One of the TRAPPIST-1 Planets Has an Iron Core

Artist's impression of TRAPPIST-1e, which has a large iron core, according to a recent study. Credit: NASA/JPL-Caltech

In February of 2017, a team of European astronomers announced the discovery of a seven-planet system orbiting the nearby star TRAPPIST-1. Aside from the fact that all seven planets were rocky, there was the added bonus of three of them orbiting within TRAPPIST-1’s habitable zone. Since that time, multiple studies have been conducted to determine whether or not any of these planets could be habitable.

In accordance with this goal, these studies have focused on whether or not these planets have atmospheres, their compositions and their interiors. One of the latest studies was conducted by two researchers from Columbia University’s Cool Worlds Laboratory, who determined that one of the TRAPPIST-1 planets (TRAPPIST-1e) has a large iron core – a finding which could have implications for this planet’s habitability.

Continue reading “One of the TRAPPIST-1 Planets Has an Iron Core”

How Many Planets is TESS Going to Find?

Artist Illustration of TESS and its 4 telescopes. Credit: NASA/MIT
Artist concept of the Transiting Exoplanet Survey Satellite and its 4 telescopes. Credit: NASA/MIT

The Transiting Exoplanet Survey Satellite (TESS), NASA’s latest exoplanet-hunting space telescope, was launched into space on Wednesday, April 18th, 2018. As the name suggests, this telescope will use the Transit Method to detect terrestrial-mass planets (i.e. rocky) orbiting distant stars. Alongside other next-generation telescopes like the James Webb Space Telescope (JWST), TESS will effectively pick up where telescopes like Hubble and Kepler left off.

But just how many planets is TESS expected to find? That was the subject of a new study by a team researchers who attempted to estimate just how many planets TESS is likely to discover, as well as the physical properties of these planets and the stars that they orbit. Altogether, they estimate TESS will find thousands of planets orbiting a variety of stars during its two-year primary mission.

The study, titled “A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS)“, recently appeared online. The study was led by Thomas Barclay, an associate research scientist at the NASA Goddard Space Flight Center and the University of Maryland, and included Joshua Pepper (an astrophysicist at Lehigh University) and Elisa Quintana (a research scientist with the SETI Institute and NASA Ames Research Center).

As Thomas Barclay told Universe Today via email:

“TESS builds off the legacy of Kepler. Kepler was primarily a statistical mission and taught us that planets are everywhere. However, it wasn’t optimized for finding excellent individual planets for further study. Now that we know planets are common, we can launch something like TESS to search for the planets that we will undertake intensive studies of using ground and space-based telescopes. Planets that TESS will find will on average be 10x closer and 100x brighter.”

For the sake of their study, the team created a three-step model that took into account the stars TESS will observe, the number of planets each one is likely to have, and the likelihood of TESS spotting them. These included the kinds of planets that would be orbiting around dwarf stars ranging from A-type to K-type (like our Sun), and lower-mass M-type (red dwarf) stars.

“To estimate how many planets TESS will find we took stars that will be observed by TESS and simulated a population of planets orbiting them,” said Barclay. “The exoplanet population stats all come from studies that used Kepler data. Then, using models of TESS performance, we estimated how many of those planets would be detected by TESS. This is where we get our yield numbers from.”

The first step was straightforward, thanks to the availability of the Candidate Target List (CTL) – a prioritized list of target stars that the TESS Target Selection Working Group determined were the most suitable stars for detecting small planets. They then ranked the 3.8 million stars that are included in the latest version based on their brightness and radius and determined which of these TESS is likely to observe.

Liftoff of the SpaceX Falcon 9 rocket carrying NASA’s TESS spacecraft. Image credit: NASA TV

The second step consisted of assigning planets to each star based on a Poisson distribution, a statistical technique where a given number is assigned to each star (in this case, 0 or more). Each planet was then assigned six physical properties drawn at random, including an orbital period, a radius, an eccentricity, a periastron angle, an inclination to our line of sight, and a mid-time of first transit.

Last, they attempted to estimate how many of these planets would generate a detectable transit signal. As noted, TESS will rely on the Transit Method, where periodic dips in a star’s brightness are used to determine the presence of one or more orbiting planets, as well as place constraints on their sizes and orbital periods. For this, they considered the flux contamination of nearby stars, the number of transits, and the transit duration.

Ultimately, they determined with 90% confidence that TESS is likely to detect 4430–4660 new exoplanets during its two years mission:

“The results is that we predict that TESS will find more than 4000 planets, with hundreds smaller than twice the size of Earth. The primary goal of TESS is to find planets that are bright enough for ground-based telescope to measure their mass. We estimate that TESS could lead to triple the number of planets smaller than 4 Earth-radii with mass measurements.”

As of April 1st, 2018, a total 3,758 exoplanets have been confirmed in 2,808 systems, with 627 systems having more than one planet. In other words, Barclay and his team estimate that the TESS mission will effectively double the number of confirmed exoplanets and triple the number of Earth-sized and Super-Earth’s during its primary mission.

This will begin after a series of orbital maneuvers and engineering tests, which are expected to last for about two months. With the exoplanet catalog thus expanded, we can expect that there will be many more “Earth-like” candidates available for study. And while we still will not be able to determine if any of them have life, we may perhaps find some that show signs of a viable atmosphere and water on the surfaces.

The hunt for life beyond Earth will continue for many years to come! And in the meantime, be sure to enjoy this video about the TESS mission, courtesy of NASA:

Further Reading: Astrobites, arXiv

The DARKNESS Instrument Will Block Stars and Reveal Their Planets. 100 Million Times Fainter than the Star

The new DARKNESS camera developed by an international team of researchers will allow astronomers to directly study nearby exoplanets. Credit: Stanford/SRL

The hunt for planets beyond our Solar System has led to the discovery of thousands of candidates in the past few decades. Most of these have been gas giants that range in size from being Super-Jupiters to Neptune-sized planets. However, several have also been determined to be “Earth-like” in nature, meaning that they are rocky and orbit within their stars’ respective habitable zones.

