What Does It Mean To Be ‘Star Stuff’?

This Chandra image of the Tycho supernova remnant contains new evidence for what triggered the original supernova explosion. Credit: NASA/CXC/Chinese Academy of Sciences/F. Lu et al.

At one time or another, all science enthusiasts have heard the late Carl Sagan’s infamous words: “We are made of star stuff.” But what does that mean exactly? How could colossal balls of plasma, greedily burning away their nuclear fuel in faraway time and space, play any part in spawning the vast complexity of our Earthly world? How is it that “the nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies” could have been forged so offhandedly deep in the hearts of these massive stellar giants?

Unsurprisingly, the story is both elegant and profoundly awe-inspiring.

All stars come from humble beginnings: namely, a gigantic, rotating clump of gas and dust. Gravity drives the cloud to condense as it spins, swirling into an ever more tightly packed sphere of material. Eventually, the star-to-be becomes so dense and hot that molecules of hydrogen in its core collide and fuse into new molecules of helium. These nuclear reactions release powerful bursts of energy in the form of light. The gas shines brightly; a star is born.

The ultimate fate of our fledgling star depends on its mass. Smaller, lightweight stars burn though the hydrogen in their core more slowly than heavier stars, shining somewhat more dimly but living far longer lives. Over time, however, falling hydrogen levels at the center of the star cause fewer hydrogen fusion reactions; fewer hydrogen fusion reactions mean less energy, and therefore less outward pressure.

At a certain point, the star can no longer maintain the tension its core had been sustaining against the mass of its outer layers. Gravity tips the scale, and the outer layers begin to tumble inward on the core. But their collapse heats things up, increasing the core pressure and reversing the process once again. A new hydrogen burning shell is created just outside the core, reestablishing a buffer against the gravity of the star’s surface layers.

While the core continues conducting lower-energy helium fusion reactions, the force of the new hydrogen burning shell pushes on the star’s exterior, causing the outer layers to swell more and more. The star expands and cools into a red giant. Its outer layers will ultimately escape the pull of gravity altogether, floating off into space and leaving behind a small, dead core – a white dwarf.

Lower-mass stars like our sun eventually enter a swollen, red giant phase. Ultimately, its outer layers will be thrown off altogether, leaving nothing but a small white dwarf star. Image Credit: ESO/S. Steinhofel
Lower-mass stars like our sun eventually enter a swollen, red giant phase. Ultimately, its outer layers will be thrown off altogether, leaving nothing but a small white dwarf star. Image Credit: ESO/S. Steinhofel

Heavier stars also occasionally falter in the fight between pressure and gravity, creating new shells of atoms to fuse in the process; however, unlike smaller stars, their excess mass allows them to keep forming these layers. The result is a series of concentric spheres, each shell containing heavier elements than the one surrounding it. Hydrogen in the core gives rise to helium. Helium atoms fuse together to form carbon. Carbon combines with helium to create oxygen, which fuses into neon, then magnesium, then silicon… all the way across the periodic table to iron, where the chain ends. Such massive stars act like a furnace, driving these reactions by way of sheer available energy.

But this energy is a finite resource. Once the star’s core becomes a solid ball of iron, it can no longer fuse elements to create energy. As was the case for smaller stars, fewer energetic reactions in the core of heavyweight stars mean less outward pressure against the force of gravity. The outer layers of the star will then begin to collapse, hastening the pace of heavy element fusion and further reducing the amount of energy available to hold up those outer layers. Density increases exponentially in the shrinking core, jamming together protons and electrons so tightly that it becomes an entirely new entity: a neutron star.

At this point, the core cannot get any denser. The star’s massive outer shells – still tumbling inward and still chock-full of volatile elements – no longer have anywhere to go. They slam into the core like a speeding oil rig crashing into a brick wall, and erupt into a monstrous explosion: a supernova. The extraordinary energies generated during this blast finally allow the fusion of elements even heavier than iron, from cobalt all the way to uranium.

Periodic Table of Elements
Periodic Table of Elements. Massive stars can fuse elements up to Iron (Fe), atomic number 26. Elements with atomic numbers 27 through 92 are produced in the aftermath of a massive star’s core collapse.

The energetic shock wave produced by the supernova moves out into the cosmos, disbursing heavy elements in its wake. These atoms can later be incorporated into planetary systems like our own. Given the right conditions – for instance, an appropriately stable star and a position within its Habitable Zone – these elements provide the building blocks for complex life.

Today, our everyday lives are made possible by these very atoms, forged long ago in the life and death throes of massive stars. Our ability to do anything at all – wake up from a deep sleep, enjoy a delicious meal, drive a car, write a sentence, add and subtract, solve a problem, call a friend, laugh, cry, sing, dance, run, jump, and play – is governed mostly by the behavior of tiny chains of hydrogen combined with heavier elements like carbon, nitrogen, oxygen, and phosphorus.

Other heavy elements are present in smaller quantities in the body, but are nonetheless just as vital to proper functioning. For instance, calcium, fluorine, magnesium, and silicon work alongside phosphorus to strengthen and grow our bones and teeth; ionized sodium, potassium, and chlorine play a vital role in maintaining the body’s fluid balance and electrical activity; and iron comprises the key portion of hemoglobin, the protein that equips our red blood cells with the ability to deliver the oxygen we inhale to the rest of our body.

So, the next time you are having a bad day, try this: close your eyes, take a deep breath, and contemplate the chain of events that connects your body and mind to a place billions of lightyears away, deep in the distant reaches of space and time. Recall that massive stars, many times larger than our sun, spent millions of years turning energy into matter, creating the atoms that make up every part of you, the Earth, and everyone you have ever known and loved.

We human beings are so small; and yet, the delicate dance of molecules made from this star stuff gives rise to a biology that enables us to ponder our wider Universe and how we came to exist at all. Carl Sagan himself explained it best: “Some part of our being knows this is where we came from. We long to return; and we can, because the cosmos is also within us. We’re made of star stuff. We are a way for the cosmos to know itself.”

