Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer
NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

We Have More Details on the Outermost Trappist-1 Planet!

An artist’s conception shows the planet TRAPPIST-1h. (NASA / JPL-Caltech)

The announcement of a seven-planet system around the star TRAPPIST-1 earlier this year set off a flurry of scientific interest. Not only was this one of the largest batches of planets to be discovered around a single star, the fact that all seven were shown to be terrestrial (rocky) in nature was highly encouraging. Even more encouraging was the fact that three of these planets were found to be orbiting with the star’s habitable zone.

Since that time, astronomers have been seeking to learn all they can about this system of planets. Aside from whether or not they have atmospheres, astronomers are also looking to learn more about their orbits and surface conditions. Thanks to the efforts of a University of Washington-led international team of astronomers, we now have an accurate idea of what conditions might be like on its outermost planet – TRAPPIST-1h.

Continue reading “We Have More Details on the Outermost Trappist-1 Planet!”

Here’s How We Can Detect Plants on Extrasolar Planets

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

The past year has been an exciting time for those engaged in the hunt for extra-solar planets and potentially habitable worlds. In August of 2016, researchers from the European Southern Observatory (ESO) confirmed the existence of the closest exoplanet to Earth (Proxima b) yet discovered. This was followed a few months later (February of 2017) with the announcement of a seven-planet system around TRAPPIST-1.

The discovery of these and other extra-solar planets (and their potential to host life) was an overarching theme at this year’s Breakthrough Discuss conference. Taking place between April 20th and 21st, the conference was hosted by Stanford University’s Department of Physics and sponsored by the Harvard-Smithsonian Center for Astrophysics and Breakthrough Initiatives.

Continue reading “Here’s How We Can Detect Plants on Extrasolar Planets”

Only 10 Light-Years Away, there’s a Baby Version of the Solar System

Artist's impression of the Epsilon Eridani system, showing Epsilon Eridani b (a Jupiter-mass planet) and a series of asteroid belts and comets. Credit: NASA/SOFIA/Lynette Cook.

Astronomers are understandanly fascinated with the Epsilon Eridani system. For one, this star system is in close proximity to our own, at a distance of about 10.5 light years from the Solar System. Second, it has been known for some time that it contains two asteroid belts and a large debris disk. And third, astronomers have suspected for many years that this star may also have a system of planets.

On top of all that, a new study by a team of astronomers has indicated that Epsilon Eridani may be what our own Solar System was like during its younger days. Relying on NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) aircraft, the team conducted a detailed analysis of the system that showed how it has an architecture remarkably similar to what astronomer believe the Solar System once looked like.

Led by Kate Su – an Associate Astronomer with the Steward Observatory at the University of Arizona – the team includes researchers and astronomers from the Department of Physics & Astronomy of Iowa State University, the Astrophysical Institute and University Observatory at the University of Jena (Germany), and NASA’s Jet Propulsion Laboratory and Ames Research Center.

Artist’s diagram showing the similar structure of the Epsilon Eridani to the Solar System. Credit: NASA/JPL-Caltech

For the sake of their study – the results of which were published in The Astronomical Journal under the title “The Inner 25 AU Debris Distribution in the Epsilon Eri System” – the team relied on data obtained by a flight of SOFIA in January 2015. Combined with detailed computer modeling and research that went on for years, they were able to make new determinations about the structure of the debris disk.

As already noted, previous studies of Epsilon Eridani indicated that the system is surrounded by rings made up of materials that are basically leftovers from the process of planetary formation. Such rings consist of gas and dust, and are believed to contain many small rocky and icy bodies as well – like the Solar System’s own Kuiper Belt, which orbits our Sun beyond Neptune.

Careful measurements of the disk’s motion has also indicated that a planet with nearly the same mass as Jupiter circles the star at a distance comparable to Jupiter’s distance from the Sun. However, based on prior data obtained by the NASA’s Spitzer Space Telescope, scientists were unable to determine the position of warm material within the disk – i.e. the dust and gas – which gave rise to two models.

