In the current (heated) debate of what constitutes a planet, it seems everyone can agree at least one thing: The current definition put forth by the International Astronomical Union is actually quite vague and it really only applies to our own Solar System. So while the definition is unclear at best in our own neighborhood, it also doesn’t provide a framework for classifying the thousands of exo-worlds that are being discovered on almost a weekly basis.
Since math has been dubbed “the language of the Universe” it seems rather fitting and logical to use arithmetic to help in framing a better definition for planethood.
This week, UCLA professor Jean-Luc Margot has proposed a simple mathematical test that can be used to separate planets from other bodies like dwarf planets and minor planets. He says his new system is easy.
“One should not need a teleportation device to decide whether a newly discovered object is a planet,” Margot said.
The new approach would use estimates of the star’s mass and the planet’s mass and orbital period. Since the IAU’s definition is based primarily on the ability of a planet to “clear its orbit,” (whether it can accumulate or dominate small bodies in its orbital neighborhood), Margot’s test narrows this down to a specific timeframe of determining whether a body can clear a specific region around its orbit.
“A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence,” Margot writes in his paper. “This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets.”
Under these criteria, all 8 planets and all classifiable exoplanets would be classified as planets. It also keeps the distinction between planets and dwarf planets. Some have pointed out that Margot’s criteria would make our Moon a planet. But, as Margot told Universe Today, that’s not necessarily so. “It really depends on how the IAU decides to define satellites and if or how they decide to define double planets,” he said.
Margot says his definition would be useful in generalizing and simplifying the definition of a planet, and that the information for applying this for exoplanets is easily obtained with Earth- or space-based telescopes.
“The disparity between planets and non-planets is striking,” Margot said. “The sharp distinction suggests that there is a fundamental difference in how these bodies formed, and the mere act of classifying them reveals something profound about nature.”
Margot also found that bodies that can clear their orbits — and therefore qualify as planets — are typically spherical.
“Because a quantitative orbit-clearing criterion can be applied to all planets and exoplanets,” Margot writes, “it is possible to extend the 2006 IAU planet definition to stars other than the Sun and to remove any possible ambiguity about what it means to clear an orbital zone.”
Margot presented his proposal at the annual meeting of the AAS’s Division for Planetary Sciences. It is not known whether the new approach will be considered by the IAU.
Astronomers at the SETI institute (search for extraterrestrial intelligence) have reported their findings after monitoring the reputedmegastructure-encompassed star KIC 8462852. No significant radio signals were detected in observations carried out from the Allen Telescope Array between October 15-30th (nearly 12 hours each day). However, there are caveats, namely that the sensitivity and frequency range were limited, and gaps existed in the coverage (e.g., between 6-7 Ghz).
Lead author Gerald Harp and the SETI team discussed the various ideas proposed to explain the anomalous Kepler brightness measurements of KIC 8462852, “The unusual star KIC 8462852 studied by the Kepler space telescope appears to have a large quantity of matter orbiting quickly about it. In transit, this material can obscure more than 20% of the light from that star. However, the dimming does not exhibit the periodicity expected of an accompanying exoplanet.” The team went on to add that, “Although natural explanations should be favored; e.g., a constellation of comets disrupted by a passing star (Boyajian et al. 2015), or gravitational darkening of an oblate star (Galasyn 2015), it is interesting to speculate that the occluding matter might signal the presence of massive astroengineering projects constructed in the vicinity of KIC 8462582 (Wright, Cartier et al. 2015).”
One such megastructure was discussed in a famous paper by Freeman Dyson (1960), and subsequently designated a ‘Dyson Sphere‘. In order to accommodate an advanced civilisation’s increasing energy demands, Dyson remarked that, “pressures will ultimately drive an intelligent species to adopt some such efficient exploitation of its available resources. One should expect that, within a few thousand years of its entering the stage of industrial development, any intelligent species should be found occupying an artificial biosphere which completely surrounds its parent star.” Dyson further proposed that a search be potentially conducted for artificial radio emissions stemming from the vicinity of a target star.