Gamma Ray Bursts Limit The Habitability of Certain Galaxies, Says Study

An artistic image of the explosion of a star leading to a gamma-ray burst. (Source: FUW/Tentaris/Maciej Fro?ow)

Gamma ray bursts (GRBs) are some of the brightest, most dramatic events in the Universe. These cosmic tempests are characterized by a spectacular explosion of photons with energies 1,000,000 times greater than the most energetic light our eyes can detect. Due to their explosive power, long-lasting GRBs are predicted to have catastrophic consequences for life on any nearby planet. But could this type of event occur in our own stellar neighborhood? In a new paper published in Physical Review Letters, two astrophysicists examine the probability of a deadly GRB occurring in galaxies like the Milky Way, potentially shedding light on the risk for organisms on Earth, both now and in our distant past and future.

There are two main kinds of GRBs: short, and long. Short GRBs last less than two seconds and are thought to result from the merger of two compact stars, such as neutron stars or black holes. Conversely, long GRBs last more than two seconds and seem to occur in conjunction with certain kinds of Type I supernovae, specifically those that result when a massive star throws off all of its hydrogen and helium during collapse.

Perhaps unsurprisingly, long GRBs are much more threatening to planetary systems than short GRBs. Since dangerous long GRBs appear to be relatively rare in large, metal-rich galaxies like our own, it has long been thought that planets in the Milky Way would be immune to their fallout. But take into account the inconceivably old age of the Universe, and “relatively rare” no longer seems to cut it.

In fact, according to the authors of the new paper, there is a 90% chance that a GRB powerful enough to destroy Earth’s ozone layer occurred in our stellar neighborhood some time in the last 5 billion years, and a 50% chance that such an event occurred within the last half billion years. These odds indicate a possible trigger for the second worst mass extinction in Earth’s history: the Ordovician Extinction. This great decimation occurred 440-450 million years ago and led to the death of more than 80% of all species.

Today, however, Earth appears to be relatively safe. Galaxies that produce GRBs at a far higher rate than our own, such as the Large Magellanic Cloud, are currently too far from Earth to be any cause for alarm. Additionally, our Solar System’s home address in the sleepy outskirts of the Milky Way places us far away from our own galaxy’s more active, star-forming regions, areas that would be more likely to produce GRBs. Interestingly, the fact that such quiet outer regions exist within spiral galaxies like our own is entirely due to the precise value of the cosmological constant – the factor that describes our Universe’s expansion rate – that we observe. If the Universe had expanded any faster, such galaxies would not exist; any slower, and spirals would be far more compact and thus, far more energetically active.

In a future paper, the authors promise to look into the role long GRBs may play in Fermi’s paradox, the open question of why advanced lifeforms appear to be so rare in our Universe. A preprint of their current work can be accessed on the ArXiv.

New Analysis Sets a Space & Time Zone for Complex Life

A new research paper reveals more details of the effect gamma ray bursts (GRB) have had on the development of complex life throughout the cosmos. Illustration depicts a beam from a GRB as might have been directed toward early life on Earth during the Cambrian or Ordovician periods, ~500 million years ago. (Illustration Credit: T. Reyes)

If too close to an environment harboring complex life, a gamma ray burst could spell doom for that life. But could GRBs be the reason we haven’t yet found evidence of other civilizations in the cosmos? To help answer the big question of “where is everybody?” physicists from Spain and Israel have narrowed the time period and the regions of space in which complex life could persist with a low risk of extinction by a GRB.

GRBs are some of the most cataclysmic events in the Universe. Astrophysicists are astounded by their intensity, some of which can outshine the whole Universe for brief moments. So far, they have remained incredible far-off events. But in a new paper, physicists have weighed how GRBs could limit where and when life could persist and evolve, potentially into intelligent life.

In their paper, “On the role of GRBs on life extinctions in the Universe”, published in the journal Science, Dr. Piran from Hebrew University and Dr. Jimenez from University of Barcelona consider first what is known about gamma ray bursts. The metallicity of stars and galaxies as a whole are directly related to the frequency of GRBs. Metallicity is the abundance of elements beyond hydrogen and helium in the content of stars or whole galaxies. More metals reduce the frequency of GRBs. Galaxies that have a low metal content are prone to a higher frequency of GRBs. The researchers, referencing their previous work, state that observational data has shown that GRBs are not generally related to a galaxy’s star formation rate; forming stars, including massive ones is not the most significant factor for increased frequency of GRBs.

As fate would have it, we live in a high metal content galaxy – the Milky Way. Piran and Jimenez show that the frequency of GRBs in the Milky Way is lower based on the latest data available. That is the good news. More significant is the placement of a solar system within the Milky Way or any galaxy.

The brightest gamma-ray burst ever seen in X-rays temporarily blinded Swift's X-ray Telescope on 21 June 2010. This image merges the X-rays (red to yellow) with the same view from Swift's Ultraviolet/Optical Telescope, which showed nothing extraordinary. Credit: NASA/Swift/Stefan Immler
The brightest gamma-ray burst ever seen in X-rays temporarily blinded Swift’s X-ray Telescope on 21 June 2010. This image merges the X-rays (red to yellow) with the same view from Swift’s Ultraviolet/Optical Telescope, which showed nothing extraordinary. Credit: NASA/Swift/Stefan Immler

The paper states that there is a 50% chance of a lethal GRB’s having occurred near Earth within the last 500 million years. If a stellar system is within 13,000 light years (4 kilo-parsecs) of the galactic center, the odds rise to 95%. Effectively, this makes the densest regions of all galaxies too prone to GRBs to permit complex life to persist.

The Earth lies at 8.3 kilo-parsecs (27,000 light years) from the galactic center and the astrophysicists’ work also concludes that the chances of a lethal GRB in a 500 million year span does not drop below 50% until beyond 10 kilo-parsecs (32,000 light years). So Earth’s odds have not been most favorable, but obviously adequate. Star systems further out from the center are safer places for life to progress and evolve. Only the outlying low star density regions of large galaxies keep life out of harm’s way of gamma ray bursts.

The paper continues by describing their assessment of the effect of GRBs throughout the Universe. They state that only approximately 10% of galaxies have environments conducive to life when GRB events are a concern. Based on previous work and new data, galaxies (their stars) had to reach a metallicity content of 30% of the Sun’s, and the galaxies needed to be at least 4 kilo-parsecs (13,000 light years) in diameter to lower the risk of lethal GRBs. Simple life could survive repeated GRBs. Evolving to higher life forms would be repeatedly set back by mass extinctions.

