What Would a Camera on a Breakthrough Starshot Spacecraft See if it’s Going at High Velocity?

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity's first interstellar voyage. Credit: breakthroughinitiatives.org

In April of 2016, Russian billionaire Yuri Milner announced the creation of Breakthrough Starshot. As part of his non-profit scientific organization (known as Breakthrough Initiatives), the purpose of Starshot was to design a lightsail nanocraft that would be capable of achieving speeds of up to 20% the speed of light and reaching the nearest star system – Alpha Centauri (aka. Rigel Kentaurus) – within our lifetimes.

At this speed – roughly 60,000 km/s (37,282 mps) – the probe would be able to reach Alpha Centauri in 20 years, where it could then capture images of the star and any planets orbiting it. But according to a recent article by Professor Bing Zhang, an astrophysicist from the University of Nevada, researchers could get all kinds of valuable data from Starshot and similar concepts long before they ever reached their destination.

The article appeared in The Conversation under the title “Observing the universe with a camera traveling near the speed of light“. The article was a follow-up to a study conducted by Prof. Zhang and Kunyang Li – a graduate student from the Center for Relativistic Astrophysics at the Georgia Institute of Technology – that appeared in The Astrophysical Journal (titled “Relativistic Astronomy“).

Prof. Albert Einstein at the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in 1934. Credit: AP Photo

To recap, Breakthrough Starshot seeks to leverage recent technological developments to mount an interstellar mission that will reach another star within a single generation. The spacecraft would consist of an ultra-light nanocraft and a lightsail, the latter of which would accelerated by a ground-based laser array up to speeds of hundreds of kilometers per second.

Such a system would allow the tiny spacecraft to conduct a flyby mission of Alpha Centauri in about 20 years after it is launched, which could then beam home images of possible planets and other scientific data (such as analysis of magnetic fields). Recently, Breakthrough Starshot held an “industry day” where they submitted a Request For Proposals (RFP) to potential bidders to build the laser sail.

According to Zhang, a lightsail-driven nanocraft traveling at a portion of the speed of light would also be a good way to test Einstein’s theory of Special Relativity.  Simply put, this law states that the speed of light in a vacuum is constant, regardless of the inertial reference frame or motion of the source. In short, such a spacecraft would be able to take advantage of the features of Special Relativity and provide a new mode to study astronomy.

Based on Einstein’s theory, different objects in different “rest frames” would have different measures of the lengths of space and time. In this sense, an object moving at relativistic speeds would view distant astronomical objects differently as light emissions from these objects would be distorted. Whereas objects in front of the spacecraft would have the wavelength of their light shortened, objects behind it would have them lengthened.

This diagram shows the difference between unshifted, redshifted and blueshifted targets. Credit: NASA

This phenomenon, known as the “Doppler Effect”, results in light being shifted towards the blue end (“blueshift”) or the red end (“redshift”) of the spectrum for approaching and retreating objects, respectively. In 1929, astronomer Edwin Hubble used redshift measurements to determine that distant galaxies were moving away from our own, thus demonstrating that the Universe was in a state of expansion.

Because of this expansion (known as the Hubble Expansion), much of the light in the Universe is redshifted and only measurable in difficult-to-observe infrared wavelengths. But for a camera moving at relativistic speeds, according to Prof. Zhang, this redshifted light would become bluer since the motion of the camera would counteract the effects of cosmic expansion.

This effect, known as “Doppler boosting”, would cause the faint light from the early Universe to be amplified and allow distant objects to be studied in more detail. In this respect, astronomers would be able to study some of the earliest objects in the known Universe, which would offer more clues as to how it evolved over time. As Prof. Zhang explained to Universe Today via email, this would allow for some unique opportunities to test Special Relativity:

“In the rest frame of the camera, the emission of the objects in the hemisphere of the camera motion is blue-shifted. For bright objects with detailed spectral observations from the ground, one can observe them in flight. By comparing their blue-shifted flux at a specific blue-shifted frequency with the flux of the corresponding (de-blueshifted) frequency on the ground, one can precisely test the Doppler boosting prediction in Special Relativity.”
Observed image of nearby galaxy M51 (left) and how the image would look through a camera moving at half the speed of light (right). Credit: Zhang & Li, 2018, The Astrophysical Journal, 854, 123, CC BY-ND

In addition, the frequency and intensity of light – and also the size of distant objects – would also change as far as the observer was concerned. In this respect, the camera would act as a lens and a wide-field camera, magnifying the amount of light it collects and letting astronomers observe more objects within the same field of view. By comparing the observations collected by the camera to those collected by a camera from the ground, astronomers could also test the probe’s Lorentz Factor.

This factor indicates how time, length, and relativistic mass change for an object while that object is moving, which is another prediction of Special Relativity. Last, but not least, Prof. Zhang indicates that probes traveling at relativistic speeds would not need to be sent to any specific destination in order to conduct these tests. As he explained:

“The concept of “relativistic astronomy” is that one does not really need to send the cameras to specific star systems. No need to aim (e.g. to Alpha Centauri system), no need to decelerate. As long as the signal can be transferred back to earth, one can learn a lot of things. Interesting targets include high-redshift galaxies, active galactic nuclei, gamma-ray bursts, and even electromagnetic counterparts of gravitational waves.”

However, there are some drawbacks to this proposal. For starters, the technology behind Starshot is all about accomplishing the dream of countless generations – i.e. reaching another star system (in this case, Alpha Centauri) – within a single generation.

And as Professor Abraham Loeb – the Frank B. Baird Jr. Professor of Science at Harvard University and the Chair and the Breakthrough Starshot Committee – told Universe Today via email, what Prof. Zhang is proposing can be accomplished by other means:

>“Indeed, there are benefits to having a camera move near the speed of light toward faint sources, such as the most distant dwarf galaxies in the early universe. But the cost of launching a camera to the required speed would be far greater than building the next generation of large telescopes which will provide us with a similar sensitivity. Similarly, the goal of testing special relativity can be accomplished at a much lower cost.”

Of course, it will be many years before a project like Starshot can be mounted, and many challenges need to be addressed in the meantime. But it is exciting to know that in meantime, scientific applications can be found for such a mission that go beyond exploration. In a few decades, when the mission begins to make the journey to Alpha Centauri, perhaps it will also be able to conduct tests on Special Relativity and other physical laws while in transit.