The SETI team summarized Dyson’s idea by noting that Solar panels could serve to capture starlight as a source of sustainable energy, and likewise highlighted that other, “large-scale structures might be built to serve as possible habitats (e.g., “ring worlds”), or as long-lived beacons to signal the existence of such civilizations to technologically advanced life in other star systems by occluding starlight in a manner not characteristic of natural orbiting bodies (Arnold 2013).” Indeed, bright variable stars such as the famed Cepheid stars have been cited as potential beacons.
The Universe Today’s Fraser Cain discusses a ‘Dyson Sphere‘.
If a Dyson Sphere encompassed the Kepler catalogued star, the SETI team were seeking in part to identify spacecraft that may service a large structure and could be revealed by a powerful wide bandwidth signal. The team concluded that their radio observations did not reveal any significant signal stemming from the star (e.g., Fig 1 below). Yet as noted above, the sensitivity was limited to above 100 Jy and the frequency range was restricted to 1-10 Ghz, and gaps existed in that coverage.
What is causing the odd brightness variations seen in the Kepler star KIC 8462852? Were those anomalous variations a result of an unknown spurious artefact from the telescope itself, a swath of comets temporarily blocking the star’s light, or perhaps something more extravagant. The latter should not be hailed as the de facto source simply because an explanation is not readily available. However, the intellectual exercise of contemplating the technology advanced civilisations could construct to address certain needs (e.g., energy) is certainly a worthy venture.
Here’s a great new poster showing over 500 extrasolar planets (about one quarter of the total) that have been discovered since 1988. This visualization, created by graphic artist and writer Martin Vargic from Slovakia, is based on the estimated radius and temperature of the planets, however other factors, such as density, age or stellar metallicity were also taken into consideration. All the various known classes of exoplanets are shown on the graphic, such as super-Earths, hot Jupiters, hot Neptunes, water worlds, gas dwarfs or superdense diamond planets.
There are lots of ways to plot exoplanets. On the Exoplanet Archive website, you can see plots for exoplanet mass vs. period, temperature, number of exoplanets discovered by year (2014 was a banner year), as well as how the planets were discovered (radial velocity, microlensing, timing variations and orbital brightness modulation).
Previously, we’ve featured other exoplanet visualizations, such as one of Kepler’s transiting exoplanets and exoplanet candidates, plus this cool video visualization of the planetary systems discovered by Kepler that have more than one transiting object, created by Daniel Fabrycky from the Kepler spacecraft science team:
Ever wonder what happens on the surface of other stars?
An amazing animation was released this week by astronomers at the Leibniz Institute for Astrophysics (AIP) in Potsam Germany, showing massive sunspot activity on the variable star XX Trianguli (HD 12545). And while ‘starspot’ activity has been seen on this and other stars before, this represents the first movie depicting the evolution of stellar surface activity beyond our solar system.
“We can see our first application as a prototype for upcoming stellar cycle studies, as it enables the prediction of a magnetic-activity cycle on a dramatically shorter timescale than usual,” says Leibniz Institute for Astrophysics Potsdam astronomer Andreas Kunstler in a recent press release.
The images were the result of a long term analysis of the star carried out using the twin STELLA (STELLar Activity) robotic telescopes based on Tenerife in the Canary Islands. The spectroscopic data was gathered over a period of six years, and this video demonstrates that, while other stars do indeed have sunspot cycles similar to our Sun, those of massive stars such as XX Tri are much more intense than any we could imagine here in our own solar system.
Even the largest and closest of stars have a minuscule angular diameter –measured in milliarcseconds (mas, our 1/1,000ths of an arc second)—in size. For example, we know from lunar occultation timing experiments that the bright star Antares at 550 light years distant and 5 times the radius of our Sun is about 41 mas in size. At an estimated 910 to 1,500 light years distant and 10 times the radius of our Sun, XX Tri is probably comparable, at about 20 mas in size.
