The Closest Star to the Sun, Proxima Centauri, has a Planet in the Habitable Zone. Life Could be There Right Now

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

In August of 2016, astronomers from the European Southern Observatory (ESO) announced the discovery of an exoplanet in the neighboring system of Proxima Centauri. The news was greeted with consider excitement, as this was the closest rocky planet to our Solar System that also orbited within its star’s habitable zone. Since then, multiple studies have been conducted to determine if this planet could actually support life.

Unfortunately, most of the research so far has indicated that the likelihood of habitability are not good. Between Proxima Centauri’s variability and the planet being tidally-locked with its star, life would have a hard time surviving there. However, using lifeforms from early Earth as an example, a new study conducted by researchers from the Carl Sagan Institute (CSI) has shows how life could have a fighting chance on Proxima b after all.

Continue reading “The Closest Star to the Sun, Proxima Centauri, has a Planet in the Habitable Zone. Life Could be There Right Now”

Which Habitable Zones are the Best to Actually Search for Life?

Artist's impression of the range of habitable zones for different types of stars. Credit: NASA/Kepler Mission/Dana Berry

Looking to the future, NASA and other space agencies have high hopes for the field of extra-solar planet research. In the past decade, the number of known exoplanets has reached just shy of 4000, and many more are expected to be found once next-generations telescopes are put into service. And with so many exoplanets to study, research goals have slowly shifted away from the process of discovery and towards characterization.

Unfortunately, scientists are still plagued by the fact that what we consider to be a “habitable zone” is subject to a lot of assumptions. Addressing this, an international team of researchers recently published a paper in which they indicated how future exoplanet surveys could look beyond Earth-analog examples as indications of habitability and adopt a more comprehensive approach.

Continue reading “Which Habitable Zones are the Best to Actually Search for Life?”

Complex Life Might Require a Very Narrow Habitable Zone

Kepler-452b
This artist's concept depicts one possible appearance of the planet Kepler-452b, the first near-Earth-size world to be found in the habitable zone of star that is similar to our sun. Credit: NASA Ames/JPL-Caltech/T. Pyle

Since the Kepler Space Telescope was launched into space, the number of known planets beyond our Solar System (exoplanets) has grown exponentially. At present, 3,917 planets have been confirmed in 2,918 star systems, while 3,368 await confirmation. Of these, about 50 orbit within their star’s circumstellar habitable zone (aka. “Goldilocks Zone”) , the distance at which liquid water can exist on a planets’ surface.

However, recent research has raised the possibility that we consider to be a habitable zone is too optimistic. According to a new study that recently appeared online, titled “A Limited Habitable Zone for Complex Life“, habitable zones could be much narrower than originally thought. These finds could have a drastic impact on the number of planets scientists consider to be “potentially habitable”.

Continue reading “Complex Life Might Require a Very Narrow Habitable Zone”

Meet WFIRST, The Space Telescope with the Power of 100 Hubbles

The Wide First Infrared Telescope (so far). Image credit: NASA/TJT Photography

WFIRST ain’t your grandma’s space telescope. Despite having the same size mirror as the surprisingly reliable Hubble Space Telescope, clocking in at 2.4 meters across, this puppy will pack a punch with a gigantic 300 megapixel camera, enabling it to snap a single image with an area a hundred times greater than the Hubble.

With that fantastic camera and the addition of one of the most sensitive coronagraphs ever made – letting it block out distant starlight on a star-by-star basis – this next-generation telescope will uncover some of the deepest mysteries of the cosmos.

Oh, and also find about a million exoplanets.

Continue reading “Meet WFIRST, The Space Telescope with the Power of 100 Hubbles”

This is Kepler’s Final Image

MATLAB Handle Graphics. Credit: NASA/Ames Research Center

On October 30th, 2018, after nine years of faithful service, the Kepler Space Telescope was officially retired. With nearly 4000 candidates and 2,662 confirmed exoplanets to its credit, no other telescope has managed to teach us more about the worlds that exist beyond our Solar System. In the coming years, multiple next-generation telescopes will be deployed that will attempt to build on the foundation Kepler built.

And yet, even in retirement, Kepler is still providing us with impressive discoveries. For starters, NASA started the new year by announcing the discovery of several new exoplanets, including a Super-Earth and a Saturn-sized gas giant, as well as an unusually-sized planet that straddles these two categories. On top of that, NASA recently released the “last lighty” image and recordings obtained by Kepler before it ran out of fuel and ended its mission.

Continue reading “This is Kepler’s Final Image”

How Big Would a Generation Ship Need to be to Keep a Crew of 500 Alive for the Journey to Another Star?