In one, warm material is concentrated into two narrow rings of debris that orbit the star at distances corresponding respectively to the Main Asteroid Belt and Uranus in our Solar System. According to this model, the largest planet in the system would likely be associated with an adjacent debris belt. In the other, warm material is in a broad disk, is not concentrated into asteroid belt-like rings, and is not associated with any planets in the inner region.

NASA’s SOFIA aircraft before a 2015 flight to observe a nearby star. Credit: Massimo Marengo.

Using the new SOFIA images, Su and her team were able to determine that the warm material around Epsilon Eridani is arranged like the first model suggests. In essence, it is in at least one narrow belt, rather than in a broad continuous disk. As Su explained in a NASA press release:

“The high spatial resolution of SOFIA combined with the unique wavelength coverage and impressive dynamic range of the FORCAST camera allowed us to resolve the warm emission around eps Eri, confirming the model that located the warm material near the Jovian planet’s orbit. Furthermore, a planetary mass object is needed to stop the sheet of dust from the outer zone, similar to Neptune’s role in our solar system. It really is impressive how eps Eri, a much younger version of our solar system, is put together like ours.”

These observations were made possible thanks to SOFIA’s on-board telescopes, which have a greater diameter than Spitzer – 2.5 meters (100 inches) compared to Spitzer’s 0.85 m (33.5 inches). This allowed for far greater resolution, which the team used to discern details within the Epsilon Eridani system that were three times smaller than what had been observed using the Spitzer data.

In addition, the team made use of SOFIA’s powerful mid-infrared camera – the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). This instrument allowed the team to study the strongest infrared emissions coming from the warm material around the star which are otherwise undetectable by ground-based observatories – at wavelengths between 25-40 microns.

This artist’s conception of the Epsilon Eridani system, the closest star system who’s structure resembles a young Solar System. Credit: NASA/JPL/Caltech

These observations further indicate that the Epsilon Eridani system is much like our own, albeit in younger form. In addition to having asteroid belts and a debris disk that is similar to our Main Belt and Kuiper Belt, it appears that it likely has more planets waiting to be found within the spaces between. As such, the study of this system could help astronomers to learn things about the history of our own Solar System.

Massimo Marengo, one of he co-authors of the study, is an Associate Professor with the Department of Physics & Astronomy at Iowa State University. As he explained in a University of Iowa press release:

“This star hosts a planetary system currently undergoing the same cataclysmic processes that happened to the solar system in its youth, at the time in which the moon gained most of its craters, Earth acquired the water in its oceans, and the conditions favorable for life on our planet were set.”

At the moment, more studies will need to be conducted on this neighboring stars system in order to learn more about its structure and confirm the existence of more planets. And it is expected that the deployment of next-generation instruments – like the James Webb Space Telescope, scheduled for launch in October of 2018 – will be extremely helpful in that regard.

“The prize at the end of this road is to understand the true structure of Epsilon Eridani’s out-of-this-world disk, and its interactions with the cohort of planets likely inhabiting its system,” Marengo wrote in a newsletter about the project. “SOFIA, by its unique ability of capturing infrared light in the dry stratospheric sky, is the closest we have to a time machine, revealing a glimpse of Earth’s ancient past by observing the present of a nearby young sun.”

Further Reading: NASA, IAState, The Astronomical Journal

Are Drylanders The Minority On Habitable Worlds?

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)
Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

If we want to send spacecraft to exoplanets to search for life, we better get good at building submarines.

A new study by Dr. Fergus Simpson, of the Institute of Cosmos Sciences at the University of Barcelona, shows that our assumptions about exo-planets may be wrong. We kind of assume that exoplanets will have land masses, even though we don’t know that. Dr. Simpson’s study suggests that we can expect lots of oceans on the habitable worlds that we might discover. In fact, ocean coverage of 90% may be the norm.

At the heart of this study is something called ‘Bayesian Statistics’, or ‘Bayesian Probability.’

