Seeding the Milky Way with Life Using Genesis Missions

An artist's illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. The leakage from such beams as they sweep across the sky would appear as Fast Radio Bursts (FRBs), similar to the new population of sources that was discovered recently at cosmological distances. Credit: M. Weiss/CfA

When exploring other planets and celestial bodies, NASA missions are required to abide by the practice known as “planetary protection“. This practice states that measures must be taken during the designing of a mission to ensure that biological contamination of both the planet/body being explored and Earth (in the case of sample-return missions) are prevented.

Looking to the future, there is the question of whether or not this same practice will be extended to extra-solar planets. If so, it would conflict with proposals to “seed” other worlds with microbial life to kick-start the evolutionary process. To address this, Dr. Claudius Gros of Goethe University’s Institute for Theoretical Physics recently published a paper that looks at planetary protection and makes the case for “Genesis-type” missions.

Continue reading “Seeding the Milky Way with Life Using Genesis Missions”

Habitable Planets Around Red Dwarf Stars Might not get Enough Photons to Support Plant Life

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

In recent years, the number of extra-solar planets discovered around nearby M-type (red dwarf stars) has grown considerably. In many cases, these confirmed planets have been “Earth-like“, meaning that they are terrestrial (aka. rocky) and comparable in size to Earth. These finds have been especially exciting since red dwarf stars are the most common in the Universe – accounting for 85% of stars in the Milky Way alone.

Unfortunately, numerous studies have been conducted of late that indicate that these planets may not have the necessary conditions to support life. The latest comes from Harvard University, where postdoctoral researcher Manasvi Lingam and Professor Abraham Loeb demonstrate that planets around M-type stars may not get enough radiation from their stars for photosynthesis to occur.

Continue reading “Habitable Planets Around Red Dwarf Stars Might not get Enough Photons to Support Plant Life”

NASA’s Technosignatures Report is Out. Every Way to Find Evidence of an Intelligent Civilization

Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45
Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45

In 1961, famed astronomer Frank Drake created a formula for estimating the number of extra-terrestrial intelligences (ETIs) that could exist within our galaxy. Known as the “Drake Equation“, this formula demonstrated that even by the most conservative estimates, our galaxy was likely to host at least a few advanced civilizations at any given time. About a decade later, NASA officially kicked of its search for extra-terrestrial intelligence (SETI) program.

These efforts have experienced a major infusion of interest in recent decades thanks to the discovery of thousands of extrasolar planets. To address the possibility that life may exist out there, scientists are also relying on sophisticated tools to search for telltale indicators of biological processes (aka. biosignatures) and technological activity (technosignatures), which could indicate not only life but advanced intelligence.

Continue reading “NASA’s Technosignatures Report is Out. Every Way to Find Evidence of an Intelligent Civilization”

Even if Exoplanets Have Atmospheres With Oxygen, it Doesn’t Mean There’s Life There

Artist’s impression of a sunset seen from the surface of an Earth-like exoplanet. Credit: ESO/L. Calçada

In their efforts to find evidence of life beyond our Solar System, scientists are forced to take what is known as the “low-hanging fruit” approach. Basically, this comes down to determining if planets could be “potentially habitable” based on whether or not they would be warm enough to have liquid water on their surfaces and dense atmospheres with enough oxygen.

This is a consequence of the fact that existing methods for examining distant planets are largely indirect and that Earth is only one planet we know of that is capable of supporting life. But what if planets that have plenty of oxygen are not guaranteed to produce life? According to a new study by a team from Johns Hopkins University, this may very well be the case.

Continue reading “Even if Exoplanets Have Atmospheres With Oxygen, it Doesn’t Mean There’s Life There”

Astronomers Find One of the Sun’s Sibling Stars. Born From the Same Solar Nebula Billions of Years Ago

Image of the Sun. Credit: SDO/NASA

According to current cosmological theories, the Milky Way started to form approximately 13.5 billion years ago, just a few hundred million years after the Big Bang. This began with globular clusters, which were made up of some of the oldest stars in the Universe, coming together to form a larger galaxy. Over time, the Milky Way cannibalized several smaller galaxies within its cosmic neighborhood, growing into the spiral galaxy we know today.

Many new stars formed as mergers added more clouds of dust and gas and caused them to undergo gravitational collapse. In fact, it is believed that our Sun was part of a cluster that formed 4.6 billion years ago and that its siblings have since been distributed across the galaxy. Luckily, an international team of astronomers recently used a novel method to locate one of the Sun’s long-lost “solar siblings“, which just happens to be an identical twin!