Interior view of an O'Neill Cylinder. There are alternating strips of livable surface and "windows" to let light in. Image: Rick Guidice, NASA Ames Research Center

There’s no two ways about it, the Universe is an extremely big place! And thanks to the limitations placed upon us by Special Relativity, traveling to even the closest star systems could take millennia. As we addressed in a previous article, the estimated travel time to the nearest star system (Alpha Centauri) could take anywhere from 19,000 to 81,000 years using conventional methods.

For this reason, many theorists have recommended that humanity should rely on generation ships to spread the seed of humanity among the stars. Naturally, such a project presents many challenges, not the least of which is how large a spacecraft would need to be to sustain a multi-generational crew. In a new study, a team of international scientists addressed this very question and determined that a lot of interior space would be needed!

Continue reading “How Big Would a Generation Ship Need to be to Keep a Crew of 500 Alive for the Journey to Another Star?”

What Would be the Benefits of an Interstellar Probe?

Artist's concept of the Bussard Ramjet, which would harness hydrogen from the interstellar medium to power its fusion engines. Credit: futurespacetransportation.weebly.com

On July 14th, 2015, the New Horizons mission made history when it became the first robotic spacecraft to conduct a flyby of Pluto. On December 31st, 2018, it made history again by being the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) – Ultima Thule (2014 MU69). In addition, the Voyager 2 probe recently joined its sister probe (Voyager 1) in interstellar space.

Given these accomplishments, it is understandable that proposals for interstellar missions are once again being considered. But what would such a mission entail, and is it even worth it? Kelvin F. Long, the co-founder of the Initiative for Interstellar Studies (i4iS) and a major proponent of interstellar flight, recently published a paper that supports the idea of sending robotic missions to nearby star systems to conduct in-situ reconnaissance.

Continue reading “What Would be the Benefits of an Interstellar Probe?”

Geothermal Heating Could Make Life Possible on the Super Earth Planet at Barnard’s Star

The nearest single star to the Sun hosts an exoplanet at least 3.2 times as massive as Earth — a so-called super-Earth. Data from a worldwide array of telescopes, including ESO’s planet-hunting HARPS instrument, have revealed this frozen, dimly lit world. The newly discovered planet is the second-closest known exoplanet to the Earth and orbits the fastest moving star in the night sky. This image shows an artist’s impression of the planet’s surface. Credit: ESO

In 2018, scientists announced the discovery of a extrasolar planet orbiting Barnard’s star, an M-type (red dwarf) that is just 6 light years away. Using the Radial Velocity method, the research team responsible for the discovery determined that this exoplanet (Barnard’s Star b) was at least 3.2 times as massive as Earth and experienced average surface temperatures of about -170 °C (-274 °F) – making it both a “Super-Earth” and “ice planet”.

Based on these findings, it was a foregone conclusion that Barnard b would be hostile to life as we know it. But according to new study by a team of researchers from Villanova University and the Institute of Space Studies of Catalonia (IEEC), it is possible – assuming the planet has a hot iron/nickel core and experiences enhanced geothermal activity – that this giant iceball of a planet could actually support life.

Continue reading “Geothermal Heating Could Make Life Possible on the Super Earth Planet at Barnard’s Star”

Seeding the Milky Way with Life Using Genesis Missions

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

When exploring other planets and celestial bodies, NASA missions are required to abide by the practice known as “planetary protection“. This practice states that measures must be taken during the designing of a mission to ensure that biological contamination of both the planet/body being explored and Earth (in the case of sample-return missions) are prevented.

Looking to the future, there is the question of whether or not this same practice will be extended to extra-solar planets. If so, it would conflict with proposals to “seed” other worlds with microbial life to kick-start the evolutionary process. To address this, Dr. Claudius Gros of Goethe University’s Institute for Theoretical Physics recently published a paper that looks at planetary protection and makes the case for “Genesis-type” missions.

Continue reading “Seeding the Milky Way with Life Using Genesis Missions”

Habitable Planets Around Red Dwarf Stars Might not get Enough Photons to Support Plant Life

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

In recent years, the number of extra-solar planets discovered around nearby M-type (red dwarf stars) has grown considerably. In many cases, these confirmed planets have been “Earth-like“, meaning that they are terrestrial (aka. rocky) and comparable in size to Earth. These finds have been especially exciting since red dwarf stars are the most common in the Universe – accounting for 85% of stars in the Milky Way alone.

Unfortunately, numerous studies have been conducted of late that indicate that these planets may not have the necessary conditions to support life. The latest comes from Harvard University, where postdoctoral researcher Manasvi Lingam and Professor Abraham Loeb demonstrate that planets around M-type stars may not get enough radiation from their stars for photosynthesis to occur.

Continue reading “Habitable Planets Around Red Dwarf Stars Might not get Enough Photons to Support Plant Life”