Normally, we give something a probability of occurring—in this case a habitable world with land masses—based on our data. And we’re more confident in our prediction if we have more data. So if we find 10 exoplanets, and 7 of them have significant land masses, we think there’s a 70% chance that future exoplanets will have significant land masses. If we find 100 exoplanets, and 70 of them have significant land masses, then we’re even more confident in our 70% prediction.

Is Earth in the range of normal when it comes to habitable planets? Or is it an outlier, with both large land masses, and large oceans? Image: Reto Stöckli, Nazmi El Saleous, and Marit Jentoft-Nilsen, NASA GSFC
Is Earth in the range of normal when it comes to habitable planets? Or is it an outlier, with both large land masses, and large oceans? Image: Reto Stöckli, Nazmi El Saleous, and Marit Jentoft-Nilsen, NASA GSFC

But the problem is, even though we’ve discovered lots of exoplanets, we don’t know if they have land masses or not. We kind of assume they will, even though the masses of those planets is lower than we expect. This is where the Bayesian methods used in this study come in. They replace evidence with logic, sort of.

In Bayesian logic, probability is assigned to something based on the state of our knowledge and on reasonable expectations. In this case, is it reasonable to expect that habitable exoplanets will have significant landmasses in the same way that Earth does? Based on our current knowledge, it isn’t a reasonable expectation.

According to Dr. Simpson, the anthropic principle comes into play here. We just assume that Earth is some kind of standard for habitable worlds. But, as the study shows, that may not be the case.

“Based on the Earth’s ocean coverage of 71%, we find substantial evidence supporting the hypothesis that anthropic selection effects are at work.” – Dr. Fergus Simpson.

In fact, Earth may be a very finely balanced planet, where the amount of water is just right for there to be significant land masses. The size of the oceanic basins is in tune with the amount of water that Earth retains over time, which produces the continents that rise above the seas. Is there any reason to assume that other worlds will be as finely balanced?

Dr. Simpson says no, there isn’t. “A scenario in which the Earth holds less water than most other habitable planets would be consistent with results from simulations, and could help explain why some planets have been found to be a bit less dense than we expected.” says Simpson.

Simpson’s statistical model shows that oceans dominate other habitable worlds, with most of them being 90% water by surface area. In fact, Earth is very close to being a water world. The video shows what would happen to Earth’s continents if the amount of water increased. There is only a very narrow window in which Earth can have both large land masses, and large oceans.

Dr. Simpson suggests that the fine balance between land and water on Earth’s surface could be one reason we evolved here. This is based partly on his model, which shows that land masses will have larger deserts the smaller the oceans are. And deserts are not the most hospitable place for life, and neither are they biodiverse. Also, biodiversity on land is about 25 times greater than biodiversity in oceans, at least on Earth.

Simpson says that the fine balance between land mass and ocean coverage on Earth could be an important reason why we are here, and not somewhere else.

“Our understanding of the development of life may be far from complete, but it is not so dire that we must adhere to the conventional approximation that all habitable planets have an equal chance of hosting intelligent life,” Simpson concludes.

Is This The Exoplanet Where Life Will First Be Found?

Using data obtained by Kepler and numerous observatories around the world, an international team has found a Super-Earth that orbits its orange dwarf star in just 14 hours. Credit: M. Weiss/CfA

It is good time to be an exoplanet hunter… or just an exoplanet enthusiast for that matter! Every few weeks, it seems, new discoveries are being announced which present more exciting opportunities for scientific research. But even more exciting is the fact that every new find increases the likelihood of locating a potentially habitable planet (and hence, life) outside of our Solar System.

And with the discovery of LHS 1140b – a super-Earth located approximately 39 light years from Earth – exoplanet hunters think they have found the most likely candidate for habitability to date. Not only does this terrestrial (i.e. rocky) planet orbit within its sun’s habitable zone, but examinations of the planet (using the transit method) have revealed that it appears to have a viable atmosphere.

Credit for the discovery goes to a team of international scientists who used the MEarth-South telescope array – a robotic observatory located on Cerro Tololo in Chile – to spot the planet. This project monitors the brightness of thousands of red dwarf stars with the goal of detecting transiting planets. After consulting data obtained by the array, the team noted characteristic dips in the star’s brightness that indicated that a planet was passing in front of it.