Further Reading: The Conversation, The Astrophysical Journal

Stunning First Ever Photograph of a Newly Forming Planet

This spectacular image from the SPHERE instrument on ESO's Very Large Telescope is the first clear image of a planet caught in the very act of formation around the dwarf star PDS 70. Credit: ESO/A. Müller et al.

For decades, the most widely-accepted view of how our Solar System formed has been the Nebular Hypothesis. According to this theory, the Sun, the planets, and all other objects in the Solar System formed from nebulous material billions of years ago. This dust experienced a gravitational collapse at the center, forming our Sun, while the rest of the material formed a circumstellar debris ring that coalesced to form the planets.

Thanks to the development of modern telescopes, astronomers have been able to probe other star systems to test this hypothesis. Unfortunately, in most cases, astronomers have only been able to observe debris rings around stars with hints of planets in formation. It was only recently that a team of European astronomers were able to capture an image of a newborn planet, thus demonstrating that debris rings are indeed the birthplace of planets.

The team’s research appeared in two papers that were recently published in Astronomy & Astrophysics, titled “Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70” and “Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk.” The team behind both studies included member from the Max Planck Institute for Astronomy (MPIA) as well as multiple observatories and universities.

Near infrared image of the PDS70 disk obtained with the SPHERE instrument. Credit: ESO/A. Müller, MPIA

For the sake of their studies, the teams selected PDS 70b, a planet that was discovered at a distance of 22 Astronomical Units (AUs) from its host star and which was believed to be a newly-formed body. In the first study – which was led by Miriam Keppler of the Max Planck Institute for Astronomy – the team indicated how they studied the protoplanetary disk around the star PDS 70.

PDS 70 is a low-mass T Tauri star located in the constellation Centaurus, approximately 370 light-years from Earth. This study was performed using archival images in the near-infrared band taken by the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) instrument on the ESO’s Very Large Telescope (VLT) and the Near-Infrared Coronagraphic Imager on the Gemini South Telescope.

Using these instruments, the team made the first robust detection of a young planet (PDS 70b) orbiting within a gap in its star’s protoplanetary disc and located roughly three billion km (1.86 billion mi) from its central star – roughly the same distance between Uranus and the Sun. In the second study, led by Andre Muller (also from the MPIA) the team describes how they used the SPHERE instrument to measure the brightness of the planet at different wavelengths.

From this, they were able to determine that PDS 70b is a gas giant that has about nine Jupiter masses and a surface temperature of about 1000 °C (1832 °F), making it a particularly “Hot Super-Jupiter”. The planet must be younger than its host star, and is probably still growing. The data also indicated that the planet is surrounded by clouds that alter the radiation emitted by the planetary core and its atmosphere.

Thanks to the advanced instruments used, the team was also able to acquire an image of the planet and its system. As you can see from the image (posted at top) and the video below, the planet is visible as a bright point to the right of the blackened center of the image. This dark region is due to a corongraph, which blocks the light from the star so the team could detect the much-fainter companion.

As Miriam Keppler, a postdoctoral student at the MPIA, explained in a recent ESO press statement:

“These discs around young stars are the birthplaces of planets, but so far only a handful of observations have detected hints of baby planets in them. The problem is that until now, most of these planet candidates could just have been features in the disc.”

In addition to spotting the young planet, the research teams also noted that it has sculpted the protoplanetary disc orbiting the star. Essentially, the planet’s orbit has traced a giant hole in the center of the disc after accumulating material from it. This means that PDS 70 b is still located in the vicinity of its birth place, is likely to still be accumulating material and will continue to grow and change.

For decades, astronomers have been aware of these gaps in the protoplanetary disc and speculated that they were produced by a planet. Now, they finally have the evidence to support this theory. As André Müller explained:

Keppler’s results give us a new window onto the complex and poorly-understood early stages of planetary evolution. We needed to observe a planet in a young star’s disc to really understand the processes behind planet formation.

These studies will be a boon to astronomers, especially when it comes to theoretical models of planet formation and evolution. By determining the planet’s atmospheric and physical properties, the astronomers have been able to test key aspects of the Nebular Hypothesis. The discovery of this young, dust-shrouded planet would not have been were if not for the capabilities of ESO’s SPHERE instrument.

This instrument studies exoplanets and discs around nearby stars using a technique known as high-contrast imaging, but also relies on advanced strategies and data processing techniques. In addition to blocking the light from a star with a coronagraph, SPHERE is able to filter out the signals of faint planetary companions around bright young stars at multiple wavelengths and epochs.

As Prof. Thomas Henning – the director at MPIA, the German co-investigator of the SPHERE instrument, and a senior author on the two studies – stated in a recent MPIA press release:

“After ten years of developing new powerful astronomical instruments such as SPHERE, this discovery shows us that we are finally able to find and study planets at the time of their formation. That is the fulfillment of a long-cherished dream.”

Future observations of this system will also allow astronomers to test other aspects of planet formation models and to learn about the early history of planetary systems. This data will also go a long way towards determining how our own Solar System formed and evolved during its early history.

Further Reading: ESO, MPIA, Astronomy & Astrophysics, Astronomy & Astrophysics (2)

What’s the Minimum Number of People you Should Send in a Generational Ship to Proxima Centauri?

A concept for a multi-generation ship being designed by the TU Delft Starship Team (DSTART), with support from the ESA. Credit and Copyright: Nils Faber & Angelo Vermeulen

Humanity has long dreamed about sending humans to other planets, even before crewed spaceflight became a reality. And with the discovery of thousands of exoplanets in recent decades, particularly those that orbit within neighboring star systems (like Proxima b), that dream seems closer than ever to becoming a reality. But of course, a lot of technical challenges need to be overcome before we can hope to mount such a mission.

In addition, a lot of questions need to be answered. For example, what kind of ship should we send to Proxima b or other nearby exoplanets? And how many people would we need to place aboard that ship? The latter question was the subject of a recent paper written by a team of French researchers who calculated the minimal number of people that would be needed in order to ensure that a healthy multi-generational crew could make the journey to Proxima b.

Continue reading “What’s the Minimum Number of People you Should Send in a Generational Ship to Proxima Centauri?”