That’s tiny from our perspective, though the massive starspot depicted must be truly gigantic to see up close.
To image something on that scale, astronomers use a technique known as Doppler tomography gathered from high-resolution spectra. Over said six year span covering a period from July 2006 to April 2012, 667 viable spectra were gathered, covering 86 total rotational periods for the star. Incidentally, that’s not much longer than the average equatorial rotational period of our Sun—remember, as a ball of gas, the rotational period of our Sun varies with solar latitude—at about 22 days.
The views compiled by the team show a pole facing, Mercator projection, and a spherical ‘real view’ of the star. Of course, to see XX Tri up close would be amazing, if a not a little intimidating with those massive, angry spots dappling its surface.
Watch the animation, and you can see the changing morphology of the spots, as they decay, merge and defuse again. Just how permanent is that massive pole spot? Why are we seeing spots across the pole of a star like XX Tri at all, something we never see on the Sun? Do other stars follow something analogous to Spörer’s Law and their own version of the 11-year sunspot cycle that we see on Sol?
Capabilities such as those demonstrated by STELLA may soon crack these questions wide open. Composed of two 1.2 meter robotic telescopes jointly operated by the Institute for Astrophysics at Potsdam and the Instituto de Astrofísica de Canarias (IAC), STELLA combines the capability of a wide-field photometric imager with that of a high-resolution spectrograph, ideal for this sort of analysis of remote stellar surfaces.
Hey, here’s a crazy idea: turn STELLA loose on KIC 8462852 and see if the hypothesized ‘exo-comets’ or ‘alien mega-structures’ turn up… though it weighs in much smaller than XX Tri at 1.4x solar masses, KIC 8462852 is also about 1,400 light years distant, perhaps just doable using high resolution spectroscopy…
Want to see XX Tri for yourself? An RS Canum Venaticorum variable orange giant star (spectral type K0 III) located in the constellation of Triangulum the Triangle, XX Tri shines at magnitude +8.5 and varies over about half a magnitude in brightness. Its coordinates are:
Right Ascension: 2 hours 3 minutes 47 seconds
Declination: 35 North 35 minutes 29 seconds
The more we learn about other stars, the more we understand about how to live with our very own sometimes placid, sometimes tempestuous host star.
Does XX Trianguli look familiar? That might be because it was featured as the Astronomy Picture of the Day as ‘imaged’ by the Coude Feed Telescope on Kitt Peak way back when on November 2nd, 2003.
“Bizarre.” “Interesting.” “Giant transit”. That were the reactions of Planet Hunters project volunteers when they got their first look at the light curve of the otherwise normal sun-like star KIC 8462852 nearly.
Of the more than 150,000 stars under constant observation during the four years of NASA’s primary Kepler Mission (2009-2013), this one stands alone for the inexplicable dips in its light. While almost certainly naturally-caused, some have suggested we consider other possibilities.
You’ll recall that the orbiting Kepler observatory continuously monitored stars in a fixed field of view focused on the constellations Lyra and Cygnus hoping to catch periodic dips in their light caused by transiting planets. If a drop was seen, more transits were observed to confirm the detection of a new exoplanet.
And catch it did. Kepler found 1,013 confirmed exoplanets in 440 star systems as of January 2015 with 3,199 unconfirmed candidates. Measuring the amount of light the planet temporarily “robbed” from its host star allowed astronomers to determine its diameter, while the length of time between transits yielded its orbital period.
Volunteers with the Planet Hunters project, one of many citizen science programs under the umbrella of Zooniverse, harness the power of the human eye to examine Kepler light curves (a graph of a star’s changing light intensity over time), looking for repeating patterns that might indicate orbiting planets. They were the first to meet up with the perplexing KIC 8462852.