Piran’s and Jimenez’s work also reveals a relation to a cosmological constant. Further back in time, metallicity within stars was lower. Only after generations of star formation – billions of years – have heavier elements built up within galaxies. They conclude that complex life such as on Earth – from jelly fish to humans – could not have developed in the early Universe before Z > 0.5, a cosmological red-shift equal to ~5 billion years ago or longer ago. Analysis also shows that there is a 95% chance that Earth experienced a lethal GRB within the last 5 billion years.

The question of what effect a nearby GRB could have on life has been raised for decades. In 1974, Dr. Malvin Ruderman of Columbia University considered the consequences of a nearby supernova on the ozone layer of the Earth and on terrestrial life. His and subsequent work has determined that cosmic rays would lead to the depletion of the ozone layer, a doubling of the solar ultraviolet radiation reaching the surface, cooling of the Earth’s climate, and an increase in NOx and rainout that effects biological systems. Not a pretty picture. The loss of the ozone layer would lead to a domino effect of atmospheric changes and radiation exposure leading to the collapse of ecosystems. A GRB is considered the most likely cause of the mass extinction at the end of the Ordovician period, 450 million years ago; there remains considerable debate on the causes of this and several other mass extinction events in Earth’s history.

The paper focuses on what are deemed long GRBs – lGRBs – lasting several seconds in contrast to short GRBs which last only a second or less. Long GRBs are believed to be due to the collapse of massive stars such as seen in supernovas, while sGRBs are from the collision of neutron stars or black holes. There remains uncertainty as to the causes, but the longer GRBs release far greater amounts of energy and are most dangerous to ecosystems harboring complex life.

The paper narrows the time and space available for complex life to develop within our Universe. Over the age of the Universe, approximately 14 billion years, only the last 5 billion years have been conducive to the creation of complex life. Furthermore, only 10% of the galaxies within the last 5 billion years provided such environments. And within only larger galaxies, only the outlying areas provided the safe distances needed to evade lethal exposure to a gamma ray burst.

This work reveals how well our Solar System fits within the ideal conditions for permitting complex life to develop. We stand at a fairly good distance from the Milky Way’s galactic center. The age of our Solar System, at approximately 4.6 billion years, lies within the 5 billion year safe zone in time. However, for many other stellar systems, despite how many are now considered to exist throughout the Universe – 100s of billions in the Milky Way, trillions throughout the Universe – simple is probably a way of life due to GRBs. This work indicates that complex life, including intelligent life, is likely less common when just taking the effect of gamma ray bursts into consideration.

References:

On the role of GRBs on life extinction in the Universe, Tsvi Piran, Raul Jimenez, Science, Nov 2014, pre-print

The Origins of Life Could Indeed Be “Interstellar”

This image shows a star-forming region in interstellar space. A new study used AI and radiotelescope data to find 140,000 regions in the Milky Way that will eventually form stars like this region. Image credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

Some of science’s most pressing questions involve the origins of life on Earth. How did the first lifeforms emerge from the seemingly hostile conditions that plagued our planet for much of its history? What enabled the leap from simple, unicellular organisms to more complex organisms consisting of many cells working together to metabolize, respire, and reproduce? In such an unfamiliar environment, how does one even separate “life” from non-life in the first place?

Now, scientists at the University of Hawaii at Manoa believe that they may have an answer to at least one of those questions. According to the team, a vital cellular building block called glycerol may have first originated via chemical reactions deep in interstellar space.

Glycerol is an organic molecule that is present in the cell membranes of all living things. In animal cells this membrane takes the form of a phospholipid bilayer, a dual-layer membrane that sandwiches water-repelling fatty acids between outer and inner sheets of water-soluble molecules. This type of membrane allows the cell’s inner aqueous environment to remain separate and protected from its external, similarly watery world. Glycerol is a vital component of each phospholipid because it forms the backbone between the molecule’s two characteristic parts: a polar, water-soluble head, and a non-polar, fatty tail.

Many scientists believe that cell membranes such as these were a necessary prerequisite to the evolution of multicellular life on Earth; however, their complex structure requires a very specific environment – namely, one low in calcium and magnesium salts with a fairly neutral pH and stable temperature. These carefully balanced conditions would have been hard to come by on the prehistoric Earth.

Icy bodies born in interstellar space offer an alternative scenario. Scientists have already discovered organic molecules such as amino acids and lipid precursors in the Murchison meteorite that landed in Australia in 1969. Although the idea remains controversial, it is possible that glycerol could have been brought to Earth in a similar manner.

The Murchison Meteorite. Image credit: James St. John
The Murchison Meteorite.
Image credit: James St. John

Meteors typically form from tiny crumbs of material in cold molecular clouds, regions of gaseous hydrogen and interstellar dust that serve as the birthplace of stars and planetary systems. As they move through the cloud, these grains accumulate layers of frozen water, methanol, carbon dioxide, and carbon monoxide. Over time, high-energy ultraviolet radiation and cosmic rays bombard the icy fragments and cause chemical reactions that enrich their frozen cores with organic compounds. Later, as stars form and ambient material falls into orbit around them, the ices and the organic molecules they contain are incorporated into larger rocky bodies such as meteors. The meteors can then crash into planets like ours, potentially seeding them with building blocks of life.

In order to test whether or not glycerol could be created by the high-energy radiation that typically bombards interstellar ice grains, the team at the University of Hawaii designed their own meteorites: small bits of icy methanol cooled to 5 degrees Kelvin. After blasting their model ices with energetic electrons meant to mimic the effects of cosmic rays, the scientists found that some molecules of methanol within the ices did, in fact, transform into glycerol.

While this experiment appears to be a success, scientists realize that their laboratory models do not exactly replicate conditions in interstellar space. For instance, methanol traditionally makes up only about 30% of the ice in space rocks. Future work will investigate the effects of high-energy radiation on model ices made primarily of water. High-energy electrons fired in a lab are also not a perfect substitute for true cosmic rays and do not represent effects on ice that may result from ultraviolet radiation in interstellar space.