One Way to Find Aliens Would be to Search for Artificial Rings of Satellites: Clarke Belts

Artistic representations of a Clarke exobelt with a portrait of Sir Arthur C. Clarke in the background. Credit: Caro Waro (@carwaro).

When it comes to the search for extra-terrestrial intelligence (SETI) in the Universe, there is the complicated matter of what to be on the lookout for. Beyond the age-old question of whether or not intelligent life exists elsewhere in the Universe (statistically speaking, it is very likely that it does), there’s also the question of whether or not we would be able to recognize it if and when we saw it.

Given that humanity is only familiar with one form of civilization (our own), we tend to look for indications of technologies we know or which seem feasible. In a recent study, a researcher from the Instituto de Astrofísica de Canarias (IAC) proposed looking for large bands of satellites in distant star systems – a concept that was proposed by the late and great Arthur C. Clarke (known as a Clarke Belt).

The study – titled “Possible Photometric Signatures of Moderately Advanced Civilizations: The Clarke Exobelt” – was conducted by Hector Socas-Navarro, an astrophysicist with the IAC and the Universidad de La Laguna. In it, he advocates using next-generation telescopes to look for signs of massive belts of geostationary communication satellites in distant star systems.

This proposal is based in part on a paper written by Arthur C. Clarke in 1945 (titled “Peacetime Uses for V2“), in which he proposed sending “artificial satellites” into geostationary orbit around Earth to create a global communications network. At present, there are about 400 such satellites in the “Clarke Belt” – a region named in honor of him that is located 36,000 km above the Earth.

This network forms the backbone of modern telecommunications and in the future, many more satellites are expected to be deployed – which will form the backbone of the global internet. Given the practicality of satellites and the fact that humanity has come to rely on them so much, Socas-Navarro considers that a belt of artificial satellites could naturally be considered “technomarkers” (the analogues of “biomarkers”, which indicate the presence of life).

As Socas-Navarro explained to Universe Today via email:

“Essentially, a technomarker is anything that we could potentially observe which would reveal the presence of technology elsewhere in the Universe. It’s the ultimate clue to find intelligent life out there. Unfortunately, interstellar distances are so great that, with our current technology, we can only hope to detect very large objects or structures, something comparable to the size of a planet.”

In this respect, a Clarke Exobelt is not dissimilar from a Dyson Sphere or other forms of megastructures that have been proposed by scientists in the past. But unlike these theoretical structures, a Clarke Exobelt is entirely feasible using present-day technology.

Graphic showing the cloud of space debris that currently surrounds the Earth. Credit: NASA’s Goddard Space Flight Center/JSC

“Other existing technomarkers are based on science fiction technology of which we know very little,” said Socas-Navarro. “We don’t know if such technologies are possible or if other alien species might be using them. The Clarke Exobelt, on the other hand, is a technomarker based on real, currently existing technology. We know we can make satellites and, if we make them, it’s reasonable to assume that other civilizations will make them too.”

According to Socas-Navarro, there is some “science fiction” when it comes to Clarke Exobelts that would actually be detectable using these instruments. As noted, humanity has about 400 operational satellites occupying Earth’s “Clarke Belt”. This is about one-third of the Earth’s existing satellites, whereas the rest are at an altitude of 2000 km (1200 mi) or less from the surface – the region known as Low Earth Orbit (LEO).

This essentially means that aliens would need to have billions more satellites within their Clarke Belt – accounting for roughly 0.01% of the belt area – in order for it to be detectable. As for humanity, we are not yet to the point where our own Belt would be detectable by an extra-terrestrial intelligence (ETI). However, this should not take long given that the number of satellites in orbit has been growing exponentially over the past 15 years.

Based on simulations conducted by Socas-Navarro, humanity will reach the threshold where its satellite band will be detectable by ETIs by 2200. Knowing that humanity will reach this threshold in the not-too-distant future makes the Clarke Belt a viable option for SETI. As Socas-Navarro explained:

“In this sense, the Clarke Exobelt is interesting because it’s the first technomarker that looks for currently existing technology. And it goes both ways too. Humanity’s Clarke Belt is probably too sparsely populated to be detectable from other stars right now (at least with technology like ours). But in the last decades we have been populating it at an exponential rate. If this trend were to continue, our Clarke Belt would be detectable from other stars by the year 2200. Do we want to be detectable? This is an interesting debate that humanity will have to resolve soon.

An exoplanet transiting across the face of its star, demonstrating one of the methods used to find planets beyond our solar system. Credit: ESA/C. Carreau

As for when we might be able to start looking for Exobelts, Socas-Navarro indicates that this will be possible within the next decade. Using instruments like the James Webb Space Telescope (JWST), the Giant Magellan Telescope (GMT), the European Extremely Large Telescope (E-ELT), and the Thirty Meter Telescope (TMT), scientists will have ground-based and space-based telescopes with the necessary resolution to spot these bands around exoplanets.

As for how these belts would be detected, that would come down to the most popular and effective means for finding exoplanets to date – the Transit Method (aka. Transit Photometry). For this method, astronomers monitor distant stars for periodic dips in brightness, which are indications of an exoplanet passing in front of the star. Using next-generation telescopes, astronomers may also be able to detect reflected light from a dense band of satellites in orbit.

“However, before we point our supertelescopes to a planet we need to identify good candidates,” said Socas-Navarro. “There are too many stars to check and we can’t go one by one. We need to rely on exoplanet search projects, such as the recently launched satellite TESS, to spot interesting candidates. Then we can do follow-up observations with supertelescopes to confirm or refute those candidates.”

In this respect, telescopes like the Kepler Space Telescope and the Transiting Exoplanet Survey Telescope (TESS) will still serve an important function in searching for technomarkers. Whereas the former telescope is due to retire soon, the latter is scheduled to launch in 2018.

Artist’s impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research Center

While these space-telescopes would search for rocky planets that are located within the habitable zones of thousands of stars, next-generation telescopes could search for signs of Clarke Exobelts and other technomarkers that would be otherwise hard to spot. However, as Socas-Navarro indicated, astronomers could also find evidence of Exobands by sifting through existing data as well.