This magnitude +11.7 star in Cygnus, hotter and half again as big as the Sun, showed dips all over the place. Around Day 800 during Kepler’s run, it faded by 15% then resumed a steady brightness until Days 1510-1570, when it underwent a whole series of dips including one that dimmed the star by 22%. That’s huge! Consider that an exo-Earth blocks only a fraction of a percent of a star’s light; even a Jupiter-sized world, the norm among extrasolar planets, soaks up about a percent.
Exoplanets also show regular, repeatable light curves as they enter, cross and then exit the faces of their host stars. KIC 8462852’s dips are wildly a-periodic.
Whatever’s causing the flickering can’t be a planet. With great care, the researchers ruled out many possibilities: instrumental errors, starspots (like sunspots but on other stars), dust rings seen around young, evolving stars (this is an older star) and pulsations that cover a star with light-sucking dust clouds.
What about a collision between two planets? That would generate lots of material along with huge clouds of dust that could easily choke off a star’s light in rapid and irregular fashion.
A great idea except that dust absorbs light from its host star, warms up and glows in infrared light. We should be able to see this “infrared excess” if it were there, but instead KIC 8462852 beams the expected amount of infrared for a star of its class and not a jot more. There’s also no evidence in data taken by NASA’s Wide-field Infrared Survey Explorer (WISE) several years previously that a dust-releasing collision happened around the star.
After examining the options, the researchers concluded the best fit might be a shattered comet that continued to fragment into a cascade of smaller comets. Pretty amazing scenario. There’s still dust to account for, but not as much as other scenarios would require.
Being fragile types, comets can crumble all by themselves especially when passing exceptionally near the Sun as sungrazing comets are wont to do in our own Solar System. Or a passing star could disturb the host star’s Oort comet cloud and unleash a barrage of comets into the inner stellar system. It so happens that a red dwarf star lies within about 1000 a.u. (1000 times Earth’s distance from the Sun) of KIC 8462852. No one knows yet whether the star orbits the Kepler star or happens to be passing by. Either way, it’s close enough to get involved in comet flinging.
So much for “natural” explanations. Tabetha Boyajian, a postdoc at Yale, who oversees the Planet Hunters and the lead author of the paper on KIC 8462852, asked Jason Wright, an assistant professor of astronomy at Penn State, what he thought of the light curves. “Crazy” came to mind as soon he set eyes on them, but the squiggles stirred a thought. Turns out Wright had been working on a paper about detecting transiting megastructures with Kepler.
In a recent blog, he writes: “The idea is that if advanced alien civilizations build planet-sized megastructures — solar panels, ring worlds, telescopes, beacons, whatever — Kepler might be able to distinguish them from planets.” Let’s assume our friendly aliens want to harness the energy of their home star. They might construct enormous solar panels by the millions and send them into orbit to beam starlight down to their planet’s surface. Physicist Freeman Dyson popularized the idea back in the 1960s. Remember the Dyson Sphere, a giant hypothetical structure built to encompass a star?
From our perspective, we might see the star flicker in irregular ways as the giant panels circled about it. To illustrate this point, Wright came up with a wonderful analogy:
“The analogy I have is watching the shadows on the blinds of people outside a window passing by. If one person is going around the block on a bicycle, their shadow will appear regularly in time and shape (like a regular transiting planet). But crowds of people ambling by — both directions, fast and slow, big and large — would not have any regularity about it at all. The total light coming through the blinds might vary like — Tabby’s star.”
Even Wright admits that the “alien hypothesis” should be seen as a last resort. But to make sure no stone goes unturned, Wright, Boyajian and several of the Planet Hunters put together a proposal to do a radio-SETI search with the Green Bank 100-meter telescope. In my opinion, this is science at its best. We have a difficult question to answer, so let’s use all the tools at our disposal to seek an answer.
In the end, it’s probably not an alien megastructure, just like the first pulsar signals weren’t sent by LGM-1 (Little Green Men). But whatever’s causing the dips, Boyajian wants astronomers to keep a close watch on KIC 8462852 to find out if and when its erratic light variations repeat. I love a mystery, but answers are even better.