More research is necessary before scientists can draw any global conclusions; however, this study and its predecessors do provide compelling evidence that life as we know it truly could have come from above.

Why Watch ESA Rosetta’s Movie ‘Ambition’? Because We Want to Know What is Possible

Ambition is a collaboration between Platige Image and ESA. Shot on location in Iceland, it is directed by Tomek Bagi?ski and stars Aiden Gillen and Aisling Franciosi. Does Ambition accomplish more in 7 minutes than Gravity did in 90? Consider the abstraction of the Rosetta mission in light of NASA’s ambitions. (Credit: ESA, Illustration- TRR)

NASA has taken on space missions that have taken years to reach their destination; they have more than a dozen ongoing missions throughout the Solar System and have been to comets as well. So why pay any attention to the European Space Agency’s comet mission Rosetta and their new short film, “Ambition”?

‘Ambition’ might accomplish more in 7 minutes than ‘Gravity’ did in 90.

‘Ambition’ is a 7 minute movie created for ESA and Rosetta, shot on location in Iceland, directed by Oscar-winning Tomek Baginski, and stars Aidan Gillen—Littlefinger of ‘Game of Thrones.’ It is an abstraction of the near future where humans have become demigods. An apprentice is working to merge her understanding of existence with her powers to create. And her master steps in to assure she is truly ready to take the next step.

In the reality of today, we struggle to find grounding for the quest and discoveries that make up our lives on a daily basis. Yet, as the Ebola outbreak or the Middle East crisis reminds us, we are far from breaking away. Such events are like the opening scene of ‘Ambition’ when the apprentice’s work explodes in her face.

The ancient Greeks also took great leaps beyond all the surrounding cultures. They imagined themselves as capable of being demigods. Achilles and Heracles were born from their contact with the gods but they remained fallible and mortal.

The Comet Rendezvous and Flyby Mission conceived in one of two Mariner Mark II spacecraft was abandoned by the US Congress. The American led mission would have accomplished the objectives now being completed by the European Rosetta mission. (Photo Credit: NASA)
The Comet Rendezvous and Flyby Mission conceived in one of two Mariner Mark II spacecraft was abandoned by the US Congress. The American led mission would have accomplished the objectives now being completed by the European Rosetta mission. (Photo Credit: NASA)

But consider the abstraction of the Rosetta mission in light of NASA’s ambitions. As an American viewing the European short film, it reminds me that we are not unlike the ancient Greeks. We have seen the heights of our powers and ability to repel and conquer our enemies, and enrich our country. But we stand manifold vulnerable.

In ‘Ambition’ and Rosetta, America can see our European cousins stepping ahead of us. The reality of the Rosetta mission is that a generation ago – 25 years — we had a mission as ambitious called Comet Rendezvous Asteroid Flyby (CRAF). From the minds within NASA and JPL, twin missions were born. They were of the Mariner Mark II spacecraft design for deep space. One was to Saturn and the other  – CRAF was to a comet. CRAF was rejected by congress and became an accepted sacrifice by NASA in order to save its twin, the Cassini mission.

The short film ‘Ambition’ and the Rosetta mission is a reminder of what American ambition accomplished in the 60’s – Apollo, and the 70s – the Viking Landers, but then it began to falter in the 80s. The ambition of the Europeans did not lose site of the importance of comets. They are perhaps the ultimate Rosetta stones of our star system. They are unmitigated remnants of what created our planet billions of years ago unlike the asteroids that remained close to the Sun and were altered by its heat and many collisions.

Artist Illustration of the Cassini space probe to Saturn and Titan, a joint NASA, ESA mission. Cassini was the only Mariner Mark II spacecraft completed. (Photo Credit: NASA)
Artist Illustration of the Cassini space probe to Saturn and Titan, a joint NASA, ESA mission. Cassini was the only Mariner Mark II spacecraft completed. (Photo Credit: NASA)

Our cousins picked up a scepter that we dropped and we should take notice that the best that Europe spawned in the last century  – the abstract art of Picasso and Stravinsky, rocketry, and jet travel — remains alive today. Europe had the vision to continue a quest to something quite abstract, a comet, while we chose something bigger and more self-evident, Saturn and Titan.

‘Ambition’ shows us the forces at work in and around ESA. They blend the arts with the sciences to bend our minds and force us to imagine what next and why. There have been American epoch films that bend our minds, but yet sometimes it seems we hold back our innate drive to discover and venture out.

NASA recently created a 7 minute film of a harsh reality, the challenge of landing safely on Mars. ESA and Rosetta’s short film reminds us that we are not alone in the quest for knowledge and discovery, both of which set the stage for new growth and invention. America needs to take heed so that we do not wait until we reach the moment when an arrow pierces our heel as with Achilles and we succumb to our challengers.

References:

Rosetta: The Ambition to turn Science Fiction into Science Fact

Questioning the Impact Theory: What Really Killed the Dinosaurs?

Which is the main culprit for the terminal Cretaceous extinction: the Chicxulub impact or Deccan Traps volcanism? Upper Image: Donald Davis, NASA JPL Lower Image: USGS

About sixty five and a half million years ago, the Earth suffered its largest known cosmic impact. An asteroid or comet nucleus about 10 km in diameter slammed into what is now the Yucatan peninsula of Mexico. It gouged out a crater 180 to 200 km in diameter: nearly twice as large as the prominent crater Copernicus on Earth’s moon. But did this impact really cause the extinction of the dinosaurs and many other forms of life? Many earth scientists are convinced that it did, but some harbor nagging doubts. The doubters have marshaled a growing body of evidence for another culprit; the enormous volcanic eruptions that produced the Deccan Traps formation in India. The skeptics recently presented their case at a meeting of the Geological Society of America in Vancouver, Canada, on October 19.

The dinosaurs are the most well-known victims of the mass extinction event that ended the Cretaceous period. The extinction claimed almost all large vertebrates on land, at sea, or in the air, as well as numerous species of insects, plants, and aquatic invertebrates. At least 75% of all species then existing on Earth vanished in a short span in relation to the geological timescale of millions of years. The disaster is one of five global mass extinction events that paleontologists have identified over the tenure of complex life on Earth.