“In doing SETI, we have no idea what we are looking for because we don’t know what the aliens are doing,” he said. “So we have to investigate all the possibilities that we can think of. Looking for Clarke Exobelts is a new way of searching, it seems at least reasonably plausible and, most importantly, it’s free. We can look for signatures of Clarke Exobelts in currently existing missions that search for exoplanets, exorings or exomoons. We don’t need to build costly new telescopes or satellites. We simply need to keep our eyes open to see if we can spot the signatures presented in the simulation in the flow of data from all of those projects.”

Humanity has been actively searching for signs of extra-terrestrial intelligence for decades. To know that our technology and methods are becoming more refined, and that more sophisticated searches could begin within a decade, is certainly encouraging. Knowing that we won’t be visible to any ETIs that are out there for another two centuries, that’s also encouraging!

And be sure to check out this cool video by our friend, Jean Michael Godier, where he explains the concept of a Clarke Exobelt:

Further Reading: IAC, The Astrophysical Journal

Does Climate Change Explain Why We Don’t See Any Aliens Out There?

A case study of the inhabitants of Easter Island served in part as the basis for a mathematical model showing the ways a technologically advanced population and its planet might develop or collapse together. Credit: University of Rochester illustration / Michael Osadciw

In the 1950s, famed physicist Enrico Fermi posed the question that encapsulated one of the toughest questions in the Search for Extra-Terrestrial Intelligence (SETI): “Where the heck is everybody?” What he meant was, given the age of the Universe (13.8 billion years), the sheer number of galaxies (between 1 and 2 trillion), and the overall number of planets, why has humanity still not found evidence of extra-terrestrial intelligence?

This question, which has come to be known as the “Fermi Paradox”, is something scientists continue to ponder. In a new study, a team from the University of Rochester considered that perhaps Climate Change is the reason. Using a mathematical model based on the Anthropocene, they considered how civilizations and planet systems co-evolve and whether or not intelligent species are capable of living sustainability with their environment.

The study, titled “The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback“, recently appeared in the scientific journal Astrobiology. The study was led by Adam Frank, a professor of physics and astronomy at the University of Rochester, with the assistance of Jonathan Carroll-Nellenback (a senior computational scientist at Rochester) Marina Alberti of the University of Washington, and Axel Kleidon of the Max Planck Institute for Biogeochemistry.

Today, Climate Change is one of the most pressing issues facing humanity. Thanks to changes that have taken place in the past few centuries – i.e. the industrial revolution, population growth, the growth of urban centers and reliance on fossil fuels – humans have had a significant impact on the planet. In fact, many geologists refer to the current era as the “Anthropocene” because humanity has become the single greatest factor affecting planetary evolution.

In the future, populations are expected to grow even further, reaching about 10 billion by mid-century and over 11 billion by 2100. In that time, the number of people who live within urban centers will also increase dramatically, increasing from 54% to 66% by mid-century. As such, the quesiton of how billions of people can live sustainably has become an increasingly important one.

Prof. Frank, who is also the author of the new book Light of the Stars: Alien Worlds and the Fate of the Earth (which draws on this study), conducted this study with his colleagues in order to address the issue Climate Change in an astrobiological context. As he explained in a University of Rochester press release:

“Astrobiology is the study of life and its possibilities in a planetary context. That includes ‘exo-civilizations’ or what we usually call aliens. If we’re not the universe’s first civilization, that means there are likely to be rules for how the fate of a young civilization like our own progresses.”

Using the Anthropocene as an example, one can see how civilization-planet systems co-evolve, and how a civilization can endanger itself through growth and expansion – in what is known as a “progress trap“. Basically, as civilizations grow, they consume more of the planet’s resources, which causes changes in the planet’s conditions. In this sense, the fate of a civilization comes down to how they use their planet’s resources.

In order to illustrate this process Frank and his collaborators developed a mathematical model that considers civilizations and planets as a whole. As Prof. Frank explained:

“The point is to recognize that driving climate change may be something generic. The laws of physics demand that any young population, building an energy-intensive civilization like ours, is going to have feedback on its planet. Seeing climate change in this cosmic context may give us better insight into what’s happening to us now and how to deal with it.”

The model was also based on case studies of extinct civilizations, which included the famous example of what became of the inhabitants of Rapa Nui (aka. Easter Island). According to archaeological studies, the people of the South Pacific began colonizing this island between 400 and 700 CE and its population peaked at 10,000 sometime between 1200 and 1500 CE.

Professor Adam Frank, who led the study in how civilization-planet systems evolve. Credit: University of Rochester photo / J. Adam Fenster

By the 18th century, however, the inhabitants had depleted their resources and the population declined to just 2000. This example raises the important concept known as “carrying capacity”, which is the maximum number of species an environment can support. As Frank explained, Climate Change is essentially how the Earth responds to the expansion of our civilization:

“If you go through really strong climate change, then your carrying capacity may drop, because, for example, large-scale agriculture might be strongly disrupted. Imagine if climate change caused rain to stop falling in the Midwest. We wouldn’t be able to grow food, and our population would diminish.”

Using their mathematical model, the team identified four potential scenarios that might occur on a planet. These include the Die-Off scenario, the Sustainability scenario, the Collapse Without Resource Change scenario, and the Collapse With Resource Change scenario. In the Die-Off scenario, the population and the planet’s state (for example, average temperatures) rise very quickly.

This would eventually lead to a population peak and then a rapid decline as changing planetary conditions make it harder for the majority of the population to survive. Eventually, a steady population level would be achieved, but it would only be a fraction of what the peak population was. This scenario occurs when civilizations are unwilling or unable to change from high-impact resources (i.e. oil, coal, clear-cutting) to sustainable ones (renewable energy).

Four scenarios for the fate of civilizations and their planets, based on mathematical models developed by Adam Frank and his collaborators. Credit: University of Rochester illustration / Michael Osadciw

In the Sustainability scenario, the population and planetary conditions both rise, but eventually come to together with steady values, thus avoiding any catastrophic effects. This scenario occurs when civilizations recognize that environmental changes threaten their existence and successfully make the transition from high-impact resources to sustainable ones.