Researchers at the University of Washington’s Virtual Planetary Laboratory have devised a new habitability index for judging how suitable alien planets might be for life, and the top prospects on their list are an Earthlike world called Kepler-442b and a yet-to-be confirmed planet known as KOI 3456.02.
Those worlds both score higher than our own planet on the index: 0.955 for KOI 3456.02 and 0.836 for Kepler-442b, compared with 0.829 for Earth and 0.422 for Mars. The point of the exercise is to help scientists prioritize future targets for close-ups from NASA’s yet-to-be-launched James Webb Space Telescope and other instruments.
Astronomers have detected more than 1,000 confirmed planets and almost 5,000 candidates beyond our solar system, with most of them found by NASA’s Kepler Space Telescope. More than 100 of those have been characterized as potentially habitable, and hundreds more are thought to be waiting in the wings. The Webb telescope is expected to start taking a closer look soon after its scheduled launch in 2018.
“Basically, we’ve devised a way to take all the observational data that are available and develop a prioritization scheme,” UW astronomer Rory Barnes said Monday in a news release, “so that as we move into a time when there are hundreds of targets available, we might be able to say, ‘OK, that’s the one we want to start with.'”
This isn’t the first habitability index to be devised. Traditionally, astronomers focus on how close a particular exoplanet’s mass is to Earth’s, and whether its orbit is in a “Goldilocks zone” where water could exist in liquid form. But in a paper accepted for publication in the Astrophysical Journal, Barnes and his colleagues say their scheme includes other factors such as a planet’s estimated rockiness and the eccentricity of its orbit.
The formula could be tweaked even further in the future. “The power of the habitability index will grow as we learn more about exoplanets from both observations and theory,” said study co-author Victoria Meadows.
Just. Wow. The motion of an alien world, reduced to a looping .gif. We truly live in an amazing age. A joint press release out of the Gemini Observatory and the University of Toronto demonstrates a stunning first: a sequence of direct images showing an exoplanet… in motion.
The world imaged is Beta Pictoris b, about 19 parsecs (63 light years) distant in the southern hemisphere constellation Pictor the Painter’s Easel. The Gemini Planet Imager (GPI), working in concert with the Gemini South telescope based in Chile captured the sequence.
The images span an amazing period of a year and a half, starting in November 2013 and running through April of earlier this year. Beta Pictoris b has an estimated 22 year orbital period… hey, in the year 2035 or so, we’ll have a complete animation of its orbit!
Current estimates place Beta Pictoris b in the 7x Jupiter mass range, about plus or minus 4 Jupiter masses… and yes, the high end of that range is flirting with the lower boundary for a sub-stellar brown dwarf. Several exoplanet candidates blur this line, and we suspect that the ‘what is a planet debate?’ that has plagued low mass worlds will one day soon extend into the high end of the mass spectrum as well.
Beta Pictoris has long been a target for exoplanetary research, as it is known to host a large and dynamic debris disk spanning 4,000 astronomical units across. The host star Beta Pictoris is 1.8 times as massive as our Sun, and 9 times as luminous. Beta Pic is also a very young star, at an estimated age of only 8-20 million years old. Clearly, we’re seeing a very young solar system in the act of formation.
Orbiting its host star 9 astronomical units distant, Beta Pictoris b has an orbit similar to Saturn’s. Place Beta Pictoris b in our own solar system, and it would easily be the brightest planet in the sky.
“The images in the series represent the most accurate measurements of a planet’s position ever made,” says astronomer Maxwell Millar-Blanchaer of the Department of Astronomy and Astrophysics at the University of Toronto in a recent press release. ‘With the GPI, we’re able to see both the disk and the planet at the exact same time. With our combined knowledge of the disk and the planet we’re really able to get a sense of the planetary system’s architecture and how everything interacts.”