Unfortunately, determining what conditions might be like on their surfaces is difficult, since astronomers are unable to study these planets directly. Luckily, an international team led by UC Santa Barbara physicist Benjamin Mazin has developed a new instrument known as DARKNESS. This superconducting camera, which is the world’s largest and most sophisticated, will allow astronomers to detect planets around nearby stars.

The team’s study which details their instrument, titled “DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy“, recently appeared in the Publications of the Astronomy Society of the Pacific. The team was led by Benjamin Mazin, the Worster Chair in Experimental Physics at UCSB, and also includes members from NASA’s Jet Propulsion Laboratory, the California Institute of Technology, the Fermi National Accelerator Laboratory, and multiple universities.

The DARKNESS instrument is the worlds most advanced camera and will enable the detection of planets around the nearest stars. Credit: UCSB

Essentially, it is extremely difficult for scientists to study exoplanets directly because of the interference caused by their stars. As Mazin explained in a recent UCSB press release, “Taking a picture of an exoplanet is extremely challenging because the star is much brighter than the planet, and the planet is very close to the star.” As such, astronomers are often unable to analyze the light being reflected off of a planet’s atmosphere to determine its composition.

These studies would help place additional constraints on whether or not a planet is potentially habitable. At present, scientists are forced to determine if a planet could support life based on its size, mass, and distance from its star. In addition, studies have been conducted that have determined whether or not water exists on a planet’s surface based on how its atmosphere loses hydrogen to space.

The DARK-speckle Near-infrared Energy-resolved Superconducting Spectrophotometer (aka. DARKNESS), the first 10,000-pixel integral field spectrograph, seeks to correct this. In conjunction with a large telescope and adaptive optics, it uses Microwave Kinetic Inductance Detectors to quickly measure the light coming from a distant star, then sends a signal back to a rubber mirror that can form into a new shape 2,000 times a second.

MKIDs allow astronomers to determine the energy and arrival time of individual photons, which is important when it comes to distinguishing a planet from scattered or refracted light. This process also eliminates read noise and dark current – the primary sources of error in other instruments – and cleans up the atmospheric distortion by suppressing the starlight.

UCSB physicist Ben Mazin, who led the development of the DARKNESS camera. Credit: Sonia Fernandez

Mazin and his colleagues have been exploring MKIDs technology for years through the Mazin Lab, which is part of the UCSB’s Department of Physics. As Mazin explained:

“This technology will lower the contrast floor so that we can detect fainter planets. We hope to approach the photon noise limit, which will give us contrast ratios close to 10-8, allowing us to see planets 100 million times fainter than the star. At those contrast levels, we can see some planets in reflected light, which opens up a whole new domain of planets to explore. The really exciting thing is that this is a technology pathfinder for the next generation of telescopes.”

DARKNESS is now operational on the 200-inch Hale Telescope at the Palomar Observatory near San Diego, California, where it is part of the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph. During the past year and a half, the team has conducted four runs with the DARKNESS camera to test its contrast ratio and make sure it is working properly.

In May, the team will return to gather more data on nearby planets and demonstrate their progress. If all goes well, DARKNESS will become the first of many cameras designed to image planets around nearby M-type (red dwarf) stars, where many rocky planets have been discovered in recent years. The most notable example is Proxima b, which orbits the nearest star system to our own (Proxima Centauri, roughly 4.25 light years away).

The Palomar Observatory, where the DARKNESS camera is currently installed. Credit: IPTF/Palomar Observatory

“Our hope is that one day we will be able to build an instrument for the Thirty Meter Telescope planned for Mauna Kea on the island of Hawaii or La Palma,” Mazin said. “With that, we’ll be able to take pictures of planets in the habitable zones of nearby low mass stars and look for life in their atmospheres. That’s the long-term goal and this is an important step toward that.”

In addition to the study of nearby rocky planets, this technology will also allow astronomers to study pulsars in greater detail and determine the redshift of billions of galaxies, allowing for more accurate measurements of how fast the Universe is expanding. This, in turn, will allow for more detailed studies of how our Universe has evolved over time and the role played by Dark Energy.

These and other technologies, such as NASA’s proposed Starshade spacecraft and Stanford’s mDot occulter, will revolutionize exoplanet studies in the coming years. Paired with next-generation telescopes – such as the James Webb Space Telescope and the Transiting Exoplanet Survey Satellite (TESS), which recently launched – astronomers will not only be able to discover more in the way exoplanets, but will be able to characterize them like never before.

Further Reading: UC Santa BarbaraPublications of the Astronomy Society of the Pacific

The Challenges of an Alien Spaceflight Program: Escaping Super Earths and Red Dwarf Stars

In a series of papers, Professor Loeb and Michael Hippke indicate that conventional rockets would have a hard time escaping from certain kinds of extra-solar planets. Credit: NASA/Tim Pyle
In a series of papers, Professor Loeb and Michael Hippke indicate that conventional rockets would have a hard time escaping from certain kinds of extra-solar planets. Credit: NASA/Tim Pyle

Since the beginning of the Space Age, humans have relied on chemical rockets to get into space. While this method is certainly effective, it is also very expensive and requires a considerable amount of resources. As we look to more efficient means of getting out into space, one has to wonder if similarly-advanced species on other planets (where conditions would be different) would rely on similar methods.

