Astronomers Find a Six-Planet System Which Orbit in Lockstep With Each Other

Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech
Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech

To date, astronomers have confirmed the existence of 4,152 extrasolar planets in 3,077 star systems. While the majority of these discoveries involved a single planet, several hundred star systems were found to be multi-planetary. Systems that contain six planets or more, however, appear to be rarer, with only a dozen or so cases discovered so far.

This is what astronomers found after observing HD 158259, a Sun-like star located about 88 light-years from Earth, for the past seven years using the SOPHIE spectrograph. Combined with new data from the Transiting Exoplanet Space Satellite (TESS), an international team reported the discovery of a six planet system where all were in near-perfect rhythm with each other.

Continue reading “Astronomers Find a Six-Planet System Which Orbit in Lockstep With Each Other”

Astronomers Might Have Imaged a Second Planet Around Nearby Proxima Centauri – and it Might Have a Huge Set of Rings

An artist's illustration of the Proxima Centauri system. Proxima b is on the left, while Proxima C is on the right. Image Credit: Lorenzo Santinelli

In 2016, astronomers working for the European Southern Observatory (ESO) confirmed the existence of a terrestrial planet around Earth’s closest stellar neighbor – Proxima Centauri. The discovery of this nearby extrasolar planet (Proxima b) caused no shortage of excitement because, in addition to being similar in size to Earth, it was found to orbit within the star’s habitable zone (HZ).

Thanks to an INAF-led team, a second exoplanet (a super-Earth) was found early this year around Proxima Centauri using the Radial Velocity Method. Based on the separation between the two planets, another INAF-led team attempted to observe this planet using the Direct Imaging Method. While not entirely successful, their observations raise the possibility that this planet has a system of rings around it, much like Saturn.

Continue reading “Astronomers Might Have Imaged a Second Planet Around Nearby Proxima Centauri – and it Might Have a Huge Set of Rings”

An Earth-Sized World Orbiting in its Star’s Habitable Zone Was Found in Older Kepler Data

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
This is Kepler 186f, an exoplanet in the habitable zone around a red dwarf. We've found many planets in their stars' habitable zones where they could potentially have surface water. But it's a fairly crude understanding of true habitability. Image Credit: NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

To date, astronomers have confirmed the existence of 4,144 extrasolar planets in 3,074 systems, with a further 5,094 candidates awaiting confirmation. The majority of these planets were found by the Kepler Space Telescope, which spent nine years (between May of 2009 and February of 2018) monitoring distant stars for transit signals – where a planet passing in front of a star causes a dip in brightness.

And yet, even though it is now defunct, the data that Kepler accumulated over the years continues to lead to new discoveries. For instance, a transatlantic team of researchers recently found a signal in Kepler‘s archival data that eluded detection before. This signal indicates that there is a second planet orbiting Kepler-1649, an M-type red dwarf star located 302 light-years away.

Continue reading “An Earth-Sized World Orbiting in its Star’s Habitable Zone Was Found in Older Kepler Data”

Five Snapshots of how the Earth Looked at Key Points in its History Could Help us Find Habitable Exoplanets

Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle

In the past few decades, astronomers have confirmed the existence of thousands of planets beyond our Solar System. Over time, the process has shifted from discovery to characterization in the hopes of finding which of these planets are capable of supporting life. For the time being, these methods are indirect in nature, which means that astronomers can only infer if a planet is inhabitable based on how closely it resembles Earth.

To aid in the hunt for “potentially habitable” exoplanets, a team of Cornell researchers recently created five models that represent key points in Earth’s evolution. These “snapshots” of what Earth looked like during various geological epochs could greatly enhance the search for extra-terrestrial life by providing a more complete picture of what a life-bearing planet could look like.

Continue reading “Five Snapshots of how the Earth Looked at Key Points in its History Could Help us Find Habitable Exoplanets”

How Will Clouds Obscure the View of Exoplanet Surfaces?

This artist’s impression shows the planet K2-18b, it’s host star and an accompanying planet in this system. K2-18b is now the only super-Earth exoplanet known to host both water and temperatures that could support life. UCL researchers used archive data from 2016 and 2017 captured by the NASA/ESA Hubble Space Telescope and developed open-source algorithms to analyse the starlight filtered through K2-18b’s atmosphere. The results revealed the molecular signature of water vapour, also indicating the presence of hydrogen and helium in the planet’s atmosphere.

In 2021, NASA’s next-generation observatory, the James Webb Space Telescope (JWST), will take to space. Once operational, this flagship mission will pick up where other space telescopes – like Hubble, Kepler, and Spitzer – left off. This means that in addition to investigating some of the greatest cosmic mysteries, it will also search for potentially habitable exoplanets and attempt to characterize their atmospheres.