The final two scenarios  – Collapse Without Resource Change and Collapse With Resource Change – differ in one key respect. In the former, the population and temperature both rise rapidly until the population reaches a peak and begins to drop rapidly – though it is not clear if the species itself survives. In the latter, the population and temperature rise rapidly, but the populations recognizes the danger and makes the transition. Unfortunately, the change comes too late and the population collapses anyway.

At present, scientists cannot say with any confidence which of these fates will be the one humanity faces. Perhaps we will make the transition before it is too late, perhaps not. But in the meantime, Frank and his colleagues hope to use more detailed models to predict how planets will respond to civilizations and the different ways they consume energy and resources in order to grow.

From this, scientists may be able to refine their predictions of what awaits us in this century and the next. It is during this time that crucial changes will be taking place, which include the aforementioned population growth, and the steady rise in temperatures. For instance, based on two scenarios that measured CO2 increases by the year 2100, NASA indicated that global temperatures could rise by either 2.5 °C (4.5 °F) or  4.4 °C (8 °F).

In the former scenario, where CO2 levels reached 550 ppm by 2100, the changes would be sustainable. But in the latter scenario, where CO2 levels reached 800 ppm, the changes would cause widespread disruption to systems that billions of humans depends upon for their livelihood and survival. Worse than that, life would become untenable in certain areas of the world, leading to massive displacement and humanitarian crises.

In addition to offering a possible resolution for the Fermi Paradox, this study offers some helpful advice for human beings. By thinking of civilizations and planets as a whole – be they Earth or exoplanets – researchers will be able to better predict what changes will be necessary for human civilization to survive. As Frank warned, it is absolutely essential that humanity mobilize now to ensure that the worst-case scenario does not occur here on Earth:

“If you change the earth’s climate enough, you might not be able to change it back. Even if you backed off and started to use solar or other less impactful resources, it could be too late, because the planet has already been changing. These models show we can’t just think about a population evolving on its own. We have to think about our planets and civilizations co-evolving.”

And be sure to enjoy this video that addresses Prof. Frank and his team’s research, courtesy of the University of Rochester:

Further Reading: University of Rochester, Astrobiology

Chandra Observatory Checks to Make Sure Alpha Centauri is Safe, You Know, in Case We Decide to Visit

The Alpha Centauri system, shown in the optical and X-ray wavelenghts (using Chandra data). Credit: chandra.harvard.edu

At distance of just 4.367 light years, the triple star system of Alpha Centauri (Alpha Centauri A+B and Proxima Centauri) is the closest star system to our own. In 2016, researchers from the European Southern Observatory announced the discovery of Proxima b, a rocky planet located within the star’s habitable zone and the closest exoplanet to our Solar System. However, whether or not Alpha Centauri has any potentially habitable planets remains a mystery.

Between 2012 and 2015, three possible candidates were announced in this system, but follow-up studies cast doubt on their existence. Looking to resolve this mystery, Tom Ayres – a senior research associate and Fellow at the University of Colorado Boulder’s Center for Astrophysics and Space Astronomy – conducted a study of Alpha Centauri based on over a decade’s worth of observations, with encouraging results!

The results of this study were presented at the 232rd meeting of the American Astronomical Society, which took place in Denver, Colorado, from June 3rd to June 7th. The study was based on ten years worth of monitoring of Alpha Centauri, which was provided the Chandra X-ray Observatory. This data indicated that any planets that orbit Alpha Centauri A and B are not likely to be bombarded by large amounts of X-ray radiation.

The two brightest stars of the Centaurus constellation – (left) Alpha Centauri and (right) Beta Centauri. The faint red star in the center of the red circle is Proxima Centauri. Credit: Wikipedia Commons/Skatebiker

This is good news as far as Alpha Centauri’s potential habitability goes since X-rays and related Space Weather effects are harmful to unprotected life. Not only can high doses of radiation be lethal to living creatures, they can also strip away planetary atmospheres. According to data provided by the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter, this  is precisely what happened to Mars between 4.2 and 3.7 billion years ago.

As Tom Ayres explained in a recent Chandra press release:

“Because it is relatively close, the Alpha Centauri system is seen by many as the best candidate to explore for signs of life. The question is, will we find planets in an environment conducive to life as we know it?”

The stars in the Alpha Centauri system (A and B) are quite similar to our Sun and orbit relatively close to each other. Alpha Centauri A, a G2 V (yellow dwarf) star, is the most Sun-like of the two, being 1.1 times the mass and 1.519 times the luminosity of the Sun. Alpha Centauri B is somewhat smaller and cooler, at 0.907 times the Sun’s mass and 0.445 times its visual luminosity.

As such, the odds that the system could support an Earth-like planet are pretty good, especially around Alpha Centauri A. According to the Chandra data, the prospects for life (based on X-ray bombardment) are actually better for any planet orbiting Alpha Centauri A than for the Sun, and Alpha Centauri B is only slightly worse. This is certainly good news for those who are hoping that a potentially habitable exoplanet is found in close proximity to the Solar System.

The respective habitable zones around Alpha Centauri A and B. Credit: Planetary Habitability Laboratory

When the existence of Proxima b was first announced, there was naturally much excitement. Not only did this planet orbit within it’s star’s habitable zone, but it was the closest known exoplanet to Earth. Subsequent studies, however, revealed that Proxima Centauri is variable and unstable by nature, which makes it unlikely that Proxima b could maintain an atmosphere or life on its surface. As Ayers explained:

“This is very good news for Alpha Cen AB in terms of the ability of possible life on any of their planets to survive radiation bouts from the stars. Chandra shows us that life should have a fighting chance on planets around either of these stars.”

Meanwhile, astronomers continue to search for exoplanets around Alpha Centauri A and B, but without success. The problem with this system is the orbit of the pair, which has drawn the two bright stars close together in the sky over the past decade. To help determine if Alpha Centauri was hospitable to life, astronomers began conducting a long-term observation campaign with Chandra in 2005.

As the only X-ray observatory capable of resolving Alpha Centauri A and B during its current close orbital approach, Chandra observed these two main stars every six months for the past thirteen years. These long-term measurements captured a full cycle of increases and decreases in X-ray activity, in much the same way that the Sun has an 11-year sunspot cycle.