The MEarth-South telescope array, located on Cerro Tololo in Chile, searches for planets by monitoring the brightness of nearby, small stars. Credit: Jonathan Irwin

These findings were then followed up using the High Accuracy Radial velocity Planet Searcher (HARPS) instrument at the ESO’s La Silla Observatory, located on the outskirts of Chile’s Atacama Desert. According to the their study – which appeared in the April 20th, 2017, issue of the journal Nature – the team was able to make estimates of the planet’s age, size, mass, distance from its star, and orbital period.

They estimate that the planet is at least five billion years old – about 500 million years older than Earth. It is also slightly larger than Earth – 1.4 times Earth’s diameter – and is considerably more massive, weighing in at a hefty 6.6 Earth masses. Since they were able to view the planet almost edge-on, the team was also able to determine that it orbits its sun at a distance of about 0.1 AU (one-tenth the distance between Earth and the Sun) with a period of 25 days.

However, since its star is a red dwarf, this proximity places it in the middle of the system’s habitable zone. But what was most exciting was the fact that the team was able to look for evidence of an atmosphere since the planet was passing in front of its star – something that has not been possible with many exoplanets. Because of this, they were able to conduct transmission spectroscopy measurements that revealed the presence of an atmosphere.

As Jason Dittmann – of the Harvard-Smithsonian Center for Astrophysics (CfA) and the lead author of the study – said in a CfA press release:

“This is the most exciting exoplanet I’ve seen in the past decade. We could hardly hope for a better target to perform one of the biggest quests in science — searching for evidence of life beyond Earth.”

This artist’s impression shows the exoplanet LHS 1140b, which orbits a red dwarf star 40 light-years from Earth. Credit: ESO/spaceengine.org

Granted, this exoplanet is not as close as Proxima b, which orbits Proxima Centauri – just 4.243 light years away. And it certainly isn’t as robust a find as the TRAPPIST-1 system, with its seven rocky planets, three of which are located within its habitable zone. But compared to these candidates, the researchers were able to place solid constraints on the planet’s mass and density, not to mention the fact that they were able to observe an atmosphere.

The discovery of an exoplanet that orbits a red dwarf star and has an atmosphere is also encouraging in a wider context. Low-mass red dwarf stars are the most common star in the galaxy, accounting for 75% of stars in our cosmic neighborhood alone. They are also long-lived (up to 10 trillion years), and recent research indicates that they are capable of hosting large numbers of planets.

But given their variability and unstable nature,  astronomers have expressed doubts as to whether or not planet orbiting them could retain their atmospheres for very long. Knowing that a terrestrial planet that orbits a red dwarf, is five billion years old, and still has an atmosphere is therefore a very good sign. But of course, simply knowing there is an atmosphere doesn’t mean that it is conducive to life as we know it.

“Right now we’re just making educated guesses about the content of this planet’s atmosphere,” said Dittman. “Future observations might enable us to detect the atmosphere of a potentially habitable planet for the first time. We plan to search for water, and ultimately molecular oxygen.”

This chart shows the location of the faint red star LHS 1140 in the faint constellation of Cetus (The Sea Monster). This star is orbited by a super-Earth exoplanet called LHS 1140b, which may be best place to look for signs of life beyond the Solar System. The star is too faint to be seen in a small telescope.

Hence, additional studies will be needed before this planet can claim the title of “best place to look for signs of life beyond the Solar System”. To that end, future space-based missions like the James Webb Space Telescope (which will launch in 2018), and ground-based instruments like the Giant Magellan Telescope and the ESO’s Extremely Large Telescope,  will be especially well-suited!

In the meantime, the NASA/ESA Hubble Space Telescope will be conducting observations of the star system in the near future. These observations, it is hoped, will indicate exactly how much high-energy radiation LHS 1140b receives from its sun. This too will go a long way towards determining just how habitable the Super-Earth is.