A recent paper released in the Astrophysical Journal described observations of Beta Pictoris b made with the Gemini Planet Imager. As with bodies in our own solar system, refinements in the orbit of Beta Pictoris b will enable astronomers to understand the dynamic relationship it has with its local environment. Already, the orbit of Beta Pictoris b appears inclined out of our line of sight in such a way that a transit of the stellar disk is unlikely to occur. This is the case with most exoplanets, which elude the detection hunters such as the Kepler space telescope. As a matter of fact, watching the animation, it looks like Beta Pictoris b will pass behind the occluding disk and out of view of the Gemini Planet Imager in the next few years.
“It’s remarkable that Gemini is not only able to directly image exoplanets but is also capable of effectively making movies of them orbiting their parent star,” Says National Science Foundation astronomy division program director Chris Davis in Monday’s press release. The NSF is one of five international partners that funds the Gemini telescope program. “Beta Pic is a special target. The disk of gas and dust from which planets are currently forming was one of the first observed and is a famous laboratory for the study of young solar systems.”
The Gemini Planet Imager is part of the GPI Exoplanet Survey (GPIES), which discovered its first exoplanet 51 Eridani b just last month. The survey will target 600 stars over the next three years. The current tally of known exoplanets currently sits at 1,958 and counting, with thousands more in the queue courtesy of Kepler awaiting confirmation.
And as new spacecraft such as the Transiting Exoplanet Survey Satellite (TESS) take to orbit in 2018, we wouldn’t be surprised if the tally of exoplanets hits five digits by the end of this decade.
An amazing view of a brave new world in motion. It’s truly a golden age of exoplanetary science, with more exciting discoveries to come!
Scientists say NASA’s Kepler Space Telescope has discovered Earth’s “older, bigger first cousin” – a planet that’s about 60 percent bigger than our own, circling a sunlike star in an orbit that could sustain liquid water and perhaps life.
“Today, Earth is a little bit less lonely, because there’s a new kid on the block,” Kepler data analysis lead Jon Jenkins, a computer scientist at NASA’s Ames Research Center, said Thursday during a NASA teleconference about the find.
The alien world, known as Kepler-452b, is about 1,400 light-years away in the constellation Cygnus – too far away to reach unless somebody perfects interstellar transporters. But its discovery raises the bar yet again in the search for Earth 2.0, which is a big part of Kepler’s mission.
Jenkins said that Kepler-452b has a better than even chance of being a rocky planet (though there’s some question about that). Its size implies that it’s about five times as massive as Earth. He said the planet might be cloudier than Earth and volcanically active, based on geological modeling. Visiting Earthlings would weigh twice as much as they did on Earth – until they walked around for a few weeks and “lost some serious pounds,” he joked.
The planet is about 5 percent farther from its parent star than Earth is from our sun, with a year that lasts 385 days. Its sun is 10 percent bigger and 20 percent brighter than our sun, with the same classification as a G2 dwarf. But Kepler-452b’s star is older than our 4.6 billion-year-old home star – which suggests the cosmic conditions for life could be long-lasting.
“It’s simply awe-inspiring to consider that this planet has spent 6 billion years in the habitable zone of its star, which is longer than the age of the Earth,” Jenkins said. Models for planetary development suggest that Kepler-452b would experience an increasing warming trend and perhaps a runaway greenhouse effect as it aged, he said.
Kepler-452b’s advantages trump the mission’s earlier planetary discoveries. One involved a rocky planet, just a little bigger than Earth, that was found in its parent star’s habitable zone – that is, the kind of orbit where liquid water could exist. But that star, known as Kepler-186, is a shrunken red dwarf rather than a close analog to the sun.
Kepler research scientist Jeff Coughlin said it’s not clear how hospitable a planet circling a red dwarf might be. A rocky planet in the right orbit around a sunlike star is a surer bet. “We’re here on Earth, we know there’s life here,” he said.
Scientists said Kepler-452b is on the target list for the SETI Institute’s search for radio signals from extraterrestrial civilizations, using the Allen Telescope Array in California – but no alien detection has been reported. “So far, the 452b-ians have been coy,” Seth Shostak, the institute’s senior astronomer and director of the Center for SETI Research, told Universe Today in an email.