Harvard Professor Abraham Loeb and Michael Hippke, an independent researcher affiliated with the Sonneberg Observatory, both addressed this question in two recentlyreleased papers. Whereas Prof. Loeb looks at the challenges extra-terrestrials would face launching rockets from Proxima b, Hippke considers whether aliens living on a Super-Earth would be able to get into space.

The papers, tiled “Interstellar Escape from Proxima b is Barely Possible with Chemical Rockets” and “Spaceflight from Super-Earths is difficult” recently appeared online, and were authored by Prof. Loeb and Hippke, respectively. Whereas Loeb addresses the challenges of chemical rockets escaping Proxima b, Hippke considers whether or not the same rockets would able to achieve escape velocity at all.

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

For the sake of his study, Loeb considered how we humans are fortunate enough to live on a planet that is well-suited for space launches. Essentially, if a rocket is to escape from the Earth’s surface and reach space, it needs to achieve an escape velocity of 11.186 km/s (40,270 km/h; 25,020 mph). Similarly, the escape velocity needed to get away from the location of the Earth around the Sun is about 42 km/s (151,200 km/h; 93,951 mph).

As Prof. Loeb told Universe Today via email:

“Chemical propulsion requires a fuel mass that grows exponentially with terminal speed. By a fortunate coincidence the escape speed from the orbit of the Earth around the Sun is at the limit of attainable speed by chemical rockets. But the habitable zone around fainter stars is closer in, making it much more challenging for chemical rockets to escape from the deeper gravitational pit there.”

As Loeb indicates in his essay, the escape speed scales as the square root of the stellar mass over the distance from the star, which implies that the escape speed from the habitable zone scales inversely with stellar mass to the power of one quarter. For planets like Earth, orbiting within the habitable zone of a G-type (yellow dwarf) star like our Sun, this works out quite while.

This infographic compares the orbit of the planet around Proxima Centauri (Proxima b) with the same region of the Solar System. Credit: Pale Red Dot

Unfortunately, this does not work well for terrestrial planets that orbit lower-mass M-type (red dwarf) stars. These stars are the most common type in the Universe, accounting for 75% of stars in the Milky Way Galaxy alone. In addition, recent exoplanet surveys have discovered a plethora of rocky planets orbiting red dwarf stars systems, with some scientists venturing that they are the most likely place to find potentially-habitable rocky planets.

Using the nearest star to our own as an example (Proxima Centauri), Loeb explains how a rocket using chemical propellant would have a much harder time achieving escape velocity from a planet located within it’s habitable zone.

“The nearest star to the Sun, Proxima Centauri, is an example for a faint star with only 12% of the mass of the Sun,” he said. “A couple of years ago, it was discovered that this star has an Earth-size planet, Proxima b, in its habitable zone, which is 20 times closer than the separation of the Earth from the Sun. At that location, the escape speed is 50% larger than from the orbit of the Earth around the Sun. A civilization on Proxima b will find it difficult to escape from their location to interstellar space with chemical rockets.”

Hippke’s paper, on the other hand, begins by considering that Earth may in fact not be the most habitable type of planet in our Universe. For instance, planets that are more massive than Earth would have higher surface gravity, which means they would be able to hold onto a thicker atmosphere, which would provide greater shielding against harmful cosmic rays and solar radiation.

Artists impression of a Super-Earth, a class of planet that has many times the mass of Earth, but less than a Uranus or Neptune-sized planet. Credit: NASA/Ames/JPL-Caltech

In addition, a planet with higher gravity would have a flatter topography, resulting in archipelagos instead of continents and shallower oceans – an ideal situation where biodiversity is concerned. However, when it comes to rocket launches, increased surface gravity would also mean a higher escape velocity. As Hippke indicated in his study:

“Rockets suffer from the Tsiolkovsky (1903) equation : if a rocket carries its own fuel, the ratio of total rocket mass versus final velocity is an exponential function, making high speeds (or heavy payloads) increasingly expensive.”

For comparison, Hippke uses Kepler-20 b, a Super-Earth located 950 light years away that is 1.6 times Earth’s radius and 9.7 times it mass. Whereas escape velocity from Earth is roughly 11 km/s, a rocket attempting to leave a Super-Earth similar to Kepler-20 b would need to achieve an escape velocity of ~27.1 km/s. As a result, a single-stage rocket on Kepler-20 b would have to burn 104 times as much fuel as a rocket on Earth to get into orbit.

To put it into perspective, Hippke considers specific payloads being launched from Earth. “To lift a more useful payload of 6.2 t as required for the James Webb Space Telescope on Kepler-20 b, the fuel mass would increase to 55,000 t, about the mass of the largest ocean battleships,” he writes. “For a classical Apollo moon mission (45 t), the rocket would need to be considerably larger, ~400,000 t.”

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity’s first interstellar voyage. Credit: breakthroughinitiatives.org

While Hippke’s analysis concludes that chemical rockets would still allow for escape velocities on Super-Earths up to 10 Earth masses, the amount of propellant needed makes this method impractical. As Hippke pointed out, this could have a serious effect on an alien civilization’s development.

“I am surprised to see how close we as humans are to end up on a planet which is still reasonably lightweight to conduct space flight,” he said. “Other civilizations, if they exist, might not be as lucky. On more massive planets, space flight would be exponentially more expensive. Such civilizations would not have satellite TV, a moon mission, or a Hubble Space Telescope. This should alter their way of development in certain ways we can now analyze in more detail.”

Both of these papers present some clear implications when it comes to the search for extra-terrestrial intelligence (SETI). For starters, it means that civilizations on planets that orbit red dwarf stars or Super-Earths are less likely to be space-faring, which would make detecting them more difficult. It also indicates that when it comes to the kinds of propulsion humanity is familiar with, we may be in the minority.