And be sure to enjoy this video of the LHS 1140 star system, courtesy of the European Southern Observatory and spaceengine.org:

Further Reading: ESO, CfA

Finally! A Low Mass Super-Earth With Some Funky Atmosphere

Artist's impression of the exoplanet GJ 1132 b, which orbits the red dwarf star GJ 1132. Astronomers have managed to detect the atmosphere of this Earth-like planet. Credit: MPIA

In 2015, astronomers discovered an intriguing extrasolar planet located in a star system some 39 light years from Earth. Despite orbiting very close to its parent star, this “Venus-like” planet – known as GJ 1138b – appeared to still be cool enough to have an atmosphere. In short order, a debate ensued as to what kind of atmosphere it might have, whether it was a “dry Venus” or a “wet Venus”.

And now, thanks to the efforts of an international team of researchers, the existence of an atmosphere has been confirmed around GJ 1138b. In addition to settling the debate about the nature of this planet, it also marks the first time that an atmosphere has been detected around a low-mass Super-Earth. On top of that, GJ 1138b is now the farthest Earth-like planet that is known to have an atmosphere.

Led by John Southworth (of Keele University) and Luigi Mancini (of the University of Rome Tor Vergata), the research team included members from the Max Planck Institute for Astronomy (MPIA), the National Institute for Astrophysics (INAF), the University of Cambridge and Stockholm University. Their study, titled “Detection of the atmosphere of the 1.6 Earth mass exoplanet GJ 1132b“, recently appeared in The Astrophysical Journal.

Artist’s impression of the “Venus-like” exoplanet GJ 1132b. Credit: cfa.harvard.edu

Using the GROND imager on the La Silla Observatory’s 2.2m ESO/MPG telescope, the team monitored GJ 1132b in different wavelengths as it transited in front of its parent star. Given the planet’s orbital period (1.6 days), these transits happen quite often, which presented plenty of opportunities to view it pass in front of its star. In so doing, they monitored the star for slight decreases in its brightness.

As Dr. Southworth explained to Universe via email, these observations confirmed the existence of an atmosphere:

“What we did was to measure the amount of dimming at 7 different wavelengths in optical and near-infrared light. At one of these wavelengths (IR) the planet seemed to be slightly bigger. This indicated that the planet has a large atmosphere around it which allows most of the starlight to pass through, but is opaque at one wavelength.”

The team members from the University of Cambridge and the MPIA then conducted simulations to see what this atmosphere’s composition could be. Ultimately, they concluded that it most likely has a thick atmosphere that is rich in water and/or methane – which contradicted recent theories that the planet had a thin and tenuous atmosphere (i.e. a “dry Venus”).

The ESO’s Paranal Observatory, located in the Atacama Desert of Chile. Credit: ESO

It was also the first time that an atmosphere has been confirmed around a planet that is not significantly greater in size and mass to Earth. In the past, astronomers have detected atmospheres around many other exoplanets. But in these cases, the planets were either gas giants or planets that were many times Earth’s size and mass (aka. “Super-Earths”). GJ 1132b, however, is 1.6 times as massive as Earth, and measures 1.4 Earth radii.

In addition, these findings are a significant step in the search for life beyond our Solar System. At present, astronomers seek to determine the chemical composition of a planet’s atmosphere to determine if it could be habitable. Where the right combination of chemical imbalances exist, the presence of living organisms is seen as a possible cause.

By being able to determine that a planet at lower end of the super-Earth scale has an atmosphere, we are one step closer to being able to determine exoplanet habitability. The detection of an atmosphere-bearing planet around an M-type (red dwarf) star is also good news in and of itself. Low-mass red dwarf stars are the most common star in the galaxy, and recent findings have indicated that they might be our best shot for finding habitable worlds.

Besides detecting several terrestrial planets around red dwarf stars in recent years – including seven around a single star (TRAPPIST-1) – there is also research that suggests that these stars are capable of hosting large numbers of planets. At the same time, there have been concerns about whether red dwarfs are too variable and unstable to support habitable worlds.

