The Habitable Exoplanets Catalog is Now Online!

Credit: The Habitable Exoplanets Catalog, Planetary Habitability Laboratory @ UPR Arecibo (phl.upl.edu)

[/caption]

Anyone who has an interest in exoplanets probably knows about the various online catalogs that have become available in recent years, such as The Extrasolar Planets Encyclopaedia for example, providing up-to-date information and statistics on the rapidly growing number of worlds being discovered orbiting other stars. So far, these have been listings of all known exoplanets, both candidates and confirmed. But now there is a new catalog published by the Planetary Habitability Laboratory (a project of the University of Puerto Rico at Arecibo), which focuses exclusively on those planets which have been determined to be potentially habitable. The Habitable Exoplanets Catalog is a database which will serve as a key resource for scientists and educators as well as the general public.

As of right now, there are two confirmed planets and fourteen candidates listed, but those numbers are expected to grow over the coming months and years as more candidates are found and more of those candidates are confirmed. There is even a listing of habitable moons, whose existence have been inferred from the data, although none have been observed yet (finding exoplanets is challenging enough, but exomoons even more so!).

According to Abel Méndez, Director of the PHL and principal investigator, “One important outcome of these rankings is the ability to compare exoplanets from best to worst candidates for life.” He adds: “New observations with ground and orbital observatories will discover thousands of exoplanets in the coming years. We expect that the analyses contained in our catalog will help to identify, organize, and compare the life potential of these discoveries.”

The big question of course is whether any habitable planets are actually inhabited, two different things. To help answer that, it will be necessary to further analyze the atmospheres and surfaces of those planets, looking for any indication of possible biosignatures such as oxygen or methane. Kepler can’t do that directly, but subsequent telescopes such as the Terrestrial Planet Finder (TPF) will be able to, and provide a more accurate assessment of their physical composition, climate, etc.

Not long ago it wasn’t known if there even were any planets orbiting other stars; now we’re finding them by the thousands and soon we’ll be able to distinguish their unique physical characteristics and have a better idea of how many habitable worlds are out there – exciting times.

Carbon “Super Earths” – Diamond Planets

Iron, carbon, and oxygen subjected to intense temperatures and pressures form a pocket of iron oxide (bottom, center) and a darker pocket of diamond (bottom, right). Electron micrograph courtesy of Ohio State University

[/caption]During a laboratory experiment at Ohio State University, researchers were simulating the pressures and conditions necessary to form diamonds in the Earth’s mantle when they came across a surprise… A carbon “Super Earth” could exist. While endeavoring to understand how carbon might behave in other solar systems, they wondered if planets high in this element could be pressurized to the point of producing this valuable gemstone. Their findings point to the possibility that the Milky Way could indeed be home to stars where planets might consist of up to 50% diamond.

The research team is headed by Wendy Panero, associate professor in the School of Earth Sciences at Ohio State, and doctoral student Cayman Unterborn. As part of their investigation they incorporated their findings from earlier experiments into a computer modeling simulation. This was then used to create scenarios where planets existed with a higher carbon content than Earth..

The result: “It’s possible for planets that are as big as fifteen times the mass of the Earth to be half made of diamond,” Unterborn said. He presented the study Tuesday at the American Geophysical Union meeting in San Francisco.

“Our results are striking, in that they suggest carbon-rich planets can form with a core and a mantle, just as Earth did,” Panero added. “However, the cores would likely be very carbon-rich – much like steel – and the mantle would also be dominated by carbon, much in the form of diamond.”

At the center of our planet is an assumed molten iron core, overlaid with a mantle of silica-based minerals. This basic building block of Earth is what condensed from the materials in our solar cloud. In an alternate situation, a planet could form in a carbon-rich environment, thereby having a different planet structure – and a different potential for life. (Fortunately for us, our molten interior provides geothermal energy!) On a diamond planet, the heat would dissipate quickly – leading to a frozen core. On this basis, a diamond planet would have no geothermal resources, lack plate tectonics and wouldn’t be able to support either an atmosphere or a magnetic field.

“We think a diamond planet must be a very cold, dark place,” Panero said.

How did they come up with their findings? Panero and former graduate student Jason Kabbes took a miniature sample of iron, carbon, and oxygen and subjected it to pressures of 65 gigapascals and temperatures of 2,400 Kelvin (close to 9.5 million pounds per square inch and 3,800 degrees Fahrenheit – conditions similar to the Earth’s deep interior). As they observed the experiment microscopically, they saw oxygen bonding with iron to create rust… but what was left turned to pure carbon and eventually formed diamond. This led them to wonder about planetary formation implications.