What these observations showed was that any planet orbiting within the habitable zone of A would receive (on average) a lower dose of X-rays compared to similar planets around the Sun. For planets orbiting withing the habitable zone of B, the X-ray dose they received would be about five times higher. Meanwhile, planets orbiting within Proxima Centauri’s habitable zone would get an average of 500 times more X-rays, and 50,000 times more during a big flare.

In addition to providing encouraging hints about Alpha Centauri’s possible habitability, the X-ray observations provided by Chandra could also go a long way towards informing astronomers about our Sun’s X-ray activity. Understanding this is key to learning more about space weather and the threat they can pose to human infrastructure, as well as other technologically-advanced civilizations.

In the meantime, astronomers continue to search for exoplanets around Alpha Centauri A and B. Knowing that they have a good chance of supporting life will certainly make any future exploration of this system (like Project Starshot) all the more lucrative!

Some of the study’s results also appeared in the January issue in the Research Notes of the American Astronomical Society, titled “Alpha Centauri Beyond the Crossroads“. And be sure to enjoy this video about Alpha Centauri’s potential habitability, courtesy of the Chandra X-ray Observatory:

Further Reading: Chandra X-ray Observatory

Language in the Cosmos II: Hello There GJ273b

Ramfjordmoen Facility EISCAT
The Ramfjordmoen Facility of the European Incoherent Scatter Scientific Association (EISCAT) near Tromso, Norway. The facility contains several radio telescopes used to study interactions between the sun and the Earth's ionosphere and magnetosphere. At the left, the circular dish is the 32 meter diameter steerable dish that was used to transmit a message toward's Luyten's star or GJ273. This star is known to be circled by a potentially habitable extrasolar planet known as GJ273b.

The ‘Language in the Cosmos’ symposium

Three times in October, 2017 researchers turned a powerful radar telescope near Tromsø, Norway towards an invisibly faint star in the constellation Canis Minor (the small dog) and beamed a coded message into space in an attempt to signal an alien civilization. This new attempt to find other intelligent life in the universe was reported in a presentation at the ‘Language in the Cosmos’ symposium held on May 26 in Los Angeles, California.

METI International sponsored the symposium. This organization was founded to promote messaging to extraterrestrial intelligence (METI) as a new approach to in the search for extraterrestrial intelligence (SETI). It also supports other aspects of SETI research and astrobiology. The symposium was held as part of the International Space Development Conference sponsored by the National Space Society. It brought together linguists and other scientists for a daylong program of 11 presentations. Dr. Sheri Wells-Jensen, who is a linguist from Bowling Green State University in Ohio, was the organizer.

METI International
METI International

This is the second of a two part series about METI International’s symposium. It will focus on a presentation given at the symposium by the president of METI International, Dr. Douglas Vakoch. He spoke about a project that hasn’t previously gotten much attention: the first attempt to send a message to a nearby potentially habitable exoplanet, GJ273b. Vakoch led the team that constructed the tutorial portion of the message.

Douglas Vakoch interstellar message
Dr. Douglas Vakoch, president of METI International. (Credit: Per Bifrost public domain)

Message to the stars

The modern search for extraterrestrial intelligence began in 1960. This is when astronomer Frank Drake used a radio telescope in West Virginia to listen for signals from two nearby stars. Astronomers have sporadically mounted increasingly sophisticated searches, when funding has been available. The largest current project is Breakthrough Listen, funded by billionaire Yuri Milner. Searches have been made for laser as well as radio signals. Researchers have also looked for the megastructures that advanced aliens might create in space near their stars. METI International advocates an entirely new approach in which messages are transmitted to nearby stars in hopes of eliciting a reply.

The project to send a message to GJ273b was a collaboration between artists and scientists. It was initiated by the organizers of the Sónar Music, Creativity, and Technology Festival. The Sónar festival has been held every year since 1994 in Barcelona, Spain. The organizers wanted to commemorate the 25th anniversary of the festival. To implement the project, the festival organizers sought the help of the Catalonia Institute of Space Studies (IEEC), and METI International.

Sónar music festival and interstellar message
The Sónar Music, Creativity, and Technology Festival of Barcelona, Spain was a sponsor of the message to GJ273b.

To transmit the message, the team turned to The European Incoherent Scatter Scientific Association (EISCAT) which operates a network of radio and radar telescopes in Finland, Norway, and Sweden. This network is primarily used to study interactions between the sun and Earth’s ionosphere and magnetic field from a vantage point north of the arctic circle. The message was transmitted from a 32 meter diameter steerable dish at EISCAT’s Ramfjordmoen facility near Tromso, Norway, with a peak power of 2 megawatts. It is the first interstellar message ever to be sent towards a known potentially habitable exoplanet.

The target system

The obscure star known by the catalogue designation GJ273 caught the attention of the Dutch-American astronomer Willem J. Luyten in 1935. Luyten was researching the motions of the star. The star caught his attention because it was moving through Earth’s sky at the surprising rate of 3.7 arc seconds per year. Later study showed that this fast apparent motion is due to the fact that GJ273 is one of the sun’s nearest neighbors, just 12.4 light years away. It is the 24th closest star to the sun. Because of Luyten’s discovery it is sometimes known as Luyten’s star.

Luyten’s star is a faint red dwarf star with only a quarter of the sun’s mass. It caught astronomers’ attention again in March 2017. That’s when an exoplanet, GJ273b, was discovered in it’s habitable zone. The habitable zone is the range of distances where a planet with an atmosphere similar to Earth’s would, theoretically, have a range of temperatures suitable to have liquid water on its surface. The planet is a super Earth, with a mass 2.89 times that of our homeworld. It orbits just 800,000 miles from its faint sun, which it circles every 18 Earth days.

habitable exoplanet interstellar message
Artist’s impression of a habitable exoplanet orbiting a red dwarf star. The habitability of the planets of red dwarf stars is conjectural (Credit ESO/M. Kornmesser public domain)

This exoplanet was chosen because of its proximity to Earth, and because it is visible in the sky from the transmitter’s northerly location. Because GJ273b is relatively nearby, and radio messages travel at the speed of light, a reply from the aliens could come as early as the middle of this century.

The Message

Comparisons with Voyager

The GJ273b transmission is not the first time a message intended for extraterrestrials has been sent into space. Probably the most familiar interstellar message is the one carried on board the Voyager 1 and 2 spacecraft. NASA launched these interplanetary robots in 1977. They traveled on trajectories that hurtled them into interstellar space after they completed their missions to explore the outer solar system.