Artist’s impression of Kepler-1649b, the “Venus-like” world orbiting an M-class star 219 light-years from Earth. Credit: Danielle Futselaar

As Southworth explained, spotting an atmosphere around a planet that closely orbits a red dwarf could help bolster the case for red dwarf habitability:

“One of the big issues has been that very-low-mass stars typically have strong magnetic fields and thus throw out a lot of X-ray and ultraviolet light. These high-energy photons tend to destroy molecules in atmospheres, and might also evaporate them completely. The fact that we have detected an atmosphere around GJ 1132b means that this kind of planet is indeed capable of retaining an atmosphere for billions of years, even whilst being bombarded by the high-energy photons from their host stars.

In the future, GJ 1132b is expected to be a high-priority target for study with the Hubble Space Telescope, the Very Large Telescope (VLT) at the Paranal Observatory in Chile, and next-generation telescopes like the James Webb Space Telescope (scheduled for launch in 2018). Already, observations are being made, and the results are being eagerly anticipated.

I’m sure I’m not the only one who would like to hear what astronomers discover as they set their sights on this nearby star system and it’s Venus-like world! In the meantime, be sure to check out this video about GJ 1132b, courtesy of MIT news:

Further Reading: Max Planck Institute for Astronomy

Venus 2.0 Discovered In Our Own Back Yard

Artist's impression of Kepler-1649b, the "Venus-like" world orbiting an M-class star 219 light-years from Earth. Credit: Danielle Futselaar

It has been an exciting time for exoplanet research of late! Back in February, the world was astounded when astronomers from the European Southern Observatory (ESO) announced the  discovery of seven planets in the TRAPPIST-1 system, all of which were comparable in size to Earth, and three of which were found to orbit within the star’s habitable zone.

And now, a team of international astronomers has announced the discovery of an extra-solar body that is similar to another terrestrial planet in our own Solar System. It’s known as Kepler-1649b, a planet that appears to be similar in size and density to Earth and is located in a star system just 219 light-years away. But in terms of its atmosphere, this planet appears to be decidedly more “Venus-like” (i.e. insanely hot!)

The team’s study, titled “Kepler-1649b: An Exo-Venus in the Solar Neighborhood“, was recently published in The Astronomical Journal. Led by Isabel Angelo – of the SETI Institute, NASA Ames Research Center, and UC Berkley – the team included researchers also from SETI and Ames, as well as the NASA Exoplanet Science Institute (NExScl), the Exoplanet Research Institute (iREx), the Center for Astrophysics Research, and other research institutions.

Diagram comparing the Solar System to Kepler 69 and its system of exoplanets. Credit: NASA Ames/JPL-Caltech

Needless to say, this discovery is a significant one, and the implications of it go beyond exoplanet research. For some time, astronomers have wondered how – given their similar sizes, densities, and the fact that they both orbit within the Sun’s habitable zone – that Earth could develop conditions favorable to life while Venus would become so hostile. As such, having a “Venus-like” planet that is close enough to study presents some exciting opportunities.

In the past, the Kepler mission has located several extra-solar planets that were similar in some ways to Venus. For instance, a few years ago, astronomers detected a Super-Earth – Kepler-69b, which appeared to measure 2.24 times the diameter of Earth – that was in a Venus-like orbit around its host the star. And then there was GJ 1132b, a Venus-like exoplanet candidate that is about 1.5 times the mass of Earth, and located just 39 light-years away.

In addition, dozens of smaller planet candidates have been discovered that astronomers think could have atmospheres similar to that of Venus. But in the case of Kepler-1649b, the team behind the discovery were able to determine that the planet had a sub-Earth radius (similar in size to Venus) and receives a similar amount of light (aka. incident flux) from its star as Venus does from Earth.

However, they also noted that the planet also differs from Venus in a few key ways – not the least of which are its orbital period and the type of star it orbits. As Dr. Angelo told Universe Today via email:

“The planet is similar to Venus in terms of it’s size and the amount of light it receives from it’s host star. This means it could potentially have surface temperatures similar to Venus as well. It differs from Venus because it orbits a star that is much smaller, cooler, and redder than our sun. It completes its orbit in just 9 days, which places it close to its host star and subjects it to potential factors that Venus does not experience, including exposure to magnetic radiation and tidal locking. Also, since it orbits a cooler star, it receives more lower-energy radiation from its host star than Earth receives from the Sun.”