“To date, more than five hundred planets have been discovered outside of our solar system, yet we know very little about their internal compositions,” said Unterborn, who is an astronomer by training.

“We’re looking at how volatile elements like hydrogen and carbon interact inside the Earth, because when they bond with oxygen, you get atmospheres, you get oceans – you get life,” Panero said. “The ultimate goal is to compile a suite of conditions that are necessary for an ocean to form on a planet.”

But don’t confuse their findings with recent, unrelated studies which involves the remnants of an expired star from a binary system. The OSU team’s finding simply suggest this type of planet could form in our galaxy, but how many or where they might be is still very open to interpretation. It’s a question that’s being investigated by Unterborn and Ohio State astronomer Jennifer Johnson.

Because diamonds are forever…

Original Story Source: Ohio State Research News.

SETI to Resume Search for Extraterrestrial Intelligence; Will Target Kepler Data

The Allen Telescope Array. Image Credit: SETI Institute

After being shut down for over six months due to financial problems, The Allen Telescope Array (ATA) is once again searching other planetary systems for radio signals, looking for evidence of extraterrestrial intelligence.

Some of the first targets in SETI’s renewed search will be a selection of recently discovered exoplanet candidates by NASA’s Kepler mission.

“This is a superb opportunity for SETI observations,” said Dr. Jill Tarter, the Director of the Center for SETI Research at the SETI Institute. “For the first time, we can point our telescopes at stars, and know that those stars actually host planetary systems – including at least one that begins to approximate an Earth analog in the habitable zone around its host star. That’s the type of world that might be home to a civilization capable of building radio transmitters.”

What other studies will SETI be performing with the array, and how were they able to restart the Allen Telescope Array?

This past April, SETI was forced to place the ATA into hibernation mode, due to budget cuts of SETI’s former partner, U.C Berkeley. Since Berkeley operated Hat Creek Observatory where the ATA is located, their withdrawal from the program left SETI without a way to operate the ATA.

SETI has since acquired new funding to operate the ATA and can now resume observations where they left off – examining planetary candidates detected by the Kepler mission. The planetary candidates SETI will examine first will be those that are thought to be in their star’s habitable zone (the range of orbital distance from a planet’s host star which may allow for surface water). Many astrobiologists theorize that liquid water is essential for life to exist on a planet.

“In SETI, as with all research, preconceived notions such as habitable zones could be barriers to discovery.” Tarter added. “So, with sufficient future funding from our donors, it’s our intention to examine all of the planetary systems found by Kepler.”

SETI will spend the next two years observing the planetary systems detected by Kepler in the naturally-quiet 1 to 10 GHz terrestrial microwave window. Part of what makes this comprehensive study possible is that the ATA can provide ready access to tens of millions of channels at any one time.

Resuming ATA operations was made possible due to tremendous public support via SETI’s www.SETIStars.org web site. In addition to the funds raised by the public, the United States Air Force has also provided funding to SETI in order to assess the ATA’s capabilities for space situational awareness.

Tarter notes, “Kepler’s success has created an amazing opportunity to focus SETI research. While discovery of new exoplanets via Kepler is backed with government monies, the search for evidence that some of these worlds might be home to intelligence falls to SETI alone. And our SETI exploration depends entirely on private donations, for which we are deeply grateful to our donors.”

“The year-in and year-out fundraising challenge we tackle in order to conduct SETI research is an absolute human and organizational struggle,” said Tom Pierson, CEO of the SETI Institute, “yet it is well worth the hard work to help Jill’s team address what is one of humanity’s most profound research questions.”

Dr. Tarter will be presenting during the first Kepler Science Conference (at NASA Ames Research Center) from December 5 to 9, 2011. You can view the agenda for the meeting, along with the abstract for her talk on Earth analogs at: http://kepler.nasa.gov/Science/ForScientists/keplerconference/sessions/.