This is part of what sets the JWST apart from its predecessors. Between its high sensitivity and infrared imaging capabilities, it will be able to gather data on exoplanet atmospheres like never before. However, as a NASA-supported study recently showed, planets that have dense atmospheres might also have extensive cloud cover, which could complicate attempts to gather some of the most important data of all.

Continue reading “How Will Clouds Obscure the View of Exoplanet Surfaces?”

Gas and Dust Stop Planets From Eating Their Moons

Credit: Nagoya University

Beyond Earth’s only satellite (the Moon), the Solar System is packed full of moons. In fact, Jupiter alone has 79 known natural satellites while Saturn has the most know moons of any astronomical body – a robust 82. For the longest time, astronomers have theorized that moons form from circumplanetary disks around a parent planet and that the moons and planet form alongside each other.

However, scientists have conducted multiple numerical simulations that have shown this theory to be flawed. What’s more, the results of these simulations are inconsistent with what we see throughout the Solar System. Thankfully, a team of Japanese researchers recently conducted a series of simulations that yielded a better model of how disks of gas and dust can form the kinds of moon systems that we see today.

Continue reading “Gas and Dust Stop Planets From Eating Their Moons”

Detecting Exoplanets Through Their Exoauroras

Artistic impression of a red-dwarf star’s magnetic interaction with its exoplanet. Credit: Danielle Futselaar/

At present, scientists can only look for planets beyond our Solar System using indirect means. Depending on the method, this will involve looking for signs of transits in front of a star (Transit Photometry), measuring a star for signs of wobble (Doppler Spectroscopy), looking for light reflected from a planet’s atmosphere (Direct Imaging), and a slew of other methods.

Based on certain parameters, astronomers are then able to determine whether a planet is potentially-habitable or not. However, a team of astronomers from the Netherlands recently released a study in which they describe a novel approach for exoplanet-hunting: looking for signs of aurorae. As these are the result of interaction between a planet’s magnetic field and a star, this method could be a shortcut to finding life!

Continue reading “Detecting Exoplanets Through Their Exoauroras”

Here’s What the Climate Might Look Like on Proxima Centauri B

Credit: NASA

Located at the heart of the NASA Center for Climate Simulation (NCCS) – part of NASA’s Goddard Space Flight Center – is the Discover supercomputer, a 129,000-core cluster of Linux-based processors. This supercomputer, which is capable of conducting 6.8 petaflops (6.8 trillion) operations per second, is tasked with running sophisticated climate models to predict what Earth’s climate will look like in the future.

However, the NCCS has also started to dedicate some of Discover’s supercomputing power to predict what conditions might be like on any of the over 4,000 planets that have been discovered beyond our Solar System. Not only have these simulations shown that many of these planets could be habitable, they are further evidence that our very notions of “habitability” could use a rethink.

Continue reading “Here’s What the Climate Might Look Like on Proxima Centauri B”

Giant Planets Could Form Around Tiny Stars in Just a Few Thousand Years

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser

M-type (red dwarf) stars are cooler, low-mass, low-luminosity objects that make up the vast majority of stars in our Universe – accounting for 85% of stars in the Milky Way galaxy alone. In recent years, these stars have proven to be a treasure trove for exoplanet hunters, with multiple terrestrial (aka. Earth-like) planets confirmed around the Solar System’s nearest red dwarfs.

But what is even more surprising is the fact that some red dwarfs have been found to have planets that are comparable in size and mass to Jupiter orbiting them. A new study conducted by a team of researchers from the University of Central Lancashire (UCLan) has addressed the mystery of how this could be happening. In essence, their work shows that gas giants only take a few thousand years to form.

Continue reading “Giant Planets Could Form Around Tiny Stars in Just a Few Thousand Years”

In About 3 Million Years, WASP-12b Will Spiral into its Star and be Consumed

Artist's impression of the searing-hot gas planet WASP-12b and its star. A Princeton-led team of astrophysicists has shown that this exoplanet is spiraling in toward its host star, heading toward certain destruction in about 3 million years. Credit: NASA/JPL-Caltech

Astronomers estimate that in about four billion years, our Sun will exit the main sequence phase of its existence and become a red giant. This will consist of the Sun running out of hydrogen and expanding to several times its current size. This will cause Earth to become uninhabitable since this Red Giant Sun will either blow away Earth’s atmosphere (rendering the surface uninhabitable) or expand to consume Earth entirely.

In a lot of ways, Earth is getting off easy with these predicted scenarios. Other planets, such as WASP-12b, don’t have the luxury of waiting billions of years for their star to reach the end of its lifespan before eating them up. According to a recent study by a team of Princeton-led astrophysicists, this extrasolar planet is spiraling in towards its star and will be consumed in a fiery death just 3 million years from now.

Continue reading “In About 3 Million Years, WASP-12b Will Spiral into its Star and be Consumed”