“This above results imply that chemical propulsion has a limited utility, so it would make sense to search for signals associated with lightsails or nuclear engines, especially near dwarf stars,” said Loeb. “But there are also interesting implications for the future of our own civilization.”

Artist’s concept of a bimodal nuclear rocket making the journey to the Moon, Mars, and other destinations in the Solar System. Credit: NASA

“One consequence of the paper is for space colonization and SETI,” added Hippke. “Civs from Super-Earths are much less likely to explore the stars. Instead, they would be (to some extent) “arrested” on their home planet, and e.g. make more use of lasers or radio telescopes for interstellar communication instead of sending probes or spaceships.”

However, both Loeb and Hippke also note that extra-terrestrial civilizations could address these challenges by adopting other methods of propulsion. In the end, chemical propulsion may be something that few technologically-advanced species would adopt because it is simply not practical for them. As Loeb explained:

“An advanced extraterrestrial civilization could use other propulsion methods, such as nuclear engines or lightsails which are not constrained by the same limitations as chemical propulsion and can reach speeds as high as a tenth of the speed of light. Our civilization is currently developing these alternative propulsion technologies but these efforts are still at their infancy.”

One such example is Breakthrough Starshot, which is currently being developed by the Breakthrough Prize Foundation (of which Loeb is the chair of the Advisory Committee). This initiative aims to use a laser-driven lightsail to accelerate a nanocraft up to speeds of 20% the speed of light, which will allow it to travel to Proxima Centauri in just 20 years time.

Artist’s impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

Hippke similarly considers nuclear rockets as a viable possibility, since increased surface gravity would also mean that space elevators would be impractical. Loeb also indicated that the limitations imposed by planets around low mass stars could have repercussions for when humans try to colonize the known Universe:

“When the sun will heat up enough to boil all water off the face of the Earth, we could relocate to a new home by then. Some of the most desirable destinations would be systems of multiple planets around low mass stars, such as the nearby dwarf star TRAPPIST-1 which weighs 9% of a solar mass and hosts seven Earth-size planets. Once we get to the habitable zone of TRAPPIST-1, however, there would be no rush to escape. Such stars burn hydrogen so slowly that they could keep us warm for ten trillion years, about a thousand times longer than the lifetime of the sun.”

But in the meantime, we can rest easy in the knowledge that we live on a habitable planet around a yellow dwarf star, which affords us not only life, but the ability to get out into space and explore. As always, when it comes to searching for signs of extra-terrestrial life in our Universe, we humans are forced to take the “low hanging fruit approach”.

Basically, the only planet we know of that supports life is Earth, and the only means of space exploration we know how to look for are the ones we ourselves have tried and tested. As a result, we are somewhat limited when it comes to looking for biosignatures (i.e. planets with liquid water, oxygen and nitrogen atmospheres, etc.) or technosignatures (i.e. radio transmissions, chemical rockets, etc.).

As our understanding of what conditions life can emerge under increases, and our own technology advances, we’ll have more to be on the lookout for. And hopefully, despite the additional challenges it may be facing, extra-terrestrial life will be looking for us!

Professor Loeb’s essay was also recently published in Scientific American.

Further Reading: arXiv, arXiv (2), Scientific American

Proxima Centauri Just Released a Flare so Powerful it was Visible to the Unaided Eye. Planets There Would Get Scorched

Artist's impression of a flaring red dwarf star, orbited by an exoplanet. Credit: NASA, ESA, and G. Bacon (STScI)

Since its discovery was announced in August of 2016, Proxima b has been an endless source of wonder and the target of many scientific studies. In addition to being the closest extra-solar planet to our Solar System, this terrestrial planet also orbits within Proxima Centauri’s circumstellar habitable zone (aka. “Goldilocks Zone”). As a result, scientists have naturally sought to determine if this planet could actually be home to extra-terrestial life.

Many of these studies have been focused on whether or not Proxima b could retain an atmosphere and liquid water on its surface in light of the fact that it orbits an M-type (red dwarf) star. Unfortunately, many of these studies have revealed that this is not likely due to flare activity. According to a new study by an international team of scientists, Proxima Centauri released a superflare that was so powerful, it would have been lethal to any life as we know it.

The study, titled “The First Naked-Eye Superflare Detected from Proxima Centauri“, recently appeared online. The team was led by Howard Ward, a PhD candidate in physics and astronomy at the UNC Chapel Hill, with additional members from the NASA Goddard Space Flight Center, the University of Washington, the University of Colorado, the University of Barcelona and the School of Earth and Space Exploration at Arizona State University.

Artist impression of a red dwarf star like Proxima Centauri, the nearest star to our sun. New analysis of ALMA observations reveal that Proxima Centauri emitted a powerful flare that would have created inhospitable conditions for planets in that system. Credit: NRAO/AUI/NSF; D. Berry

As they indicate in their study, solar flare activity would be one of the greatest potential threats to planetary habitability in a system like Proxima Centauri. As they explain:

“[W]hile ozone in an Earth-like planet’s atmosphere can shield the planet from the intense UV flux associated with a single superflare, the atmospheric ozone recovery time after a superflare is on the order of years. A sufficiently high flare rate can therefore permanently prevent the formation of a protective ozone layer, leading to UV radiation levels on the surface which are beyond what some of the hardiest-known organisms can survive.”

In addition stellar flares, quiescent X-ray emissions and UV flux from a red dwarf star can would be capable of stripping planetary atmospheres over the course of several billion years. And while multiple studies have been conducted that have explored low- and moderate-energy flare events on Proxima, only one high-energy event has even been observed.