If you’d like to learn more about SETI, or would like to make a donation to help fund their efforts, visit: https://setistars.org/donations/new

Read more about SETI’s partnership with the United States Air Force at: http://www.seti.org/afspc

Source: SETI Institute press release

Kepler Confirms First Planet in Habitable Zone of Sun-Like Star

This artist's illustration of Kepler 22-b, an Earth-like planet in the habitable zone of a Sun-like star about 640 light years (166 parsecs) away. Credit: NASA/Ames/JPL-Caltech

[/caption]

Scientists from the Kepler mission announced this morning the first confirmed exoplanet orbiting in the habitable zone of a Sun-like star, the region where liquid water could exist on the surface of a rocky planet like Earth. Evidence for others has already been found by Kepler, but this is the first confirmation. The planet, Kepler-22b, is also only about 2.4 times the radius of Earth — the smallest planet found in a habitable zone so far — and orbits its star, Kepler-22, in 290 days. It is about 600 light-years away from Earth, and Kepler-22 is only slightly smaller and cooler than our own Sun. Not only is the planet in the habitable zone, but astronomers have determined its surface temperature averages a comfortable 22 degrees C (72 degrees F). Since the planet’s mass is not yet known, astronomers haven’t determined if it is a rocky or gaseous planet. But this discovery is a major step toward finding Earth-like worlds around other stars. A very exciting discovery, but there’s more…

It was also announced that Kepler has found 1,094 more planetary candidates, increasing the number now to 2,326! That’s an increase of 89% since the last update this past February. Of these, 207 are near Earth size, 680 are super-Earth size, 1,181 are Neptune size, 203 are Jupiter size and 55 are larger than Jupiter. These findings continue the observational trend seen before, where smaller planets are apparently more numerous than larger gas giant planets. The number of Earth size candidates has increased by more than 200 percent and the number of super-Earth size candidates has increased by 140 percent.

According to Natalie Batalha, Kepler deputy science team lead at San Jose State University in San Jose, California, “The tremendous growth in the number of Earth-size candidates tells us that we’re honing in on the planets Kepler was designed to detect: those that are not only Earth-size, but also are potentially habitable. The more data we collect, the keener our eye for finding the smallest planets out at longer orbital periods.”

Regarding Kepler-22b, William Borucki, Kepler principal investigator at NASA Ames Research Center at Moffett Field, California stated: “Fortune smiled upon us with the detection of this planet. The first transit was captured just three days after we declared the spacecraft operationally ready. We witnessed the defining third transit over the 2010 holiday season.”

Comparison of the Kepler-22 system with our own inner solar system. Credit: NASA/Ames/JPL-Caltech

Previously there were 54 planetary candidates in habitable zones, but this was changed to 48, after the Kepler team redefined the definition of what constitutes a habitable zone in order to account for the warming effects of atmospheres which could shift the zone farther out from a star.

The announcements were made at the inaugural Kepler science conference which runs from December 5-9 at Ames Research Center.

See also the press release from the Carnegie Institution for Science here.

New Planet Kepler-21b Confirmed From Both Space And Ground

The Kepler field as seen in the sky over Kitt Peak National Observatory. The approximate position of HD 179070 is indicated by the circle (sky imaged using a diffraction grating to show spectra of brighter stars, credit J. Glaspey; telescopes imaged separately and combined, credit P. Marenfeld)

[/caption]

Are you ready to add another planet to the growing list of discoveries? Thanks to work done by Steve Howell of the NASA Ames Research Center and his research team, the Kepler Mission has scored another. Cataloged as 21-b, this “new” planet measures about one and half times the Earth’s radius and no more than 10 times the mass… but its “year” is only 2.8 days long!

With such a speedy orbit around its parent star, this little planet quickly drew attention to itself. Kepler 21-b’s sun is much like our own and one of the brightest in the Kepler field. Given its unique set of circumstances, it required a team of over 65 astronomers (that included David Silva, Ken Mighell and Mark Everett of NOAO) and cooperation with several ground-based telescopes including the 4 meter Mayall telescope and the WIYN telescope at Kitt Peak National Observatory to confirm its existence.

At this point, observations place this hot little planet at about 6 million kilometers away from the parent star, where it has estimated temperatures of about 1900 K, or 2960 F. While this isn’t even anywhere near a life-supporting type of planet, Kepler 21-b remains of interest because of its size. The parent star, HD 179070, is just slightly larger than the Sun and about half its age. Regardless, it can still be seen with optical aid and it is only about 352 light years away from Earth.

Kepler light curve of HD 179070 showing the eclipse of Kepler-21b. The data cover 15 months. The figure shows the binned, and phase folded-data based on 164 individual transits over-plotted by the model fit (red line).

