and approximately 5000 light-years from our solar system, an expansive cloud of gas and dust await. By comparison with other nebulae in the region, this small patch of cosmic fog known as NGC 6559 isn’t as splashy as its nearby companion nebula – the Lagoon (Messier 8). Maybe you’ve seen it with your own eyes and maybe you haven’t. Either way, it is now coming to light for all of us in this incredible image.

Comprised of mainly hydrogen, this ethereal mist is the perfect breeding ground for stellar creation. As areas contained within the cloud gather enough matter, they collapse upon themselves to form new stars. These neophyte stellar objects then energize the surrounding hydrogen gas which remains around them, releasing huge amounts of high energy ultraviolet light. However, it doesn’t stop there. The hydrogen atoms then merge into the mix, creating helium atoms whose energy causes the stars to shine. Brilliant? You bet. The gas then re-emits the energy and something amazing happens… an emission nebula is created.

Loading player…

This zoom starts with a broad view of the Milky Way. We head in towards the centre, where stars and the pink regions marking star formation nurseries are concentrated. We see the huge gas cloud of the Lagoon Nebula (Messier 8) but finally settle on the smaller nebula NGC 6559. The colourful closing image comes from the Danish 1.54-metre telescope located at ESO’s La Silla Observatory in Chile. Credit: ESO/Nick Risinger (skysurvey.org)/S. Guisard. Music: movetwo

In the center of the image, you can see the vibrant red ribbon of the emission nebula, but that’s not the only thing contained within NGC 6559. Here swarms of solid dust particles also exist. Consisting of tiny bits of heavier elements, such as carbon, iron and silicon, these minute “mirrors” scatter the light in multiple directions. This action causes NGC 6559 to be something more than it first appears to be… now it is also a reflection nebula. It appears to be blue thanks to the magic of a principle known as Rayleigh scattering – where the light is projected more efficiently in shorter wavelengths.

Don’t stop there. NGC 6559 has a dark side, too. Contained within the cloud are sectors where dust totally obscures the light being projected behind them. In the image, these appear as bruises and dark veins seen to the bottom left-hand side and right-hand side. In order to observe what they cloak, astronomers require the use of longer wavelengths of light – ones which wouldn’t be absorbed. If you look closely, you’ll also see a myriad of saffron stars, their coloration and magnitude also effected by the maelstrom of dust.

It’s an incredible portrait of the bedlam which exists inside this very unusual interstellar cloud…

Original Story Source: ESO News Release.