The hypothesis that the terminal Cretaceous extinction was caused by a cosmic impact has been the most popular explanation of this catastrophe among earth scientists and the public for several decades. It was proposed in 1980 by the father and son team of Luis and Walter Alvarez and their collaborators. The Alvarez team’s main line of evidence that an impact happened was an enrichment of the metal iridium in sediments dating roughly to the end of the Cretaceous. Iridium is rare in Earth’s crust, but common in meteorites. The link between iridium and impacts was first established by studies of the samples returned by the Apollo astronauts from the Moon.

Over the ensuing decades, evidence of an impact accumulated. In 1991, a team of scientists led by Dr. Alan Hildebrand of the Department of Planetary Sciences at Arizona University, published evidence of a gigantic buried impact crater, called Chicxulub, in Mexico. Other investigators found evidence of materials ejected by the impact, including glass spherules in Haiti and Mexico. Supporters of the impact hypothesis believe that vast amounts of dust hurtled into the stratosphere would have plunged the surface of the planet into the darkness and bitter cold of an “impact winter” lasting for at least months, and perhaps decades. Global ecosystems would have collapsed and mass extinction ensued. But, they’ve had a harder time finding evidence for these consequences than for the impact itself.

Doubters of the Alvarez hypothesis don’t question the ‘smoking gun’ evidence that an impact happened near the end of the Cretaceous, but they don’t think it was the main cause of the extinctions. For one thing, inferring the exact time of the impact from its putative geological traces has proved difficult. Dr. Gerta Keller of the Department of Geosciences of Princeton University, a prominent skeptic of the Alvarez hypothesis, has questioned estimates that make the impact and the extinctions simultaneous. Analyzing core samples taken from the Chicxulub crater, and glass spherule containing deposits in northeastern Mexico, she concludes that the Chicxulub impact preceded the mass extinction by 120,000 years and had little consequence for the fossil record of life in the geological formations which she studied. Of the five major mass extinction events in Earth’s history, she noted in a 2011 paper, none other than the terminal Cretaceous event has ever been even approximately associated with an impact. Several other large impact craters besides Chicxulub have been well studied by geologists and none is associated with fossil evidence of extinctions. On the other hand, four of the five major mass extinctions appear to have some connection with volcanic eruptions.

Keller and other Alvarez skeptics look to a major volcanic event that occurred towards the end of the Cretaceous as an alternate primary cause of the extinction. The Deccan Traps formation in central India is a plateau consisting of multiple layers of solidified lava 3500 m thick. Today, it extends over an area larger than all of France. It was once three times that large. It was formed in a series of three volcanic outbursts that may have been among the largest in Earth’s history. At the October conference, Dr. Theirry Adatte of the Institute of Earth Sciences at the University of Lausanne in France presented evidence that the second of these outbursts was by far the largest, and occurred over a period of 250,000 years prior to the end of the Cretaceous. During this period, 80% of the total lava thickness of the Deccan formation was deposited. The eruptions produced lava flows that may be the longest on Earth, extending more than 1500 km.

The blue area indicates the Deccan Traps, a massive remnant of immense volcanic eruptions at the end of the Cretaceous period that may have contributed to the terminal Cretaceous extinction. Credit: CamArchGrad, English Wikipedia Project
The blue area indicates the Deccan Traps, a massive remnant of immense volcanic eruptions at the end of the Cretaceous period that may have contributed to the terminal Cretaceous extinction. Credit: CamArchGrad, English Wikipedia Project

To illustrate the likely environmental consequences of such a super-eruption, Adatte invoked the worst volcanic catastrophe in human history. Over eight months from 1783-84 a major eruption in Laki, Iceland, deposited 14.3 square kilometers of lava and emitted an estimated 122 megatons of toxic sulfur dioxide into the atmosphere. About a quarter of the people and half of the livestock in Iceland died. Across Europe the sky was darkened by a pall of haze, and acid rain fell. Europe and America experienced the most severe winter in history and global climate was disrupted for a decade. Millions of people died from the resulting drought and famine. The Laki incident was nonetheless miniscule by comparison with the second Deccan Traps outburst, which produced 1.5 million square kilometers of lava and an estimated 6,500- 17,000 gigatons of sulfur dioxide.

The Deccan Traps eruptions would also have emitted immense quantities of carbon dioxide. Carbon dioxide is a heat trapping greenhouse gas responsible for the oven-like temperatures of the planet Venus. It is released by the burning of fossil fuels and plays a major role in human-caused global warming on Earth. Thus Geller surmised that the Deccan Traps eruptions could have produced both periods of intense cold due to sulfur dioxide haze, and intense heat due to carbon dioxide induced global warming.

At the October conference she presented the results of her studies of geological formations in Tunisia that preserved a high resolution record of climate change during the time of the main pulse of Deccan Traps volcanic activity. Her evidence shows that near the onset of the 250,000 year pulse, there was a ‘hyperthermal’ period of rapid warming that increased ocean temperatures by 3-4 degrees Celsius. She claimed that temperatures remained elevated through the pulse culminating with a second ‘hyperthermal’ warming of the oceans by an additional 4-5 degrees Celsius. This second hyperthermal warming occurred within a 10,000 year period of mega-eruptions, which corresponded with the terminal Cretaceous extinction. The Chicxulub impact occurred during the 250,000 year pulse, but well prior to the extinctions and the hyperthermal event.

The debate over the relative importance of the Chicxulub impact and the Deccan Trap volcanoes in producing the terminal Cretaceous extinction isn’t over. In May of this year, a team headed by Dr. Johan Vellekoop at the Department of Earth Sciences at Ulrecht University in the Netherlands published evidence of a geologically brief episode of cooling which they claim as the first direct evidence of an “impact winter”. Whatever the outcome of the debate, it seems clear that the end of the Cretaceous, with its super-volcanoes and giant impacts, was not a good time for life on Earth.

References and Further Reading:
J. Coffey (2009) The Asteroid that Killed the Dinosaurs, Universe Today.

I. O’Neill (2009) (Were the Dinosaurs Really Wiped Out by an Asteroid? Possibly Not (Update), Universe Today.

G. Keller (2012), The Cretaceous-Tertiary Mass Extinction, Chicxulub Impact, and Deccan Volcanism, Earth and Life, J.A. Talent, Editor, Springer Science and Business media.