Why are findings like these exciting? Probably because a large amount of stars show short period brightness oscillations – which means it’s difficult to detect a planetary passage from a normal light curve. In this case, it took 15 long months to build up enough information – including spectroscopic and imaging data from a number of ground based telescopes – to make a confident call on the planet’s presence.

It ain’t easy being a little planet… But they can be found!

Original Story Source: NOAO News Release.

Life on Alien Planets May Not Require a Large Moon After All

Earth and Moon. Credit: NASA

[/caption]

Ever since a study conducted back in 1993, it has been proposed that in order for a planet to support more complex life, it would be most advantageous for that planet to have a large moon orbiting it, much like the Earth’s moon. Our moon helps to stabilize the Earth’s rotational axis against perturbations caused by the gravitational influence of Jupiter. Without that stabilizing force, there would be huge climate fluctuations caused by the tilt of Earth’s axis swinging between about 0 and 85 degrees.

But now that belief is being called into question thanks to newer research, which may mean that the number of planets capable of supporting complex life could be even higher than previously thought.

Since planets with relatively large moons are thought to be fairly rare, that would mean most terrestrial-type planets like Earth would have either smaller moons or no moons at all, limiting their potential to support life. But if the new research results are right, the dependence on a large moon might not be as important after all. “There could be a lot more habitable worlds out there,” according to Jack Lissauer of NASA’s Ames Research Center in Moffett Field, California, who leads the research team.

It seems that the 1993 study did not take into account how fast the changes in tilt would occur; the impression given was that the axis fluctuations would be wild and chaotic. Lissauer and his team conducted a new experiment simulating a moonless Earth over a time period of 4 billion years. The results were surprising – the axis tilt of the Earth varied only between about 10 and 50 degrees, much less than the original study suggested. There were also long periods of time, up to 500 million years, when the tilt was only between 17 and 32 degrees, a lot more stable than previously thought possible.

So what does this mean for planets in other solar systems? According to Darren Williams of Pennsylvania State University, “Large moons are not required for a stable tilt and climate. In some circumstances, large moons can even be detrimental, depending on the arrangement of planets in a given system. Every system is going to be different.”

Apparently the assumption that a planet needs a large moon in order to be capable of supporting life was a bit premature. The results so far from the Kepler mission and other telescopes have shown that there is a wide variety of planets orbiting other stars, and so probably also moons, which we are now also on the verge of being able to detect. It’s nice to think that more of the terrestrial-type rocky planets, with or without moons, might be habitable after all.

An Exoplanet’s Auroral Engine

Aurora like the ones seen on October 24, 2011 as far south as Texas and Georgia would be commonplace on CoRoT-2b. (Image from the all-sky AuroraMax camera in Yellowknife, Ontario. http://twitpic.com/75owna )


Located 880 light-years away, a massive gas giant called CoRoT-2b orbits its star at a mere 2 million miles – less than a tenth the distance of Mercury’s orbit from the Sun. At this cozy proximity the star, CoRoT-2a, continually assaults the hot, gassy exoplanet with high-powered stellar winds and magnetic storms, stripping it of millions of kilograms of mass every day… and undoubtedly creating global auroras that rival even the most energetic seen on Earth.

But CoRoT-2b isn’t merely a tragic player in this stormy stellar performance; the planet itself may also be part of the cause.

[/caption]

Almost 3 1/2 times the mass of Jupiter, CoRoT-2b (so named because it was discovered by the French Space Agency’s Convection, Rotation and planetary Transits space telescope, or CoRoT) orbits its star very rapidly, completing an orbit every 1.7 days. This in turn actually speeds up the rotation of the star itself thus generating even more magnetic activity, via a dynamo effect.

Caught up in this deadly dance, CoRoT-2b is losing mass at an estimated rate of 150 million billion kilograms of material every year! The planet would likely have a long comet-like tail of this stripped material trailing behind it.

Although this sounds like a lot, CoRoT-2b has enough mass to keep “spinning up” its star for thousands of billions of years.

Read more about CoRoT-2a and b here.

Video: Science@NASA

First Amateur Image of Another Solar System

Amateur astronomer Rolf Wahl Olsen from New Zealand shared an image with Universe Today, and it is perhaps the first image of another solar system taken by an amateur. The image above is Olsen’s image of the protoplanetary disc around Beta Pictoris.

“For the last couple of years I have been wondering if it was possible for amateurs to capture this special target but have never come across any such images,” Olsen wrote in an email. “I must say it feels really special to have actually captured this.”


Olsen said he has been fascinated by professional images of Beta Pictoris since seeing the first one in taken in 1984.