This occurred on March of 2016, when Proxima Centauri emitted a superflare that was so bright, it was visible to the naked eye. This flare was observed by the Evryscope, an array of telescopes – funded through the National Science Foundation‘s Advanced Technologies and Instrumentation (ATI) and Faculty Early Career Development (CAREER) programs – that is pointed at every part of the accessible sky simultaneously and continuously.

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

As the team indicates in their study, the March 2016 superflare was the first to be observered from Proxima Centauri, and was rather powerful:

“In March 2016 the Evryscope detected the first-known Proxima superflare. The superflare had a bolometric energy of 10^33.5 erg, ~10× larger than any previously-detected flare from Proxima, and 30×larger than any optically measured Proxima flare. The event briefly increased Proxima’s visible-light emission by a factor of 38× averaged over the Evryscope’s 2-minute cadence, or ~68× at the cadence of the human eye. Although no M-dwarfs are usually visible to the naked-eye, Proxima briefly became a magnitude-6.8 star during this superflare, visible to dark-site naked-eye observers.”

The superflare coincided with the three-month Pale Red Dot campaign, which was responsible for first revealing the existence of Proxima b. While monitoring the star with the HARPS spectrograph – which is part of the 3.6 m telescope at the ESO’s La Silla Observatory in Chile – the campaign team also obtaining spectra on March 18th, 08:59 UT (just 27 minutes after the flare peaked at 08:32 UT).

The team also noted that over the last two years, the Evryscope has recorded 23 other large Proxima flares, ranging in energy from 10^30.6 erg to 10^32.4 erg. Coupled with rates of a single superflare detection, they predict that at least five superflares occur each year. They then combined this data with the high-resolution HARPS spectroscopy to constrain the superflare’s UV spectrum and any associated coronal mass ejections.

The Red Dots project is successor to the Pale Red Dot project, which discovered Proxima b last summer. Credit: ESO

The team then used the HARPS spectra and the Evryscope flare rates to create a model to determine what effects this star would have on a nitrogen-oxygen atmosphere. This included how long the planet’s protective ozone layer would be able to withstand the blasts, and what effect regular exposure to radiation would have on terrestrial organisms.

“[T]he repeated flaring is sufficient to reduce the ozone of an Earth-like atmosphere by 90% within five years. We estimate complete depletion occurs within several hundred kyr. The UV light produced by the Evryscope superflare therefore reached the surface with ~100× the intensity required to kill simple UV-hardy microorganisms, suggesting that life would struggle to survive in the areas of Proxima b exposed to these flares.”

Essentially, this and other studies have concluded that any planets orbiting Proxima Centauri would not be habitable for very long, and likely became lifeless balls of rock a long time ago. But beyond our closest neighboring star system, this study also has implications for other M-type star systems. As they explain, red dwarf stars are the most common in our galaxy – roughly 75% of the population – and two-thirds of these stars experience active flare activity.

As such, measuring the impact that superflares have on these worlds will be a necessary component to determining whether or not exoplanets found by future missions are habitable. Looking ahead, the team hopes to use the Evryscope to examine other star systems, particularly those that are targets for the upcoming Transiting Exoplanet Survey Satellite (TESS) mission.

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

“Beyond Proxima, Evryscope has already performed similar long-term high-cadence monitoring of every other Southern TESS planet-search target, and will therefore be able to measure the habitability impact of stellar activity for all Southern planetsearch-target M-dwarfs,” they write. “In conjunction with coronal-mass-ejection searches from long- wavelength radio arrays like the [Long Wavelength Array], the Evryscope will constrain the long-term atmospheric effects of this extreme stellar activity.”

For those who hoped that humanity might find evidence of extra-terrestrial life in their lifetimes, this latest study is certainly a letdown. It’s also disappointing considering that in addition to being the most common type of star in the Universe, some research indicates that red dwarf stars may be the most likely place to find terrestrial planets. However, even if two-thirds of these stars are active, that still leaves us with billions of possibilities.

It is also important to note that these studies help ensure that we can determine which exoplanets are potentially habitable with greater accuracy. In the end, that will be the most important factor when it comes time to decide which of these systems we might try to explore directly. And if this news has got you down, just remember the worlds of the immortal Carl Sagan:

“The universe is a pretty big place. If it’s just us, seems like an awful waste of space.”

Further Reading: arXiv

A New Extrasolar Planet Has The Composition of Mercury, but 2.5 Times the Mass of Earth

Using data obtained by Kepler and numerous observatories around the world, an international team has found a Super-Earth that orbits its orange dwarf star in just 14 hours. Credit: M. Weiss/CfA

In the course of searching for planets beyond our Solar System – aka. extra-solar planets – some truly interesting cases have been discovered. In addition to planets that are several times the size of the Solar System’s largest planet (Super-Jupiters), astronomers have also found a plethora of terrestrial (i.e rocky) planets that are several times the size of Earth (Super-Earths).

This is certainly true of K2-229b, a rocky planet that was recently discovered by an international team of astronomers. Located 339 light years away, this hot, metallic planet is an exercise in extremes. Not only is it 20% larger than Earth, it is 2.6 times Earth mass and has a composition similar to Mercury. On top of that, its orbits its star so closely that it is several times hotter than Mercury.

The study which details their discovery recently appeared in the journal Nature under the title “An Earth-sized exoplanet with a Mercury-like composition“. The study was led by Alexandre Santerne, a researcher from the Laboratoire d’Astrophysique de Marseille (LAM) at the Aix-Marseille Université, and included members from the the European Southern Observatory (ESO), the University of Warwick, the Universidade do Porto, and multiple universities and research institutions.