E. Klemetti (2013) Local and global impacts of the 1783-84 Laki eruption in Iceland, Wired Science Blogs/Eruptions

J. Vellekoop et al. (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary, Proceedings of the National Academy of Sciences USA, 111(2) p. 7537-7541.

Asteroid That Dwarfed Dinosaur-Killer Punched Earth 3 Billion Years Ago, Study Says

A graphic comparing the asteroid that killed the dinosaurs, with an asteroid newly believed to have struck the Earth 3.26 billion years ago. Below the asteroids is a graphic showing how big the craters would have been. Credit: American Geophysical Union

Early in Earth’s history, a killer asteroid smashed a hole in our planet about 300 miles (500 kilometers) wide, which is greater than the driving distance between Washington and New York City, a new study says. The space rock set off a cycle of destruction that sounds like your worst nightmares.

That one reported collision 3.26 billion years ago made the Earth tremble, created earthquakes and set off tsunamis that were thousands of meters deep, according to a new research team. The size of this estimated destructor? About 37 kilometers (23 miles) wide, or about three times as wide as the asteroid that killed the dinosaurs 65 million years ago.

“We knew it was big, but we didn’t know how big,” stated co-author Donald Lowe, a geologist at Stanford University and a co-author of the study, of the asteroid.

Evidence of the huge impact — the first one mapped from so long ago — comes from an examination of the Barberton Greenstone Belt in South Africa, which shows rocks and “crustal fractures” that are consistent with the idea of a giant impact, the scientists said. (The asteroid struck the Earth thousands of miles away, but where isn’t known.)

An satellite view of Barberton greenstone around the town of Barberton, South Africa. Credit: NASA Earth Observatory/Landsat/U.S. Geological Survey/Jesse Allen
An satellite view of Barberton greenstone around the town of Barberton, South Africa. Credit: NASA Earth Observatory/Landsat/U.S. Geological Survey/Jesse Allen

If confirmed, the asteroid could have been one of many that smacked Earth during what is known as the Late Heavy Bombardment period, which pummeled the solar system with debris between 3 billion and 4 billion years ago.

This one event could even have changed the way the Earth formed, the scientists added. For example, it could have been broken up our planet’s crust and tectonics, creating the plate tectonics we are familiar with today.

You can read more about the research in the journal Geochemistry, Geophysics, Geosystems. It was led by Norman Sleep, a geophysicist at Stanford University.

Source: American Geophysical Union

Did Life On Earth As We Know It Come From ‘Geological Life’?

Hydrothermal vents deep in Earth's oceans. Could similar types of vents power the transport of silica and other materials out from Enceladus? Credit: NOAA
Hydrothermal vents deep in Earth's oceans. Could similar types of vents power the transport of silica and other materials out from Enceladus? Credit: NOAA

When it comes to life on Earth, we’re not sure if it came from the outside (transported by comets) or on the inside. A new theory focuses on the “interior ” theory, saying that microbes could have evolved from non-living matter such as chemical compounds in minerals and gases.

“Before biological life, one could say the early Earth had ‘geological life’. It may seem unusual to consider geology, involving inanimate rocks and minerals, as being alive. But what is life?” stated Terry Kee, a biochemist at the University of Leeds in the United Kingdom who participated in the research.

“Many people have failed to come up with a satisfactory answer to this question. So what we have done instead is to look at what life does, and all life forms use the same chemical processes that occur in a fuel cell to generate their energy.”

When thinking of a car, the research team says, they point out that fuel cells create electrical energy through the reaction of fuels and oxidants. This is called a “redox reaction”, which takes place when a molecule loses electrons and another molecule gains them.

In plants, photosynthesis creates electrical energy when carbon dioxide breaks down into sugars, and water is oxidized into molecular oxygen. (By contrast, humans oxidize sugars into carbon dioxide and break down the oxygen into water  — another electrical energy process.)

Now, let’s go a step further. Hydrothermal vents are hot geysers on the sea floor that are often considered an interesting spot for life studies. They host “extremophiles”, or forms of life that exist (“thrive” is the better word) despite a harsh environment. The researchers say these vents are a sort of “environmental fuel cell” because electrical energy is generated from redox reactions between seawater oxidants and hydrothermal vents.

And this is where the new research comes in. At the University of Leeds and NASA’s Jet Propulsion Laboratory, the researchers put iron and nickel in the place of the usual “platinum catalysts” found in fuel cells and electrical experiments.

Rendering showing the location and size of water vapor plumes coming from Europa's south pole.
Rendering showing the location and size of water vapor plumes coming from Europa’s south pole.

While the power was reduced, electricity did indeed flow. And while researchers still don’t know how non-life could have transformed into life, they say this is another step to understanding what happened. What’s more, it could be useful for future trips to other planets.

“These experiments simulate the electrical energy produced in geological systems, so we can also use this to simulate other planetary environments with liquid water, like Jupiter’s moon Europa or early Mars,” stated Laura Barge, a researcher from the NASA Astrobiology Institute* who led the research.

“With these techniques we could actually test whether any given hydrothermal system could produce enough energy to start life, or even, provide energetic habitats where life might still exist and could be detected by future missions.”

You can read about the research in the journal Astrobiology.

Source: University of Leeds

Disclosure: The author of this article is also a freelancer for the NASA Astrobiology Institute.

Astronomers See Snow … In Space!

Artist's conception of the snow line in TW Hydrae. Credit: Bill Saxton/Alexandra Angelich, NRAO/AUI/NSF

There’s an excellent chance of frost in this corner of the universe: astronomers have spotted a “snow line” in a baby solar system about 175 light-years away from Earth. The find is cool (literally and figuratively) in itself. More importantly, however, it could give us clues about how our own planet formed billions of years ago.

“[This] is extremely exciting because of what it tells us about the very early period in the history of our own solar system,” stated Chunhua Qi, a researcher with the Harvard-Smithsonian Center for Astrophysics who led the research.

“We can now see previously hidden details about the frozen outer reaches of another solar system, one that has much in common with our own when it was less than 10 million years old,” he added.