John Grunsfeld, NASA’s associate administrator for science, characterized the newly announced planet as the “closest twin” to Earth discovered so far. However, he said further analysis of the Kepler data may turn up even closer relatives.
Launched in 2009, Kepler detects alien worlds by looking for the faint dimming of a star as a planet crosses its disk. The SUV-sized telescope has spotted more than 4,600 planet candidates.
So far, about 1,000 of those have been confirmed as planets using other methods, ranging from detecting their parent stars’ Doppler shifts to carefully measuring the time intervals between the passages of planets. For Kepler-452b, scientists used ground-based observations and computer models to estimate the mass and confirm the detection to a level of 99.76 percent, Jenkins said.
The findings were due to be published online Thursday by the Astrophysical Journal, Jenkins said. In addition to Kepler-452b, another 521 planet candidates have been added to the mission’s checklist – including 12 candidates that appear to be one to two times as wide as Earth and orbit in their parent stars’ habitable zones. Nine of the stars are similar to our own sun in size and temperature, NASA said in a news release.
There’s sure to be more to come. In 2013, Kepler was crippled by failures of its fine-pointing navigation system, but it returned to its planet-hunting mission last year, thanks to some clever tweaking that makes use of the solar wind as an extra stabilizer. “It’s kind of the best-worst thing that ever happened to Kepler,” Jenkins said.
With astronomers discovering new planets and other celestial objects all the time, you may be wondering what the newest planet to be discovered is. Well, that depends on your frame of reference. If we are talking about our Solar System, then the answer used to be Pluto, which was discovered by the American astronomer Clyde William Tombaugh in 1930.
Unfortunately, Pluto lost its status as a planet in 2006 when it was reclassified as a dwarf planet. Since then, another contender has emerged for the title of “newest planet in the Solar System” – a celestial body that goes by the name of Eris – while beyond our Solar System, thousands of new planets are being discovered.
But then, the newest planet might be the most recently discovered extrasolar planet. And these are being discovered all the time.
Astronomers are calling Kepler-432b a ‘maverick’ planet because everything about this newly found exoplanet is an extreme, and is unlike anything we’ve found before. This is a giant, dense planet orbiting a red giant star, and the planet has enormous temperature swings throughout its year. In addition to all these extremes, there’s another reason you wouldn’t want to live on Kepler 432b: its days are numbered.
“In less than 200 million years, Kepler-432b will be swallowed by its continually expanding host star,” said Mauricio Ortiz, a PhD student at Heidelberg University who led one of the two studies of the planet. “This might be the reason why we do not find other planets like Kepler-432b – astronomically speaking, their lives are extremely short.”
Kepler-432b is one of the densest and massive planets ever found. The planet has six times the mass of Jupiter, but is about the same size. The shape and the size of its orbit are also unusual, as the orbit is very small (52 Earth days) and highly elongated. The elliptical orbit brings Kepler-432b both incredibly close and very far away from its host star.
“During the winter season, the temperature on Kepler-432b is roughly 500 degrees Celsius,” said Dr. Sabine Reffert from the Königstuhl observatory, which is part of the Centre for Astronomy. “In the short summer season, it can increase to nearly 1,000 degrees Celsius.”
Dr. Davide Gandolfi, also from the Königstuhl observatory, said that the star Kepler-432b is orbiting has already exhausted the nuclear fuel in its core and is gradually expanding. Its radius is already four times that of our Sun and it will get even larger in the future.
While Kepler-432b was previously identified as a transiting planet candidate by the NASA Kepler satellite mission, two research groups of Heidelberg astronomers independently made further observations of this rare planet, acquiring the high-precision measurements needed to determine the planet’s mass. Both groups of researchers used the 2.2-metre telescope at Calar Alto Observatory in Andalucía, Spain to collect data. The group from the state observatory also observed Kepler-432b with the Nordic Optical Telescope on La Palma (Canary Islands).