The message carried aboard each Voyager spacecraft was encoded digitally on a phonographic record. It was largely pictorial, and attempted to give a comprehensive overview of humans and Earth. It also included a selection of music from various Earthly cultures. These spacecraft will take tens of thousands of years to reach the stars. So, no reply can be expected on a timescale relevant to our society.

In some ways the GJ273b message is very different from the Voyager message. Unlike the Voyager record, it isn’t pictorial and doesn’t attempt to give a comprehensive overview of humans and Earth. This is perhaps because, unlike the Voyager message, it is intended to initiate a dialog on a timescale of decades. It resembles the Voyager message in that it contains music from Earth, namely, music from the artists that performed at the Sónar music festival.

Saying hello

For the human reader, understanding the message is a bit more of a challenge than looking at the pictures encoded on the Voyager record. You can try your hand at decoding the message yourself, because the organizers posted the whole thing on their website. Be forewarned that if you continue reading here, there are spoilers (or helpful clues, depending on how you look at it).

The message consists of a string of binary digits—ones and zeros. These are represented in the signal by a shift between two slightly different radio frequencies. The ‘hello’ section is designed to catch the attention of alien listeners. It consists of a string of prime numbers (numbers divisible only by themselves and one). They are represented with binary digits like this:

01001100011100000111110000000000011111111111

The message continues the sequence up to 193. A signal like this almost certainly can’t be produced by natural processes, and can only be the designed handiwork of beings who know math.

The tutorial

After the ‘hello’ section comes the tutorial. This, and all the rest of the message, uses eight bit blocks of binary digits as the basis for its symbols. The tutorial begins by introducing number symbols by counting. It uses base two numbers like this:

10000000 (0) 10000001 (1) 10000010 (2) 10000011 (3)
10000100 (4) 10000101 (5) 10000110 (6) 10000111 (7)
10001000 (8) 10001001 (9) 10001010 (10)

The leading ‘1’ allows numbers to be distinguished from other 8 bit symbols that don’t represent numbers.

After counting, the tutorial introduces symbols for the operations of arithmetic by showing sample problems. Here’s a sampling of some of the symbols for math operations:

00000110 (+) 00000111 (-) 00001000 (×) 00001001 (÷)
00111100 (=)

The tutorial then proceeds to geometry using combinations of numbers and symbols to illustrate the Pythagorean theorem. It eventually progresses to sine waves, thereby describing the radio wave carrying the signal itself. Finally the tutorial describes the physics of sound waves and the relationships between musical notes.

Besides the numbers, the tutorial introduces 55 8-bit symbols in all. It provides the instructions that aliens would need to properly reproduce a series of digitally encoded musical selections from the Sónar Festival.

During its journey of 70 trillion miles, the message is sure to become corrupted with noise. To compensate, the tutorial was transmitted three times during each transmission, requiring a total of 33 minutes to transmit. The entire transmission was repeated on three separate days, October 16, 17, and 18, 2017. A second block of three transmissions was made on May 14, 15, and 16, 2018.

The music

Each transmission included a different selection of music, with the works of 38 different musicians included in all. You can hear recordings of all this music at the Sónar Calling GJ273b website.

The rationale behind the message

Current and past SETI projects conducted by astronomers here on Earth assume that advanced aliens would make things easy for newly emerging civilizations by establishing powerful beacons that would broadcast in all directions at all times. Thus, SETI searchers generally use the same sort of highly directional dish antennae often used for other research in radio astronomy. They listen to any one star for only a few minutes, searching each one in turn for the beacon.

Unlike the always-on beacons imagined as the objects of Earth’ SETI searches, the Sónar message was only transmitted for 33 minutes on each of three days, and on only two occasions. Vakoch admits that “our message would likely be undetected by a civilization on GJ273b using the same strategy” favored by beacon searching SETI researchers on Earth.

However, some researchers have called traditional SETI assumptions and strategy into question, and studies of alternative search technologies have already been conducted. Vakoch notes that “we humans already have the technological capacity, and need only the funding, to conduct an all-sky survey that would detect intermittent transmission like ours”.

A larger problem is that the message was directed at just one planet. Although GJ273b orbits within its star’s habitable zone, we really know little what that means for whether the planet is actually habitable, or whether it has life or intelligence. Earth itself has been habitable for billions of years. But it has only had a civilization capable of radio transmissions for a century.

Vakoch conceded that “The only way we will get a reply back from GJ273b is if the galaxy is chock full of intelligent life, and it is out there just waiting for us to take the initiative. More realistically, we may need to replicate this process with hundreds, thousands, or even millions of stars before we reach one with an advanced civilization that can detect our signal”. METI International aims to conduct a design study for such a large scale METI project in hopes that funding will materialize from governmental or other sources.

References and further reading:

Sónar Calling GJ273b

Cain F. (2013) How could we find aliens, Universe today.

Patton, P. E. (2018) Language in the Cosmos I: Is universal grammar really universal?, Universe Today.

Patton P. E. (2016) Alien Minds, I. Are extraterrestrial civilizations likely to evolve, II. Do aliens think big brains are sexy too?, III. The octopus’s garden and the country of the blind, Universe Today

Patton, P. E. (2015) Who speaks for Earth? The controversy over interstellar messaging, Universe Today.

Patton P. E. (2014) Communicating across the cosmos. Part 1: Shouting into the darkness, Part 2: Petabytes from the stars, Part 3: Bridging the vast gulf, Part 4: Quest for a Rosetta Stone, Universe Today.

Vakoch D. A. (2017) New keys to help extraterrestrials unlock our messages, Scientific American, Observations.

Vakoch D. A. (2011) Responsibility, capability and Active SETI: Policy, law, ethics, and communication with extraterrestrial intelligence, Acta Astronautica, 68:512-519

Vakoch D. A. (2010) An iconic approach to communicating musical concepts in interstellar messages, Acta Astronautica, 67:1406-1409

Pros and Cons of Various Methods of Interstellar Travel

A new study considers what life could be like for civilizations 1 trillion years from now, when every star in the Universe will expand beyond the cosmic horizon. Credit: ESO/S. Brunier

It’s a staple of science fiction, and something many people have fantasized about at one time or another: the idea of sending out spaceships with colonists and transplanting the seed of humanity among the stars. Between discovering new worlds, becoming an interstellar species, and maybe even finding extra-terrestrial civilizations, the dream of  spreading beyond the Solar System is one that can’t become reality soon enough!