The real deal enhanced-color picture of TW Hydrae is below, courtesy of a newly completed telescope: the Atacama Large Millimeter/submillimeter Array in Chile. It is designed to look at grains and other debris around forming solar systems. This snow line is huge, stretching far beyond the equivalent orbit of Neptune in our own solar system. See the circle? That’s Neptune’s orbit. The green stuff is the snow line. Look just how far the green goes past the orbit.

The carbon monoxide line as seen by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. The circle represents the equivalent orbit of Neptune when comparing it to our own solar system. Credit: Karin Oberg, Harvard University/University of Virginia
The carbon monoxide line on TW Hydrae as seen by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. The circle represents the equivalent orbit of Neptune when comparing it to our own solar system. Credit: Karin Oberg, Harvard University/University of Virginia

Young stars are typically surrounded by a cloud of gas and debris that, astronomers believe, can in many cases form into planets given enough time. Snow lines form in young solar systems in areas where the heat of the star isn’t enough to melt the substance. Water is the first substance to freeze around dust grains, followed by carbon dioxide, methane and carbon monoxide.

It’s hard to spot them: “Snow lines form exclusively in the relatively narrow central plane of a protoplanetary disk. Above and below this region, stellar radiation keeps the gases warm, preventing them from forming ice,” the astronomers stated. In areas where dust and gas are more dense, the substances are insulated and can freeze — but it’s difficult to see the snow through the gas.

In this case, astronomers were able to spot the carbon monoxide snow because they looked for diazenylium, a molecule that is broken up in areas of carbon monoxide gas. Spotting it is a “proxy” for spots where the CO froze out, the astronomers said.

Here are some more of the many reasons this is exciting to astronomers:

  • Snow could help dust grains form faster into rocks and eventually, planets because it coats the grain surface into something more stickable;
  • Carbon monoxide is a requirement to create methanol, considered a building block of complex molecules and life;
  • The snow was actually spotted with only a small portion of ALMA’s 66 antennas while it was still under construction. Now that ALMA is complete, scientists are already eager to see what the telescope will turn up the next time it gazes at the system.

Source: National Radio Astronomy Observatory

 

Russian Asteroid Explosion and Past Impactors Paint a Potentially Grim Future for Earth

Impactors strike during the reign of the dinosaurs (image credit: MasPix/devianart)

The recent meteor explosion over Chelyabinsk brought to the forefront a topic that has worried astronomers for years, namely that an impactor from space could cause widespread human fatalities.  Indeed, the thousand+ injured recently in Russia was a wake-up call. Should humanity be worried about impactors? “Hell yes!” replied astronomer Neil deGrasse Tyson to CNN’s F. Zakharia .

The geological and biological records attest to the fact that some impactors have played a major role in altering the evolution of life on Earth, particularly when the underlying terrestrial material at the impact site contains large amounts of carbonates and sulphates. The dating of certain large impact craters (50 km and greater) found on Earth have matched events such as the extinction of the Dinosaurs (Hildebrand 1993, however see also G. Keller’s alternative hypothesis).  Ironically, one could argue that humanity owes its emergence in part to the impactor that killed the Dinosaurs.

The Manicouagan impact crater in Quebec, Canada (image credit: NASA)
More than a dozen known impactors created 50 km sized craters (and larger) on Earth. One such example is the Manicouagan crater in Quebec, Canada.  The crater is 215 million years old, and exhibits an 85 km diameter (image credit: NASA).

Only rather recently did scientists begin to widely acknowledge that sizable impactors from space strike Earth.

“It was extremely important in that first intellectual step to recognize that, yes, indeed, very large objects do fall out of the sky and make holes in the ground,” said Eugene Shoemaker. Shoemaker was a co-discoverer of Shoemaker-Levy 9, which was a fragmented comet that hit Jupiter in 1994 (see video below).

Hildebrand 1993 likewise noted that, “the hypothesis that catastrophic impacts cause mass extinctions has been unpopular with many geologists … some geologists still regard the existence of ~140 known impact craters on the Earth as unproven despite compelling evidence to the contrary.”

Beyond the asteroid that struck Mexico 65 million years ago and helped end the reign of the dinosaurs, there are numerous lesser-known terrestrial impactors that also appear destructive given their size. For example, at least three sizable impactors struck Earth ~35 million years ago, one of which left a 90 km crater in Siberia (Popigai). At least two large impactors occurred near the Jurassic-Cretaceous boundary (Morokweng and Mjolnir), and the latter may have been the catalyst for a tsunami that dwarfed the recent event in Japan (see also the simulation for the tsunami generated by the Chicxulub impactor below).

Glimsdal et al. 2007 note, “it is clear that both the geological consequences and the tsunami of an impact of a large asteroid are orders off magnitude larger than those of even the largest earthquakes recorded.”

However, in the CNN interview Neil deGrasse Tyson remarked that we’ll presumably identify the larger impactors ahead of time, giving humanity the opportunity to enact a plan to (hopefully) deal with the matter.   Yet he added that often we’re unable to identify smaller objects in advance, and that is problematic.  The meteor that exploded over the Urals a few weeks ago is an example.

Sketch of the ensuing Tsunami caused by an impactor from Space (image credit: binouse49/devianart).
An artist’s sketch of a tsunami which can be potentially generated by an asteroid/comet impactor (image credit: binouse49/deviantart).

In recent human history the Tunguska event, and the asteroid that recently exploded over Chelyabinsk, are reminders of the havoc that even smaller-sized objects can cause. The Tunguska event is presumed to be a meteor that exploded in 1908 over a remote forested area in Siberia, and was sufficiently powerful to topple millions of trees (see image below).  Had the event occurred over a city it may have caused numerous fatalities.

Mark Boslough, a scientist who studied Tunguska noted, “That such a small object can do this kind of destruction suggests that smaller asteroids are something to consider … such collisions are not as improbable as we believed. We should be making more efforts at detecting the smaller ones than we have till now.” 

Neil deGrasse Tyson hinted that humanity was rather lucky that the recent Russian fireball exploded about 20 miles up in the atmosphere, as its energy content was about 30 times larger than the Hiroshima explosion.  It should be noted that the potential negative outcome from smaller impactors increases in concert with an increasing human population.