The newly-discovered exoplanet K2-229b is 20% larger than Earth, but has a composition like Mercury. Credits: NASA/JHUAPL/Carnegie Institution of Washington/USGS/Arizona State University

Using data from the Kepler space telescopes K2 mission, the team was able to identify K2-229b, a Super-Earth that orbits a medium-sized K dwarf (orange dwarf) star in the Virgo Constellation. Using the Radial Velocity Method – aka. Doppler Spectroscopy –  the team was able to determine the planet’s size and mass, which indicated that it is similar in composition to Mercury – i.e. metallic and rocky.

They were also able to determine that it orbits its star at a distance of 0.012 AU with an orbital period of just 14 days. At this distance, K2-229b is roughly one one-hundredth as far from its star as the Earth is from the Sun and experiences surface temperature that are several times higher than those on Mercury – reaching a day side temperature 2000 °C (3632 °F), or hot enough to melt iron and silicon.

As Dr. David Armstrong, a researcher from the University of Warwick and a co-author on the study, explained:

“Mercury stands out from the other Solar System terrestrial planets, showing a very high fraction of iron and implying it formed in a different way. We were surprised to see an exoplanet with the same high density, showing that Mercury-like planets are perhaps not as rare as we thought. Interestingly K2-229b is also the innermost planet in a system of at least 3 planets, though all three orbit much closer to their star than Mercury. More discoveries like this will help us shed light on the formation of these unusual planets, as well as Mercury itself.”

Artist’s concept of a collision between two large astronomical objects, which may have been how K2-229b formed. Credit: NASA/JPL-Caltech

Given its dense, metallic nature, it is something of a mystery of how this planet formed. One theory is that the planet’s atmosphere could have been eroded by intense stellar wind and flares, given that the planet is so close to its star. Another possibility is that it was formed from a huge impact between two giant bodies billions of years ago – similar to the theory of how the Moon formed after Earth collided with a Mars-sized body (named Theia).

As with many recent discoveries, this latest exoplanet is giving astronomers the opportunity to see just what is possible. By studying how them, we are able to learn more about how the Solar System formed and evolved. Given the similarities between K2-229b and Mercury, the study of this exoplanet could teach us much about how Mercury became a dense, metallic planet that orbits closely to our Sun.

Further Reading: Warwick

TRAPPIST-1 Planets Might Actually Have Too Much Water to be Habitable

Artist's impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

In February of 2017, the world was astounded to learn that astronomers – using data from the TRAPPIST telescope in Chile and the Spitzer Space Telescope – had identified a system of seven rocky exoplanets in the TRAPPIST-1 system. As if this wasn’t encouraging enough for exoplanet-enthusiasts, it was also indicated that three of the seven planets orbited within the stars’ circumstellar habitable zone (aka. “Goldilocks Zone”).

Since that time, this system has been the focus of considerable research and follow-up surveys to determine whether or not any of its planets could be habitable. Intrinsic to these studies has been the question whether or not the planets have liquid water on their surfaces. But according to a new study by a team of American astronomers, the TRAPPIST planets may actually have too much water to support life.

Continue reading “TRAPPIST-1 Planets Might Actually Have Too Much Water to be Habitable”

Kepler’s Almost Out of Fuel. It’ll Make its Last Observation in a Few Months

Artist's concept of the Kepler mission with Earth in the background. Credit: NASA/JPL-Caltech
Artist's concept of the Kepler mission with Earth in the background. Credit: NASA/JPL-Caltech

Since its deployment in March of 2009, the Kepler space telescope has been a boon for exoplanet-hunters. As of March 8th, 2018, a total of 3,743 exoplanets have been confirmed, 2,649 of which were discovered by Kepler alone. At the same time, the telescope has suffered its share of technical challenges. These include the failure of two reaction wheels, which severely hampered the telescope’s ability to conduct its original mission.

Nevertheless, the Kepler team was able to return the telescope to a stable configuration by using small amounts of thruster fuel to compensate for the failed reaction wheels. Unfortunately, after almost four years conducting its K2 observation campaign, the Kepler telescope is now running out fuel. Based on its remaining fuel and rate of consumption, NASA estimates that the telescope’s mission will end in a few months.

For years, the Kepler space telescope has been locating planets around distant stars using the Transit Method (aka. Transit Photometry). This consists of monitors stars for periodic dips in brightness, which are caused by a planet passing in front of the star (i.e. transiting). Of all the methods used to hunt for exoplanets, the Transit Method is considered the most reliable, accounting for a total of 2900 discoveries.

Naturally, this news comes as a disappointment to astronomers and exoplanet enthusiasts. But before anyone starts lamenting the situation, they should keep some things in mind. For one, the Kepler mission has managed to last longer than anyone expected. Ever since the K2 campaign began, the telescope has been required to shift its field of view about every three months to conduct a new observation campaign.

Based on their original estimates, the Kepler team believed they had enough fuel to conduct 10 more campaigns. However, the mission has already completed 16 campaigns and the team just began their 17th. As Charlie Sobeck, a system engineer for the Kepler space telescope mission, explained in a recent NASA press statement:

“Our current estimates are that Kepler’s tank will run dry within several months – but we’ve been surprised by its performance before! So, while we anticipate flight operations ending soon, we are prepared to continue as long as the fuel allows. The Kepler team is planning to collect as much science data as possible in its remaining time and beam it back to Earth before the loss of the fuel-powered thrusters means that we can’t aim the spacecraft for data transfer. We even have plans to take some final calibration data with the last bit of fuel, if the opportunity presents itself.”

So while the mission is due to end soon, the science team hopes to gather as much scientific data as possible and beam it back to Earth before then. They also hope to gather some final calibration data using the telescope’s last bit of fuel, should the opportunity present itself. And since they cannot refuel the spacecraft, they hope to stop collecting data so they can use their last bit of fuel to point the spacecraft back towards Earth and bring it home.