Beta Pictoris and the protoplanetary disc of debris and dust that is orbiting the star is 63.4 light years away from Earth. This is a very young system thought to be only around 12 million years old and astronomers think this is essentially how our own Solar System must have formed some 4.5 billion years ago. The disc is seen edge-on from our perspective and appears in professional images as thin wedges or lines protruding radially from the central star in opposite directions.

“The main difficulty in imaging this system is the overwhelming glare from Beta Pictoris itself which completely drowns out the dust disc that is circling very close to the star,” Olsen said.

Images of the disc taken by the Hubble Space Telescope, and from big observatories, are usually made by physically blocking out the glare of Beta Pictoris itself within the optical path.

Olsen found inspiration from a paper he found recently, the 1993 paper ‘Observation of the central part of the beta Pictoris disk with an anti-blooming CCD’ (Lecavelier des etangs, A., Perrin, G., Ferlet, R., Vidal-Madjar, A., Colas, F., et al., 1993, A&A, 274, 877)

“I then realised that it might not be entirely impossible to also record this object with my own equipment,” Olsen said. “So now that Beta Pictoris has risen to a favorable position in this year’s evening sky I decided to have a go at it the other day.”

He followed the technique described in the paper, which basically consists of imaging Beta and then taking another image of a similar reference star under the same conditions. The two images are subtracted from each other to eliminate the stellar glare, and the dust disc should then hopefully reveal itself.

“First I collected 55 images of Beta Pictoris at 30 seconds each,” Olsen said. “The dust disc is most prominent in IR so ideally a better result would be expected with the use of an IR pass filter. Since I only have a traditional IR/UV block filter I just imaged without any filter, to at least get as much IR light through as possible.”

The next step was to capture a similar image of a reference star under the same conditions. Olsen did as the paper suggested and used Alpha Pictoris, a star that is of nearly the same spectral type (A7IV compared to Beta’s A6V) and is also close enough to Beta in the sky so that the change in telescope orientation should not affect the diffraction pattern. However, since the two stars have different magnitudes he needed to calculate how long to expose Alpha for in order to get a similar image which he could subtract from the Beta image.

Some quick math:

The magnitude difference between the stars is 3.86(Beta) – 3.30(Alpha) = 0.56

Due to the logarithmic nature of the magnitude scale we know that a difference of 1 magnitude equals a brightness ratio of 2.512. Therefore 2.512 to the power of the numerical magnitude difference then equals the variation in brightness.

2.512^0.56 = 1.67, so it appears Alpha is 1.67 times brighter than Beta. This means that exposure for Alpha should be 1/1.67 = 0.597x that of Beta. I took the liberty of using 0.6x for simplicity’s sake…

“So I collected 55 images of 18 seconds (30 x 0.6) for Alpha,” Olsen said. “Both sets of images were stacked separately in Registax and I then imported these into Photoshop, layered Alpha in ‘Difference’ mode on top of Beta and flattened the result. This produces a very dark image (which it should!) apart from the different background stars. But after some curves adjustment I was able to see clear signs of the actual dust disc protruding on both sides from the glare of the star. I was very happy to conclude that the position angle with regards to the background stars matched the official images exactly.”

Olsen said he was disappointed with the raw “Difference” image so to produce a more natural looking result, he took the original stacked Beta image and then blended in the central parts from the Difference image that showed the dust disc.

“I decided to also keep the black spot of the central glare from the Difference image since the contrast with the protruding disc seems better this way,” Olsen said.

What resulted is what is thought to be the first amateur image of another solar system.

Olsen is encouraging others amateur astrophotographers to try this, and see if they can do even better.

“I’m sure this can be done much better with a higher quality camera, but at least here it is,” he said. And I’m personally extremely happy and proud of having achieved this. I hope you enjoy the view as much as I did!”

If any other amateur astronomers have attempted to image a disk around another star, we’d love to hear about it and see the results.

Check out the original image on Olsen’s website: http://www.pbase.com/rolfolsen/image/139722640/original

Forget Exomoons. Let’s talk Exorings

An artist impression of an exomoon orbiting an exoplanet, could the exoplanet's wobble help astronomers? (Andy McLatchie)

[/caption]

In an article earlier this month, I discussed the potential for discovering moons orbiting extrasolar planets. I’d used an image of an exoplant system with rings, prompting one reader to ask if those would be possible to detect. Apparently he wasn’t the only person wondering. A new paper looks more at exomoons and explores exoring systems.