The Tungunska impactor is thought to have felled millions of trees in Siberia in 1908 (image credit: Kulik).
In 1908 the Tunguska impactor toppled millions of trees in a rather remote part of Siberia (image credit: Kulik).  Had the object exploded over a city, the effects may have been catastrophic.

So how often do large bodies strike Earth, and is the next catastrophic impactor eminent? Do such events happen on a periodic basis? Scientists have been debating those questions and no consensus has emerged. Certain researchers advocate that large impactors (leaving craters greater than 35 km) strike Earth with a period of approximately 26-35 million years.

The putative periodicity  (i.e., the Shiva hypothesis) is often linked to the Sun’s vertical oscillations through the plane of the Milky Way as it revolves around the Galaxy, although that scenario is likewise debated (as is many of the assertions put forth in this article). The Sun’s motion through the denser part of the Galactic plane is believed to trigger a comet shower from the Oort Cloud. The Oort Cloud is theorized to be a halo of loosely-bound comets that encompasses the periphery of the Solar System. Essentially, there exists a main belt of asteroids between Mars and Jupiter, a belt of comets and icy bodies located beyond Neptune called the Kuiper belt, and then the Oort Cloud.  A lower-mass companion to the Sun was likewise considered as a perturbing source of Oort Cloud comets (“The Nemesis Affair” by D. Raup).

A belt of comets called the Oort Cloud is theorized to encircle the Solar system  (image credit: NASA/JPL).
A halo of comets designated the Oort Cloud is theorized to encircle the periphery of the Solar System, and reputedly acts as a reservoir for objects that may become terrestrial impactors (image credit: NASA/JPL).

The aforementioned theory pertains principally to periodic comets showers, however, what mechanism can explain how asteroids exit their otherwise benign orbits in the belt and enter the inner solar system as Earth-crossers? One potential (stochastic) scenario is that asteroids are ejected from the belt via interactions with the planets through orbital resonances.  Evidence for that scenario is present in the image below, which shows that regions in the belt coincident with certain resonances are nearly depleted of asteroids.  A similar trend is seen in the distribution of icy bodies in the Kuiper belt, where Neptune (rather than say Mars or Jupiter) may be the principal scattering body.  Note that even asteroids/comets not initially near a resonance can migrate into one by various means (e.g., the Yarkovsky effect).

Indeed, if an asteroid in the belt were to breakup (e.g., collision) near a resonance, it would send numerous projectiles streaming into the inner solar system.  That may help partly explain the potential presence of asteroid showers (e.g., the Boltysh and Chicxulub craters both date to near 65 million years ago).   In 2007, a team argued that the asteroid which helped end the reign of the Dinosaurs 65 million years ago entered an Earth-crossing orbit via resonances. Furthermore, they noted that asteroid 298 Baptistina is a fragment of that Dinosaur exterminator, and it can be viewed in the present orbiting ~2 AU from the Sun.  The team’s specific assertions are being debated, however perhaps more importantly: the underlying transport mechanism that delivers asteroids from the belt into Earth-crossing orbits appears well-supported by the evidence.

Kirkwood Gaps, histogram of asteroids as a function of their average distance from the Sun.  Regions deplete of asteroids are called Kirkwood Gaps, and those bodies may have been escavated from the main belt owing to orbital resonances (image credit: Alan Chamberlain, JPL/Caltech).
A histogram featuring the number of asteroids as a function of their average distance from the Sun. Regions depleted of asteroids are often coincident with orbital resonances, the latter being a mechanism by which objects in the belt can be scattered into enter Earth-crossing orbits (image credit: Alan Chamberlain, JPL/Caltech).

Thus it appears that the terrestrial impact record may be tied to periodic and random phenomena, and comet/asteroid showers can stem from both.  However, reconstructing that terrestrial impact record is rather difficult as Earth is geologically active (by comparison to the present Moon where craters from the past are typically well preserved).  Thus smaller and older impactors are undersampled.  The impact record is also incomplete since a sizable fraction of impactors strike the ocean.  Nevertheless, an estimated frequency curve for terrestrial impacts as deduced by Rampino and Haggerty 1996 is reproduced below.  Note that there is considerable uncertainty in such determinations, and the y-axis in the figure highlights the “Typical Impact Interval”.

Estimated frequency of impacts as a function of age, diameter, and energy yield.  Results assume an impact speed of 20 km/s and density of 3 g/cm^3 (image credit: Fig. 2 from Rampino & Haggerty 1996, NASA ADS/Springer).
Estimated frequency of impactors as a function of diameter, energy yield, and typical impact interval. Results assume an impact speed of 20 km/s and density of 3 g/cm^3 (image credit: Fig. 2 from Rampino and Haggerty 1996, NASA ADS/Springer).

In sum, as noted by Eugene Shoemaker, large objects do indeed fall out of the sky and cause damage. It is unclear when in the near or distant future humanity will be forced to rise to the challenge and counter an incoming larger impactor, or again deal with the consequences of a smaller impactor that went undetected and caused human injuries (the estimated probabilities aren’t reassuring given their uncertainty and what’s in jeopardy).  Humanity’s technological progress and scientific research must continue unabated (and even accelerated), thereby affording us the tools to better tackle the described situation when it arises.

Is discussion of this topic fear mongering and alarmist in nature? The answer should be obvious given the fireball explosion that happened recently over the Ural mountains, the Tunguska event, and past impactors.  Given the stakes excessive vigilance is warranted.

Fareed Zakharia’s discussion with Neil deGrasse Tyson is below.

The interested reader desiring additional information will find the following pertinent: the Earth Impact Database, Hildebrand 1993Rampino and Haggerty 1996Stothers et al. 2006, Glimsdal et al. 2007Bottke et al. 2007Jetsu 2011, G. Keller’s discussion concerning the end of the Dinosaurs, “T. rex and the Crater of Doom” by W. Alvarez, “The Nemesis Affair” by D. Raup, “Collision Earth! The Threat from Outer Space” by P. Grego.  **Note that there is a diverse spectrum of opinions on nearly all the topics discussed here, and our understanding is constantly evolving.  There is much research to be done.