NASA’s Kepler spacecraft has been on an extended mission called K2 after two of its four reaction wheels failed in 2013. Credit: NASA

“Without a gas gauge, we have been monitoring the spacecraft for warning signs of low fuel— such as a drop in the fuel tank’s pressure and changes in the performance of the thrusters,” said Sobeck. “But in the end, we only have an estimate – not precise knowledge. Taking these measurements helps us decide how long we can comfortably keep collecting scientific data.”

This has been standard practice for many NASA missions, where enough fuel has been reserved to conduct one last maneuver. For example, the Cassini mission had to reserve fuel in order to descend into Saturn’s atmosphere so it would avoid colliding with one of its moons and contaminating a potentially life-bearing environment. Satellites also regularly conduct final maneuvers to ensure they don’t crash into other satellites or fall to Earth.

While deep-space missions like Kepler are in no danger of crashing to Earth or contaminating a sensitive environment, this final maneuver is designed to ensure that the science team can squeeze every last drop of data from the spacecraft. So before the mission wraps up, we can expect that this venerated planet-hunter will have some final surprises for us!

Artist’s rendition of TESS in space. (Credit: MIT Kavli Institute for Astrophysics Research).

In the coming years, next-generation telescopes will be taking to space to pick up where Kepler and other space telescopes left off. These include the Transiting Exoplanet Survey Satellite (TESS), which will be conducting Transit surveys shortly after it launches in April of 2018. By 2019, the James Webb Space Telescope (JWST) will also take to space and use its powerful infrared instruments to aid in the hunt for exoplanets.

So while we will soon be saying goodbye to the Kepler mission, its legacy will live on. In truth, the days of exoplanet discovery are just getting started!

Stay tuned for updates from the Kepler and K2 Science Center.

Further Reading: NASA

Proxima Centauri Just Released a Deadly Flare, so it’s Probably not a Great Place for Habitable Planets

Artist impression of a red dwarf star like Proxima Centauri, the nearest star to our sun. New analysis of ALMA observations reveal that Proxima Centauri emitted a powerful flare that would have created inhospitable conditions for planets in that system. Credit: NRAO/AUI/NSF; D. Berry

Since it’s discovery was announced in August of 2016, Proxima b has been an endless source of wonder and the target of many scientific studies. As the closest extra-solar planet to our Solar System – and a terrestrial planet that orbits within Proxima Centauri’s circumstellar habitable zone (aka. “Goldilocks Zone”) – scientists have naturally wondered whether or not this planet could be habitable.

Unfortunately, many of these studies have emphasized the challenges that life on Proxima b would likely face, not the least of which is harmful radiation from its star. According to a recent study, a team of astronomers used the ALMA Observatory to detect a large flare emanating from Proxima Centauri. This latest findings, more than anything, raises questions about how habitable its exoplanet could be.

The study, titled “Detection of a Millimeter Flare from Proxima Centauri“, recently appeared in The Astrophysical Journal Letters. Led by Meredith A. MacGregor, an NSF Astronomy and Astrophysics Postdoctoral Fellow at the Carnegie Institution for Science, the team also included members from the Harvard-Smithsonian Center for Astrophysics (CfA) and the University of Colorado Boulder.

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

For the sake of their study, the team used data obtained by the Atacama Large Millimeter/submillimeter Array (ALMA) between January 21st to April 25th, 2017. This data revealed that the star underwent a significant flaring event on March 24th, where it reached a peak that was 1000 times brighter than the star’s quiescent emission for a period of ten seconds.

Astronomers have known for a long time that when compared to stars like our Sun, M-type stars are variable and unstable. While they are the smallest, coolest, and dimmest stars in our Universe, they tend to flare up at a far greater rate. In this case, the flare detected by the team was ten times larger than our Sun’s brightest flares at similar wavelengths.

Along with a smaller preceding flare, the entire event lasted fewer than two minutes of the 10 hours that ALMA was observing the star between January and March of last year. While it was already known that Proxima Centauri, like all M-type stars, experiences regular flare activity, this one appeared to be a rare event. However, stars like Proxima Centauri are also known to experienced regular, although smaller, X-ray flares.

All of this adds up to a bad case for habitability. As MacGregor explained in a recent NRAO press statement:

“It’s likely that Proxima b was blasted by high energy radiation during this flare. Over the billions of years since Proxima b formed, flares like this one could have evaporated any atmosphere or ocean and sterilized the surface, suggesting that habitability may involve more than just being the right distance from the host star to have liquid water.”

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

MacGregor and her colleagues also considered the possibility that Proxima Centauri is circled by several disks of dust. This was suggested by a previous study (also based on ALMA data) that indicated that the light output of both the star and flare together pointed towards the existence of debris belts around the star. However, after examining the ALMA data as a function of observing time, they were able to eliminate this as a possibility.

As Alycia J. Weinberger, also a researcher with the Carnegie Institution for Science and a co-author on the paper, explained:

“There is now no reason to think that there is a substantial amount of dust around Proxima Cen. Nor is there any information yet that indicates the star has a rich planetary system like ours.”

To date, studies that have looked at possible conditions on Proxima b have come to different conclusions as to whether or not it could retain an atmosphere or liquid water on its surface. While some have found room for “transient habitability” or evidence of liquid water, others have expressed doubt based on the long-term effects that radiation and flares from its star would have on a tidally-locked planet.

In the future, the deployment of next-generation instruments like the James Webb Space Telescope are expected to provide more detailed information on this system. With precise measurements of this star and its planet, the question of whether or not life can (and does) exist in this system may finally be answered.