Continue reading “Astronomers Find One of the Sun’s Sibling Stars. Born From the Same Solar Nebula Billions of Years Ago”

The Power of the Wobble: Finding Exoplanets in the Shifting of Starlight

Artist's concept of the hot Jupiter WASP-121b, which presents the best evidence yet of a stratosphere on an exoplanet - generated using Engine House VFX. Credit: Bristol Science Centre/University of Exeter

They say there’s more than one way to skin an interstellar cat, and in astronomy there’s more than one way to find alien exoplanets orbiting a distant star. With the recent shut-down of NASA’s prolific Kepler mission and its windfall of discoveries, it’s time to look towards the future, and towards alternatives.

Continue reading “The Power of the Wobble: Finding Exoplanets in the Shifting of Starlight”

Super Earth Planet Found Around One of the Closest Stars to us. But it’s Probably a Terrible Place to Live

The nearest single star to the Sun hosts an exoplanet at least 3.2 times as massive as Earth — a so-called super-Earth. Data from a worldwide array of telescopes, including ESO’s planet-hunting HARPS instrument, have revealed this frozen, dimly lit world. The newly discovered planet is the second-closest known exoplanet to the Earth and orbits the fastest moving star in the night sky. This image shows an artist’s impression of the planet’s surface. Credit: ESO

In the course of searching for extra-solar planets, some very interesting finds have been made. Some of them have even occurred within our own galactic neighborhood. Just two years ago, astronomers from the Red Dots and CARMENES campaigns announced the discovery of Proxima b, a rocky planet that orbits within the habitable zone of our nearest stellar neighbor – Proxima Centauri.

This rocky world, which may be habitable, remains the closest exoplanet ever discovered to our Solar System. A few days ago (on Nov. 14th), Red Dots and CARMENES announced another find: a rocky planet orbiting Barnard’s star, which is just 6 light years from Earth. This planet, Barnard’s Star b, is now the second closest exoplanet to our Solar System, and the closest planet to orbit a single star.

Continue reading “Super Earth Planet Found Around One of the Closest Stars to us. But it’s Probably a Terrible Place to Live”

Exoplanets Will Need Both Continents and Oceans to Form Complex Life

Artist's concept of Earth-like exoplanets, which (according to new research) need to strike the careful balance between water and landmass. Credit: NASA

When it comes to the search for extra-terrestrial life, scientists have a tendency to be a bit geocentric – i.e. they look for planets that resemble our own. This is understandable, seeing as how Earth is the only planet that we know of that supports life. As result, those searching for extra-terrestrial life have been looking for planets that are terrestrial (rocky) in nature, orbit within their stars habitable zones, and have enough water on their surfaces.

In the course of discovering several thousand exoplanets, scientists have found that many may in fact be “water worlds” (planets where up to 50% of their mass is water). This naturally raises some questions, like how much water is too much, and could too much land be a problem as well? To address these, a pair of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study to determine how the ratio between water and land masses can contribute to life.

Continue reading “Exoplanets Will Need Both Continents and Oceans to Form Complex Life”

What is the Direct Imaging Method?

Direct image of exoplanets around the star HR8799 using a Vortex coronagraph on a 1.5m portion of the Hale telescope. Credit: NASA/JPL-Caltech/Palomar Observatory

Welcome back to the latest installment in our series on Exoplanet-hunting methods. Today we begin with the very difficult, but very promising method known as Direct Imaging.

In the past few decades, the number of planets discovered beyond our Solar System has grown by leaps and bounds. As of October 4th, 2018, a total of 3,869 exoplanets have been confirmed in 2,887 planetary systems, with 638 systems hosting multiple planets. Unfortunately, due to the limitations astronomers have been forced to contend with, the vast majority of these have been detected using indirect methods.

So far, only a handful of planets have been discovered by being imaged as they orbited their stars (aka. Direct Imaging). While challenging compared to indirect methods, this method is the most promising when it comes to characterizing the atmospheres of exoplanets. So far, 100 planets have been confirmed in 82 planetary systems using this method, and many more are expected to be found in the near future.

Continue reading “What is the Direct Imaging Method?”

To Find Evidence of Life on Exoplanets, Scientists Should Search for “Purple Earths”

Artist's concept of Earth-like exoplanets, which (according to new research) need to strike the careful balance between water and landmass. Credit: NASA

Finding potentially habitable planets beyond our Solar System is no easy task. While the number of confirmed extra-solar planets has grown by leaps and bounds in recent decades (3791 and counting!), the vast majority have been detected using indirect methods. This means that characterizing the atmospheres and surface conditions of these planets has been a matter of estimates and educated guesses.

Similarly, scientists look for conditions that are similar to what exists here on Earth, since Earth is the only planet we know of that supports life. But as many scientists have indicated, Earth’s conditions has changed dramatically over time. And in a recent study, a pair of researchers argue that a simpler form of photosynthetic life forms may predate those that relies on chlorophyll – which could have drastic implications in the hunt for habitable exoplanets.

Continue reading “To Find Evidence of Life on Exoplanets, Scientists Should Search for “Purple Earths””