For decades, scientists have contemplated how humanity might one-day reach achieve this lofty goal. And the range of concepts they have come up with present a whole lot of pros and cons. These pros and cons were raised in a recent study by Martin Braddock, a member of the Mansfield and Sutton Astronomical Society, a Fellow of the Royal Society of Biology, and a Fellow of the Royal Astronomical Society. Continue reading “Pros and Cons of Various Methods of Interstellar Travel”

One of the TRAPPIST-1 Planets Has an Iron Core

Artist's impression of TRAPPIST-1e, which has a large iron core, according to a recent study. Credit: NASA/JPL-Caltech

In February of 2017, a team of European astronomers announced the discovery of a seven-planet system orbiting the nearby star TRAPPIST-1. Aside from the fact that all seven planets were rocky, there was the added bonus of three of them orbiting within TRAPPIST-1’s habitable zone. Since that time, multiple studies have been conducted to determine whether or not any of these planets could be habitable.

In accordance with this goal, these studies have focused on whether or not these planets have atmospheres, their compositions and their interiors. One of the latest studies was conducted by two researchers from Columbia University’s Cool Worlds Laboratory, who determined that one of the TRAPPIST-1 planets (TRAPPIST-1e) has a large iron core – a finding which could have implications for this planet’s habitability.

Continue reading “One of the TRAPPIST-1 Planets Has an Iron Core”

How Many Planets is TESS Going to Find?

Artist Illustration of TESS and its 4 telescopes. Credit: NASA/MIT
Artist concept of the Transiting Exoplanet Survey Satellite and its 4 telescopes. Credit: NASA/MIT

The Transiting Exoplanet Survey Satellite (TESS), NASA’s latest exoplanet-hunting space telescope, was launched into space on Wednesday, April 18th, 2018. As the name suggests, this telescope will use the Transit Method to detect terrestrial-mass planets (i.e. rocky) orbiting distant stars. Alongside other next-generation telescopes like the James Webb Space Telescope (JWST), TESS will effectively pick up where telescopes like Hubble and Kepler left off.

But just how many planets is TESS expected to find? That was the subject of a new study by a team researchers who attempted to estimate just how many planets TESS is likely to discover, as well as the physical properties of these planets and the stars that they orbit. Altogether, they estimate TESS will find thousands of planets orbiting a variety of stars during its two-year primary mission.

The study, titled “A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS)“, recently appeared online. The study was led by Thomas Barclay, an associate research scientist at the NASA Goddard Space Flight Center and the University of Maryland, and included Joshua Pepper (an astrophysicist at Lehigh University) and Elisa Quintana (a research scientist with the SETI Institute and NASA Ames Research Center).

As Thomas Barclay told Universe Today via email:

“TESS builds off the legacy of Kepler. Kepler was primarily a statistical mission and taught us that planets are everywhere. However, it wasn’t optimized for finding excellent individual planets for further study. Now that we know planets are common, we can launch something like TESS to search for the planets that we will undertake intensive studies of using ground and space-based telescopes. Planets that TESS will find will on average be 10x closer and 100x brighter.”

For the sake of their study, the team created a three-step model that took into account the stars TESS will observe, the number of planets each one is likely to have, and the likelihood of TESS spotting them. These included the kinds of planets that would be orbiting around dwarf stars ranging from A-type to K-type (like our Sun), and lower-mass M-type (red dwarf) stars.

“To estimate how many planets TESS will find we took stars that will be observed by TESS and simulated a population of planets orbiting them,” said Barclay. “The exoplanet population stats all come from studies that used Kepler data. Then, using models of TESS performance, we estimated how many of those planets would be detected by TESS. This is where we get our yield numbers from.”

The first step was straightforward, thanks to the availability of the Candidate Target List (CTL) – a prioritized list of target stars that the TESS Target Selection Working Group determined were the most suitable stars for detecting small planets. They then ranked the 3.8 million stars that are included in the latest version based on their brightness and radius and determined which of these TESS is likely to observe.

Liftoff of the SpaceX Falcon 9 rocket carrying NASA’s TESS spacecraft. Image credit: NASA TV

The second step consisted of assigning planets to each star based on a Poisson distribution, a statistical technique where a given number is assigned to each star (in this case, 0 or more). Each planet was then assigned six physical properties drawn at random, including an orbital period, a radius, an eccentricity, a periastron angle, an inclination to our line of sight, and a mid-time of first transit.

Last, they attempted to estimate how many of these planets would generate a detectable transit signal. As noted, TESS will rely on the Transit Method, where periodic dips in a star’s brightness are used to determine the presence of one or more orbiting planets, as well as place constraints on their sizes and orbital periods. For this, they considered the flux contamination of nearby stars, the number of transits, and the transit duration.

Ultimately, they determined with 90% confidence that TESS is likely to detect 4430–4660 new exoplanets during its two years mission:

“The results is that we predict that TESS will find more than 4000 planets, with hundreds smaller than twice the size of Earth. The primary goal of TESS is to find planets that are bright enough for ground-based telescope to measure their mass. We estimate that TESS could lead to triple the number of planets smaller than 4 Earth-radii with mass measurements.”

As of April 1st, 2018, a total 3,758 exoplanets have been confirmed in 2,808 systems, with 627 systems having more than one planet. In other words, Barclay and his team estimate that the TESS mission will effectively double the number of confirmed exoplanets and triple the number of Earth-sized and Super-Earth’s during its primary mission.

This will begin after a series of orbital maneuvers and engineering tests, which are expected to last for about two months. With the exoplanet catalog thus expanded, we can expect that there will be many more “Earth-like” candidates available for study. And while we still will not be able to determine if any of them have life, we may perhaps find some that show signs of a viable atmosphere and water on the surfaces.

The hunt for life beyond Earth will continue for many years to come! And in the meantime, be sure to enjoy this video about the TESS mission, courtesy of NASA:

Further Reading: Astrobites, arXiv