The idea of detecting rings around distant planets dates back to at least 2004. Then, Barnes & Fortney suggested that rings would be potentially detectable from the eclipse they would cause if the photometric precision were as one part in ten-thousand. This is a big challenge, but one that’s more than met by telescopes like Kepler today. But for this to be possible, the rings needed to block the most light possible, meaning that they would have to be viewed face on, instead of edge on.

Fortunately, a study this year by Schlichting & Chang demonstrated that, even if the planet’s spin is aligned with the plane of orbit, it’s quite possible that the rings will be significantly warped due to gravitational interactions with the star.

So it should be possible, but what do astronomers need to look for?

The new paper attempts to answer this question by simulating light curves for a hypothetical ringed exoplanet. The first result is that the extra area of the star’s surface covered by the rings reduces the light detected. However, this is difficult to disentangle from the effects of simply having a larger planet that blocks the light.

Simulated light curve for exoplanet system with rings vs model lacking rings. Credit: Tusnski & Valio
Simulated light curve for exoplanet system with rings vs model lacking rings. Credit: Tusnski & Valio

A second effect is based on the shape of the light curve (a graph of the brightness as a function of time) as the planet begins and ends the transit. In short, the semi-transparent nature of the rings makes the drop in brightness softer, rounding off the edges of the light curve. When modeled against a planet that lacked rings, this would be readily detectable for an instrument like Kepler.

With such precision, the team suggests that Kepler should be more than capable of detecting a ring system similar in size and nature to those of Saturn. However, other transit finding telescopes, such as CoRoT, would mistake the rings for a slightly larger planet.

In the future, the team plans to take their model and reexamine data from Kepler and CoRoT to search for both rings and moons.

Planetary Habitability Index Proposes A Less “Earth-Centric” View In Search Of Life

Artist concept of an exoplanet. Credit: David A. Hardy.

[/caption]

It’s a given. It won’t be long until human technology will expand our repertoire of cataloged exoplanets to astronomical levels. Of these, a huge number will be considered within the “habitable zone”. However, isn’t it a bit egotistical of mankind to assume that life should be “as we know it”? Now astrobiologists/scientists like Dirk Schulze-Makuch with the Washington State University School of Earth and Environmental Sciences and Abel Mendez from the University of Puerto Rico at Aricebo are suggesting we take a less limited point of view.

“In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability.” says Schulze-Makuch (et al). “The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time.”

Right now, an international science team representing NASA, SETI,the German Aerospace Center, and four universities are ready to propose two major questions dealing with our quest for life – both as we assume and and alternate. According to the WSU news release:

“The first question is whether Earth-like conditions can be found on other worlds, since we know empirically that those conditions could harbor life,” Schulze-Makuch said. “The second question is whether conditions exist on exoplanets that suggest the possibility of other forms of life, whether known to us or not.”

Within the next couple of weeks, Schulze-Makuch and his nine co-authors will publish a paper in the Astrobiology journal outlining their future plans for exoplanet classification. The double approach will consist of an Earth Similarity Index (ESI), which will place these newly found worlds within our known parameters – and a Planetary Habitability Index (PHI), that will account for more extreme conditions which could support surrogate subsistence.

“The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature.” explains the team. “For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions.”

Assuming that life could only exist on Earth-like planets is simply narrow-minded thinking, and the team’s proposal and modeling efforts will allow them to judiciously filter new discoveries with speed and high level of probability. It will allow science to take a broader look at what’s out there – without being confined to assumptions.

“Habitability in a wider sense is not necessarily restricted to water as a solvent or to a planet circling a star,” the paper’s authors write. “For example, the hydrocarbon lakes on Titan could host a different form of life. Analog studies in hydrocarbon environments on Earth, in fact, clearly indicate that these environments are habitable in principle. Orphan planets wandering free of any central star could likewise conceivably feature conditions suitable for some form of life.”

Of course, the team admits an alien diversity is surely a questionable endeavor – but why risk the chance of discovery simply on the basis that it might not happen? Why put a choke-hold on creative thinking?

“Our proposed PHI is informed by chemical and physical parameters that are conducive to life in general,” they write. “It relies on factors that, in principle, could be detected at the distance of exoplanets from Earth, given currently planned future (space) instrumentation.”

Original News Source: WSU News. For Further Reading: A Two-Tiered Approach to Assessing the Habitability of Exoplanets.