Artist’s impression of a Venus-like exoplanet orbiting close to its host star. Credit: CfA/Dana Berry

In other words, while the planet appears to receive a comparable amount of light/heat from its host star, it is also subject to far more low-energy radiation. And as a potentially tidally-locked planet, the surface’s exposure to this radiation would be entirely disproportionate. And last, its proximity to its star means it would be subject to greater tidal forces than Venus – all of which has drastic implications for the planet’s geological activity and seasonal variations.

Despite these differences, Kepler-1649b remains the most Venus-like planet discovered to date. Looking to the future, it is hoped that next-generations instruments – like the Transiting Exoplanet Survey Satellite (TESS), the James Webb Telescope and the Gaia spacecraft – will allow for more detailed studies. From these, astronomers hope to more accurately determine the size and distance of the planet, as well as the temperature of its host star.

This information will, in turn, help us learn a great deal more about what goes into making a planet “habitable”. As Angelo explained:

“Understanding how hotter planets develop thick, Venus-like atmospheres that make them inhabitable will be important in constraining our definition of a ‘habitable zone’. This may become possible in the future when we develop instruments sensitive enough to determine chemical compositions of planet atmospheres (around dim stars) using a method called ‘transit spectroscopy’, which looks at the light from the host star that has passed through the planet’s atmosphere during transit.”

The development of such instruments will be especially useful given joust how many exoplanets are being detected around neighboring red dwarf stars. Given that they account for roughly 85% of stars in the Milky Way, knowing whether or not they can have habitable planets will certainly be of interest!

Further Reading: The Astronomical Journal

NASA Brings Trappist-1 Into Focus… Kinda Sorta

TRAPPIST-1 is probably the most well-known ultra-cool, or red dwarf, star. It is host to several rocky, roughly Earth-sized planets. Astronomers think it's no accident that ultra-cool stars and red dwarfs are host to so many smaller, rocky planets, and they hope that SPECULOOS will find them. Credit: NASA/JPL-Caltech
TRAPPIST-1 is probably the most well-known ultra-cool, or red dwarf, star. It is host to several rocky, roughly Earth-sized planets. Astronomers think it's no accident that ultra-cool stars and red dwarfs are host to so many smaller, rocky planets, and they hope that SPECULOOS will find them. Credit: NASA/JPL-Caltech

On February 22nd, 2017, NASA announced the discovery of a seven-planet system around the red dwarf star known as TRAPPIST-1. Since that time, a number of interesting revelations have been made. For starters, the Search for Extra-Terrestrial Intelligence (SETI) recently announced that it was already monitoring this system for signs of advanced life (sadly, the results were not encouraging).

In their latest news release about this nearby star system, NASA announced the release of the first images taken of this system by the Kepler mission. As humanity’s premier planet-hunting mission, Kepler has been observing this system since December 2016, a few months after the existence of the first three of its exoplanets was announced.

Continue reading “NASA Brings Trappist-1 Into Focus… Kinda Sorta”

Exploring the Universe For Magnetic Fields

At one time, Mars had a magnetic field similar to Earth, which prevented its atmosphere from being stripped away. Credit: NASA

In the past few decades, astronomers and geophysicists have benefited immensely from the study of planetary magnetic fields. Dedicated to mapping patterns of magnetism on other astronomical bodies, this field has grown thanks to missions ranging from the Voyager probes to the more recent Mars Atmosphere and Volatile EvolutioN (MAVEN) mission.

Looking ahead, it is clear that this field of study will play a vital role in the exploration of the Solar System and beyond. As Jared Espley of NASA’s Goddard Space Flight Center outlined during a presentation at NASA’s Planetary Science Vision 2050 Workshop, these goals include advancing human exploration of the cosmos and the search for extraterrestrial life.

Continue reading “Exploring the Universe For Magnetic Fields”