And be sure to enjoy this animation of Proxima Centauri in motion, courtesy of NRAO outreach:

Further Reading: NRAO, The Astrophysical Journal Letters

Researchers Just Scanned 14 Worlds From the Kepler Mission for “Technosignatures”, Evidence of Advanced Civilizations

A team of astronomers from UCLA searched for "technosignatures" in the Kepler field data. Credit and Copyright: Danielle Futselaar

When it comes to looking for life on extra-solar planets, scientists rely on what is known as the “low-hanging fruit” approach. In lieu of being able to observe these planets directly or up close, they are forced to look for “biosignatures” – substances that indicate that life could exist there. Given that Earth is the only planet (that we know of) that can support life, these include carbon, oxygen, nitrogen and water.

However, while the presence of these elements are a good way of gauging “habitability”, they are not necessarily indications that extra-terrestrial civilizations exist. Hence why scientists engaged in the Search for Extra-Terrestrial Intelligence (SETI) also keep their eyes peeled for “technosignatures”. Targeting the Kepler field, a team of scientists recently conducted a study that examined 14 planetary systems for indications of intelligent life.

The study, titled “A search for technosignatures from 14 planetary systems in the Kepler field with the Green Bank Telescope at 1.15-1.73 GHz“, recently appeared online and is being reviewed for publication by The Astronomical Journal. The team was led by Jean-Luc Margot, the Chair of the UCLA Department of Earth, Planetary, and Space Sciences (UCLA EPSS) and a Professor with UCLA’s Department of Physics and Astronomy.

The Green Bank Telescope is the world’s largest, fully-steerable telescope, which is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby’s Star. Credit: NRAO/AUI/NSF

In addition to Margot, the team consisted of 15 graduate and undergraduate students from UCLA and a postdoctoral researcher from the Green Bank Observatory and the Center for Gravitational Waves and Cosmology at West Virginia University. All of the UCLA students participated in the 2016 course, “Search for Extraterrestrial Intelligence: Theory and Applications“.

Together, the team selected 14 systems from the Kepler catalog and examined them for technosignatures. While radio waves are a common occurrence in the cosmos, not all sources can be easily attributed to natural causes. Where and when this is the case, scientists conduct additional studies to try and rule out the possibility that they are a technosignature. As Professor Margot told Universe Today via email:

“In our article, we define a “technosignature” as any measurable property or effect that provides scientific evidence of past or present technology, by analogy with “biosignatures,” which provide evidence of past or present life.”

For the sake of their study, the team conducted an L-band radio survey of these 14 planetary systems. Specifically, they looked for signs of radio waves in the 1.15 to 1.73 gigahertz (GHz) range. At those frequencies, their study is sensitive to Arecibo-class transmitters located within 450 light-years of Earth. So if any of these systems have civilizations capable of building radio observatories comparable to Arecibo, the team hoped to find out!

Spring 2016 UCLA SETI class with Larry Lesyna. Credit: UCLA

“We searched for signals that are narrow (< 10 Hz) in the frequency domain,” said Margot. “Such signals are technosignatures because natural sources do not emit such narrowband signals… We identified approximately 850,000 candidate signals, of which 19 were of particular interest. Ultimately, none of these signals were attributable to an extraterrestrial source.”

What they found was that of the 850,000 candidate signals, about 99% of them were automatically ruled out because they were quickly determined to be the result of human-generated radio-frequency interference (RFI). Of the remaining candidates, another 99% were also flagged as anthropogenic because their frequencies overlapped with other known sources of RFI – such as GPS systems, satellites, etc.

The 19 candidate signals that remained were heavily scrutinized, but none could be attributed to an extraterrestrial source. This is key when attempting to distinguish potential signs of intelligence from radio signals that come from the only intelligence we know of (i.e. us!) Hence why astronomers have historically been intrigued by strong narrowband signals (like the WOW! Signal, detected in 1977) and the Lorimer Burst detected in 2007.

In these cases, the sources appeared to be coming from the Messier 55 globular cluster and the Large Magellanic Cloud, respectively. The latter was especially fascinating since it was the first time that astronomers had observered what are now known as Fast Radio Bursts (FRBs). Such bursts, especially when they are repeating in nature, are considered to be one of the best candidates in the search for intelligent, technologically-advanced life.

The UCLA SETI Group banner, featuring a photo of the central region of the Milky Way Galaxy. Credit: Yuri Beletsky/Carnegie Las Campanas Observatory

Unfortunately, these sources are still being investigated and scientists cannot attribute them to unnatural causes just yet. And as Professor Margot indicated, this study (which covered only 14 of the many thousand exoplanets discovered by Kepler) is just the tip of the iceberg:

“Our study encompassed only a small fraction of the search volume.  For instance, we covered less than five-millionths of the entire sky.  We are eager to scale the effort to sample a larger fraction of the search volume. We are currently seeking funds to expand our search.”

Between Kepler‘s first and second mission (K2), a total of 5,118 candidates and 2,538 confirmed exoplanets have been discovered within our galaxy alone. As of February 1st, 2018, a grand total of 3,728 exoplanets have been confirmed in 2,794 systems, with 622 systems having more than one planet. On top of that, a team of researchers from the University of Oklahoma recently made the first detection of extra-galactic planets as well!

It would therefore be no exaggeration to say that the hunt for ETI is still in its infancy, and our efforts are definitely beginning to pick up speed. There is literally a Universe of possibilities out there and to think that there are no other civilizations that are also looking for us seems downright unfathomable. To quote the late and great Carl Sagan: “The Universe is a pretty big place. If it’s just us, seems like an awful waste of space.”

And be sure to check out this video of the 2017 UCLA SETI Group, courtesy of the UCLA EPSS department:

Further Reading: arXiv